1. Krzakowski M, Potemski P, Warzocha K, i in. Onkologia kliniczna. Tom II.

Wydawnictwo: Via Medica, Gdańsk 2015.

2. Stachura J, Domagała W. Patologia znaczy słowo o chorobie. Tom II. Wydawnictwo:

Polska Akademia Umiejętności, Kraków 2019.

3. Aster J, Abbas A, Kumar V. Robbins Basic Pathