Conceptualization: D anuta Bryzek, Jan Potempa, Joanna Koziel.

Data curation: D anuta Bryzek, Izabela Ciaston, Sigrun Eick, Barbara Potempa, Joanna Koziel.

Formal analysis: D anuta Bryzek, Sigrun Eick, Joanna Koziel.

Funding acquisition: Jan Potempa, Joanna Koziel.

Investigation: D anuta Bryzek, Izabela Ciaston, Ewelina Dobosz, A nna Gasiorek, Anna Makarska, Maciej Lech, Joanna Koziel.

Methodology: D anuta Bryzek, Michal Sarna, Maciej Lech, Joanna Koziel.

Project administration: Joanna Koziel.

Supervision: Joanna Koziel.

Validation: Joanna Koziel.

Visualization: Ewelina Dobosz, Magdalena Puklo.

W riting - original draft: D anuta Bryzek, Jan Potempa, Joanna Koziel.

W riting - review & editing: Sigrun Eick, Maciej Lech, Jan Potempa, Joanna Koziel.

References

1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, W eiss DS, et al. Neutrophil extracellu­

lar traps kill bacteria. Science. 2004; 303(5663):1532-5. Epub 2004/03/06. https://doi.org/10.1126/

science.1092385 PMID: 15001782.

2. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, e ta l. A novel m echanism of rapid nuclear neutrophil extracellular trap form ation in response to Staphylococcus aureus. J Immunol. 2010;

185(12):7413-25. Epub 2010/11/26. https://doi.org/10.4049/jim m unol.1000675 PMID: 21098229.

3. Floyd M, W inn M, Cullen C, Sil P, Chassaing B, Yoo DG, et al. Swimming M otility Mediates the Form a­

tion of Neutrophil Extracellular T raps Induced by Flagellated Pseudomonas aeruginosa. PLoS Pathog.

2016; 12(11):e1005987. Epub 2016/11/18. https://doi.org/10.1371/journal.ppat.1005987 PMID:

2 7855208; PubMed Central PMCID: PMC5113990.

4. Pieterse E, Rother N, Y anginlarC , Hilbrands LB, van der Vlag J. Neutrophils Discriminate between Lipopolysaccharides of Different Bacterial Sources and Selectively Release Neutrophil Extracellular Traps. Front Immunol. 2016; 7:484. Epub 2016/11/22. https://doi.org/10.3389/fim m u.2016.00484 PMID: 27867387; PubMed Central PMCID: PMC5095130.

5. Liu S, Su X, Pan P, Zhang L, Hu Y, Tan H, et al. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci Rep. 2016; 6:37252. Epub 2016/11/17.

https://doi.org/10.1038/srep37252 PMID: 27849031; PubMed Central PMCID: PMC5110961.

6. Lauth X, von Kockritz-Blickwede M, M cNam ara CW, M yskowski S, Zinkernagel AS, Beall B, et al. M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibi­

tion. J Innate Immun. 2009; 1(3):202-14. E p u b 2009/01/01. https://doi.org/10.1159/000203645 PMID:

2 0375578; PubMed Central PMCID: PMC3241932.

7. Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. Staphylococcus aureus leuko- toxin GH prom otes form ation of neutrophil extracellular traps. J Immunol. 2013; 191(12):6022-9. Epub 2013/11/06. https://doi.org/10.4049/jim m unol.1301821 PMID: 24190656; PubMed Central PMCID:

PMC3903389.

8. Vitkov L, Hartl D, M innich B, Hannig M. Janus-Faced Neutrophil Extracellular T raps in Periodontitis.

Front Immunol. 2017; 8:1404. Epub 2017/11/11. https://doi.org/10.3389/fim m u.2017.01404 PMID:

2 9123528; PubMed Central PMCID: PMC5662558.

9. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynam ic com m unities and host interactions.

Nature reviews Microbiology. 2018; 16(12):745-59. https://doi.org/10.1038/s41579-018-0089-x PMID:

3 0301974; PubMed Central PMCID: PMC6278837.

10. Sbordone L, Bortolaia C. Oral microbial biofilms and plaque-related diseases: microbial com m unities and their role in the shift from oral health to disease. Clin Oral Investig. 2003; 7(4):181-8. Epub 2003/

11/05. https://doi.org/10.1007/s00784-003-0236-1 PMID: 14598129.

11. Curtis MA, Kuram itsuH K , Lantz M, M acrina FL, Nakayama K, Potem paJ, e ta l. M olecular genetics and nomenclature of proteases of Porphyrom onas gingivalis. J Periodontal Res. 1999; 34(8):464-72. Epub 2000/03/04 PMID: 10697803.

12. Potem pa J, Pike R, Travis J. Titration and m apping of the active site of cysteine proteinases from Por­

phyrom onas gingivalis (gingipains) using peptidyl chlorom ethanes. Biol Chem. 1997; 3 7 8 (3 -4 ):2 2 3 -3 0 . Epub 1997/03/01 PMID: 9165075.

13. Guentsch A, Kram esberger M, S rokaA , Pfister W, Potem paJ, E ickS . Com parison of gingival crevicular fluid sampling m ethods in patients with severe chronic periodontitis. J Periodontol. 2011; 82 (7 ):1 05 1 -60. Epub2011/01/18. https://doi.org/10.1902/jop.2011.100565 PMID: 21235330; PubMed Central PMCID: PMC3129431.

14. Potem paJ, Pike R, Travis J. The multiple form s of trypsin-like activity present in various strains of Por­

phyrom onas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain. Infect Immun.

1995; 63(4):1176-82. Epub 1995/04/01 PMID: 7890369; PubMed Central PMCID: PMC173131.

15. Neilands J, Bikker FJ, Kinnby B. PAI-2/SerpinB2 inhibits proteolytic activity in a P. gingivalis-dom inated m ultispecies bacterial consortium. Arch Oral Biol. 2016; 7 0 :1-8 . Epub 2016/06/14. https://doi.org/10.

1016/j.archoralbio.2016.05.016 PMID: 27295389.

16. Potem paJ, Pike RN. Corruption of innate im m unity by bacterial proteases. J Innate Immun. 2009; 1 (2):70-87. Epub 2009/09/17. https://doi.org/10.1159/000181144 PMID: 19756242; PubMed Central PMCID: PMC2743019.

17. Fitzpatrick RE, W ijeyewickrem a LC, Pike RN. The gingipains: scissors and glue of the periodontal path­

ogen, Porphyrom onas gingivalis. Future Microbiol. 2009; 4(4):471-87. Epub 2009/05/07. https://doi.

org/10.2217/fm b.09.18 PMID: 19416015.

18. M aekaw aT , Krauss JL, A b e T , Jotwani R, Triantafilou M, Triantafilou K, e ta l. Porphyrom onas gingivalis m anipulates com plem ent and TLR signaling to uncouple bacterial clearance from inflammation and pro­

mote dysbiosis. Cell Host Microbe. 2014; 15(6):768-78. Epub 2014/06/13. https://doi.org/10.1016/j.

chom .2014.05.012 PMID: 24922578; PubMed Central PMCID: PMC4071223.

19. Bao K, Belibasakis GN, T hurnheerT , Aduse-Opoku J, Curtis MA, Bostanci N. Role of Porphyrom onas gingivalis gingipains in m ulti-species biofilm formation. BMC Microbiol. 2014; 14:258. Epub 2014/10/02.

https://doi.org/10.1186/s12866-014-0258-7 PMID: 25270662; PubMed Central PMCID: PMC4189655.

20. Kinane DF, Preshaw PM, Loos BG, W orking Group 2 of Seventh European W orkshop on P. Host- response: understanding the cellular and m olecular m echanism s of host-microbial interactions— con­

sensus of the Seventh European W orkshop on Periodontology. J Clin Periodontol. 2011; 38 Suppl 11:44-8. Epub 2011/03/01. https://doi.org/10.1111/j.1600-051X.2010.01682.x

21. Scott DA, Krauss J. Neutrophils in periodontal inflammation. Front Oral Biol. 2012; 15:56-83. Epub 2011/12/07. https://doi.org/10.1159/000329672 PMID: 22142957; PubMed Central PMCID:

PMC3335266.

22. Vitkov L, Klappacher M, Hannig M, Krautgartner WD. Neutrophil fate in gingival crevicular fluid. Ultra- struct Pathol. 2010; 34(1):25-30. Epub 2010/01/15. https://doi.org/10.3109/01913120903419989 PMID: 20070150.

Triggering NETosis via PAR-2 hijacks neutrophils function for pathogen benefits

23. Vitkov L, Klappacher M, Hannig M, Krautgartner WD. Extracellular neutrophil traps in periodontitis. J Periodontal Res. 2009; 44(5):664-72. E p u b 2009/05/21. https://doi.org/10.1111/i.1600-0765.2008.

01175.x PMID: 19453857.

24. Krautgartner WD, Klappacher M, Hannig M, Oberm ayer A, Hartl D, Marcos V, et al. Fibrin m im ics neu­

trophil extracellular traps in SEM. Ultrastruct Pathol. 2010; 34(4):226-31. Epub 2010/07/03. https://doi.

org/10.3109/01913121003725721 PMID: 20594043.

25. Delbosc S, Alsac JM, Journe C, Louedec L, Castier Y, Bonnaure-Mallet M, et al. Porphyrom onas gingi­

valis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. Proof of concept in rats. PLoS One. 2011; 6(4):e18679. Epub 2011/05/03. https://doi.org/10.1371/iournal.

pone.0018679 PMID: 21533243; PubMed Central PMCID: PMC3076426.

26. Kessenbrock K, Krumbholz M, Schonerm arck U, Back W, Gross WL, W erb Z, et al. Netting neutrophils in autoim m une sm all-vessel vasculitis. Nat Med. 2009; 15(6):623-5. Epub 2009/05/19. https://doi.org/

10.1038/nm.1959 PMID: 19448636; PubMed Central PMCID: PMC2760083.

27. Villanueva E, Yalavarthi S, BerthierC C , Hodgin JB, KhandpurR , L in A M ,e ta l. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose im m unostim ulatory molecules in system ic lupus erythem atosus. J Immunol. 2011; 187(1):538-52. Epub 2011/05/27. https://doi.org/10.4049/

iim m unol.1100450 PMID: 21613614; PubMed Central PMCID: PMC3119769.

28. Khandpur R, Carm ona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stim ulate inflam m atory responses in rheumatoid arthritis.

Sci Transl Med. 2013; 5(178):178ra40. Epub 2013/03/29. https://doi.org/10.1126/scitranslmed.

3005580 PMID: 23536012; PubMed Central PMCID: PMC3727661.

29. Delgado-Rizo V, M artinez-G uzm an MA, Iniguez-Gutierrez L, G arcia-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil Extracellular T raps and Its Im plications in Inflammation: An Overview.

Front Immunol. 2017; 8:81. Epub 2017/02/22. https://doi.org/10.3389/fim mu.2017.00081 PMID:

2 8220120; PubMed Central PMCID: PMC5292617.

30. Veith PD, Chen YY, G orasia DG, Chen D, Glew MD, O ’Brien-Simpson NM, et al. Porphyrom onas gingi­

valis outer mem brane vesicles exclusively contain outer m em brane and periplasmic proteins and carry a cargo enriched with virulence factors. J Proteome Res. 2014; 13(5):2420-32. Epub 2014/03/14.

https://doi.org/10.1021/pr401227e PMID: 24620993.

31. Papayannopoulos V, M etzler KD, Hakkim A, ZychlinskyA . Neutrophil ela sta sea n d myeloperoxidase regulate the form ation of neutrophil extracellular traps. J Cell Biol. 2010; 191(3):677-91. Epub 2010/10/

27. https://doi.org/10.1083/icb.201006052 PMID: 20974816; PubMed Central PMCID: PMC3003309.

32. Kadowaki T, Baba A, Abe N, Takii R, Hashim oto M, Tsukuba T, et al. Suppression of pathogenicity of Porphyrom onas gingivalis by newly developed gingipain inhibitors. Mol Pharmacol. 2004; 66 (6 ):1 59 9 - 606. Epub 2004/09/14. https://doi.org/10.1124/m ol.104.004366 PMID: 15361547.

33. Douda DN, Khan MA, Grasem ann H, Palaniyar N. SK3 channel and m itochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proceedings of the National Academ y of Sciences of the United States of Am erica. 2015; 112(9):2817-22. https://doi.org/10.1073/pnas.

1414055112 PMID: 25730848; PubMed Central PMCID: PMC4352781.

34. Keshari RS, Verm a A, Barthwal MK, Dikshit M. Reactive oxygen species-induced activation of ERK and p38 M APK m ediates PM A-induced NETs release from human neutrophils. J Cell Biochem. 2013; 114 (3):532-40. Epub 2012/09/11. https://doi.org/10.1002/icb.24391 PMID: 22961925.

35. Lourbakos A, Chinni C, Thom pson P, Potempa J, Travis J, M ackie EJ, et al. Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyrom onas gingivalis.

FEBS Lett. 1998; 435(1):45-8. Epub 1998/10/02 PMID: 9755856.

36. Lourbakos A, Potem pa J, Travis J, D’Andrea MR, Andrade-G ordon P, Santulli R, et al. Arginine-specific protease from Porphyrom onas gingivalis activates protease-activated receptors on human oral epithe­

lial cells and induces interleukin-6 secretion. Infect Immun. 2001; 69(8):5121-30. Epub 2001/07/12.

https://doi.org/10.1128/IAI.69.8.5121-5130.2001 PMID: 11447194; PubMed Central PMCID:

PMC98608.

37. Lourbakos A, Yuan YP, Jenkins AL, Travis J, Andrade-Gordon P, Santulli R, et al. Activation of prote­

ase-activated receptors by gingipains from Porphyrom onas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood. 2001; 97(12):3790-7. Epub 2001/06/05 PMID: 11389018.

38. U eharaA , Im am uraT, Potempa J, Travis J, Takada H. G ingipains from Porphyrom onas gingivalis syn- ergistically induce the production of proinflam m atory cytokines through protease-activated receptors with Toll-like receptor and NOD1/2 ligands in human m onocytic cells. Cell Microbiol. 2008; 10(5):1181-9. E p u b 2008/01/10. https://doi.org/10.1111/i.1462-5822.2008.011110(5):1181-9.x PMID: 18182086.

39. Jiang Y, Yau MK, Kok WM, Lim J, Wu KC, Liu L, et al. Biased Signaling by Agonists of Protease A cti­

vated Receptor 2. A C S C h e m Biol. 2017; 12(5):1217-26. Epub 2017/02/09. https://doi.org/10.1021/

acschem bio.6b01088 PMID: 28169521.

40. Ram achandran R, M ihara K, Chung H, Renaux B, Lau CS, Muruve DA, et al. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem. 2011; 286(28):24638-48.

https://doi.org/10.1074/jbc.M 110.201988 PMID: 21576245; PubMed Central PMCID: PMC3137039.

41. R VB, Kulasingam SL. Economic evaluations of human papillomavirus vaccines. Expert Rev Pharma- coecon Outcom es Res. 2007; 7(3):251-67. Epub 2007/06/01. https://doi.org/10.1586/14737167.7.3.

251 PMID: 20528312.

42. C how OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, et al. Statins enhance form ation of phagocyte extracellular traps. Cell Host Microbe. 2010; 8(5):445-54. Epub 2010/

11/16. https://doi.org/10.1016/j.chom .2010.10.005 PMID: 21075355; PubMed Central PMCID:

PMC3008410.

43. von Kockritz-Blickwede M, Nizet V. Innate im m unity turned inside-out: antimicrobial defense by phago­

cyte extracellular traps. J Mol Med (Berl). 2009; 87(8):775-83. Epub 2009/05/16. https://doi.org/10.

1007/s00109-009-0481-0 PMID: 19444424; PubMed Central PMCID: PMC2707954.

44. Logters T, M argraf S, Altrichter J, Cinatl J, M itzner S, W indolf J, et al. The clinical value of neutrophil extracellular traps. Med Microbiol Immunol. 2009; 198(4):211-9. Epub 2009/08/05. https://doi.org/10.

1007/s00430-009-0121-x PMID: 19653000.

45. Branzk N, Papayannopoulos V. M olecular m echanism s regulating NETosis in infection and disease.

Semin Immunopathol. 2013; 35(4):513-30. Epub 2013/06/05. https://doi.org/10.1007/s00281-013- 0384-6 PMID: 23732507; PubMed Central PMCID: PMC3685711.

46. C ooper PR, Palmer LJ, Chapple IL. Neutrophil extracellular traps as a new paradigm in innate immunity:

friend or foe? Periodontol 2000. 2013; 63(1):165-97. Epub 2013/08/13. https://doi.org/10.1111/prd.

12025 PMID: 23931060.

47. W hite PC, Chicca IJ, C ooper PR, M ilward MR, Chapple IL. Neutrophil Extracellular T raps in Periodonti­

tis: A W eb of Intrigue. J Dent Res. 2016; 95(1):26-34. Epub 2015/10/08. https://doi.org/10.1177/

0022034515609097 PMID: 26442948.

48. Jayaprakash K, Demirel I, Khalaf H, Bengtsson T. The role of phagocytosis, oxidative burst and neutro­

phil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyrom o­

nas gingivalis. Mol Oral Microbiol. 2015; 30(5):361-75. Epub 2015/04/15. https://doi.org/10.1111/om i.

12099 PMID: 25869817.

49. Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R, Kordes S, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Science immunology. 2018; 3(26). https://

doi.org/10.1126/sciim m unol.aar6689 PMID: 30143555.

50. Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon ND, et al. Noncanonical inflamm asome signaling elicits gasderm in D-dependent neutrophil extracellular traps. Science im m u­

nology. 2018; 3(26). https://doi.org/10.1126/sciim m unol.aar6676 PMID: 30143554.

51. Lee K, Roberts JS, Choi CH, Atanasova KR, Yilm az O. Porphyrom onas gingivalis traffics into endoplas­

m ic reticulum -rich-autophagosom es for successful survival in human gingival epithelial cells. Virulence.

2018; 9(1):845-59. https://doi.org/10.1080/21505594.2018.1454171 PMID: 29616874; PubMed Cen­

tral PMCID: PMC5955440.

52. G uzik K, Bzowska M, Sm agur J, Krupa O, Sieprawska M, Travis J, et al. A new insight into phagocytosis of apoptotic cells: proteolytic enzym es divert the recognition and clearance of polym orphonuclear leuko­

cytes by macrophages. Cell Death Differ. 2007; 14(1):171-82. Epub 2006/04/22. https://doi.org/10.

1038/sj.cdd.4401927 PMID: 16628232.

53. Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immu­

n o l.2013; 191(5):2647-56. Epub 2013/08/02. https://doi.org/10.4049/jim m unol.1300436 PMID:

2 3904163.

54. Im am ura T, Travis J, Potempa J. The biphasic virulence activities of gingipains: activation and inactiva­

tion of host proteins. Curr Protein Pept Sci. 2003; 4(6):443-50. Epub 2003/12/20 PMID: 14683429.

55. Giacaman RA, Asrani AC, Ross KF, Herzberg MC. Cleavage of protease-activated receptors on an im mortalized oral epithelial cell line by Porphyrom onas gingivalis gingipains. Microbiology. 2009; 155(Pt 10):3238-46. https://doi.org/10.1099/m ic.0.029132-0 PMID: 19608609; PubMed Central PMCID:

PMC2889418.

56. Holzhausen M, Spolidorio LC, Ellen RP, Jobin MC, Steinhoff M, Andrade-Gordon P, et al. Protease-acti­

vated receptor-2 activation: a m ajor role in the pathogenesis of Porphyrom onas gingivalis infection. The Am erican journal of pathology. 2006; 168(4):1189-99. https://doi.org/10.2353/ajpath.2006.050658 PMID: 16565494; PubMed Central PMCID: PMC1606564.

57. Scragg MA, Alsam A, Rangarajan M, Slaney JM, Shepherd P, W illiam s DM, et al. Nuclear targeting of Porphyrom onas gingivalis W 50 protease in epithelial cells. Infect Immun. 2002; 7 0 (1 0):5740-50 https://

doi.org/10.1128/IAI.70.10.5740-5750.2002 PMID: 12228304; PubMed Central PMCID: PMC128306.

Triggering NETosis via PAR-2 hijacks neutrophils function for pathogen benefits

68. D’Cruz AA, S peirM , Bliss-Moreau M, Dietrich S, Wang S, C h e n A A , e ta l. The pseudokinase M L K L a cti­

vates PAD4-dependent NET form ation in necroptotic neutrophils. Science signaling. 2018; 11(546).

https://doi.org/10.1126/scisignal.aao1716 PMID: 30181240; PubMed Central PMCID: PMC6301070.

69. Madrigal AG, Barth K, Papadopoulos G, G enco CA. Pathogen-m ediated proteolysis of the cell death regulator RIPK1 and the host defense m odulator RIPK2 in human aortic endothelial cells. PLoS Pathog.

2012; 8(6):e1002723. https://doi.org/10.1371/iournal.ppat.1002723 PMID: 22685397; PubMed Central PMCID: PMC3369954.

60. Potem paJ, Sroka A, Im am uraT, Travis J. Gingipains, the m ajor cysteine proteinases and virulence fa c­

tors of Porphyrom onas gingivalis: structure, function and assem bly of multidom ain protein complexes.

Curr Protein Pept Sci. 2003; 4(6):397-407. Epub 2003/12/20 PMID: 14683426.

61. Fitzpatrick RE, Aprico A, W ijeyewickrem a LC, Pagel CN, Wong DM, Potempa J, et al. High m olecular w eight gingipains from Porphyrom onas gingivalis induce cytokine responses from human m acrophage­

like cells via a nonproteolytic mechanism. J Innate Immun. 2009; 1(2):109-17. Epub 2009/01/01.

https://doi.org/10.1159/000181145 PMID: 20375569; PubMed Central PMCID: PMC3087433.

62. G lowczyk I, Wong A, Potempa B, BabyakO , LechM , Lamont RJ, e ta l. Inactive Gingipains from P. gin­

givalis Selectively Skews T Cells toward a Th17 Phenotype in an IL-6 Dependent Manner. Front Cell Infect Microbiol. 2017; 7:140. Epub 2017/05/13. https://doi.org/10.3389/fcim b.2017.00140 PMID:

2 8497028; PubMed Central PMCID: PMC5406403.

63. Berends ET, Horswill AR, Haste NM, M onestier M, Nizet V, von Kockritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun. 2010; 2(6):576-86. E p u b 2010/09/11. https://doi.org/10.1159/000319909 PMID: 20829609;

PubMed Central PMCID: PMC2982853.

64. Beiter K, W artha F, A lbiger B, Normark S, Zychlinsky A, Henriques-Norm ark B. An endonuclease allows Streptococcus pneum oniae to escape from neutrophil extracellular traps. Curr Biol. 2006; 16(4):401-7.

Epub 2006/02/21. https://doi.org/10.1016/i.cub.2006.01.056 PMID: 16488875.

66. Gabriel C, M cM asterW R , Girard D, DescoteauxA . Leishmania donovani prom astigotes evade the anti­

microbial activity of neutrophil extracellular traps. J Immunol. 2010; 185(7):4319-27. Epub 2010/09/10.

https://doi.org/10.4049/iim m unol.1000893 PMID: 20826753.

66. M aisetta G, Brancatisano FL, Esin S, Cam pa M, Batoni G. Gingipains produced by Porphyrom onas gin­

givalis ATCC49417 degrade hum an-beta-defensin 3 and affect peptide’s antibacterial activity in vitro.

Peptides. 2011; 32(5):1073-7. Epub2011/02/22. https://doi.org/10.1016/i.peptides.2011.02.003 PMID:

2 1335044.

67. M ilner P, Batten JE, Curtis MA. Development of a simple chem ically defined medium for Porphyrom o­

nas gingivalis: requirement for alpha-ketoglutarate. FEMS Microbiol Lett. 1996; 14 0 (2 -3 ):1 2 5 -3 0 . Epub 1996/07/01 https://doi.org/10.1016/0378-1097(96)00159-0 PMID: 8764473.

68. Potem paJ, B anbulaA, Travis J. Role of bacterial proteinases in m atrix destruction and modulation of host responses. Periodontol 2000. 2000; 24:153-92. E p u b 2001/03/30 PMID: 11276866.

69. Ng HM, Kin LX, Dashper SG, Slakeski N, Butler CA, Reynolds EC. Bacterial interactions in pathogenic subgingival plaque. M icrob Pathog. 2016; 9 4 :60-9. Epub 2015/11/07. https://doi.org/10.1016/i.m icpath.

2015.10.022 PMID: 26541672.

70. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, e ta l. Low-abundance biofilm species orchestrates inflam m atory periodontal disease through the comm ensal m icrobiota and com ple­

ment. Cell Host Microbe. 2011; 10(5):497-506. https://doi.org/10.1016/i.chom .2011.10.006 PMID:

2 2036469; PubMed Central PMCID: PMC3221781.

71. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nature reviews M icrobi­

ology. 2012; 10(10):717-25. https://doi.org/10.1038/nrm icro2873 PMID: 22941505; PubMed Central PMCID: PMC3498498.

72. Darveau RP, Hajishengallis G, Curtis MA. Porphyrom onas gingivalis as a potential com m unity activist for disease. J Dent Res. 2012; 91(9):816-20. https://doi.org/10.1177/0022034512453589 PMID:

2 2772362; PubMed Central PMCID: PMC3420389.

73. Allport JR, Lim YC, Shipley JM, Senior RM, Shapiro SD, M atsuyoshi N, e ta l. Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration u n d erflo w in vitro. J Leukoc Biol. 2002; 71(5):821-8. E p u b 2002/05/08 PMID: 11994507.

74. Meng W, Paunel-Gorgulu A, Flohe S, Hoffmann A, W itte I, MacKenzie C, e ta l. Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice. Crit Care. 2012;

16(4):R137. Epub 2012/07/28. https://doi.org/10.1186/cc11442 PMID: 22835277; PubMed Central PMCID: PMC3580722.

76. Shi Y, Ratnayake DB, O kam oto K, Abe N, Yam am oto K, Nakayama K. Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyrom onas gingivalis. Construction of mutants with a

combination of rgpA, rgpB, kgp, and hagA. J Biol Chem. 1999; 274(25):17955-60. Epub 1999/06/11 https://doi.org/10.1074/ibc.274.25.17955 PMID: 10364243.

76. Pike R, M cGraw W, Potem pa J, Travis J. Lysine-and arginine-specific proteinases from Porphyrom o­

nas gingivalis. Isolation, characterization, and evidence for the existence of com plexes with hem aggluti­

nins. J Biol Chem. 1994; 269(1):406-11. Epub 1994/01/07 PMID: 8276827.

77. Potem pa J, M ikolajczyk-Pawlinska J, Brassell D, Nelson D, Thogersen IB, Enghild JJ, e ta l. Com para­

tive properties of tw o cysteine proteinases (gingipains R), the products of two related but individual genes of Porphyrom onas gingivalis. J Biol Chem. 1998; 273(34):21648-57. Epub 1998/08/15 https://

doi.org/10.1074/ibc.273.34.21648 PMID: 9705298.

78. Hermanowicz P, Sarna M, Burda K, G abrys H. Atom icJ: an open source software for analysis of force curves. The Review of scientific instruments. 2014; 85(6):063703. https://doi.org/10.1063/1.4881683 PMID: 24985823.

79. M ohantyT, S0rensenO E, NordenfeltP. NETQUANT: Autom ated Quantification of Neutrophil Extracel­

lular Traps. Front Immunol. 2017; 8:1999. Epub 2018/01/15. https://doi.org/10.3389/fim m u.2017.01999 PMID: 29379509; PubMed Central PMCID: PMC5775513.

80. Brinkmann V, Goosmann C, Kuhn LI, Zychlinsky A. Autom atic quantification of in vitro NET formation.

Front Immunol. 2012; 3:413. Epub 2013/01/09. https://doi.org/10.3389/fim m u.2012.00413 PMID:

2 3316198; PubMed Central PMCID: PMC3540390.

W dokumencie Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits (Stron 22-27)

Related documents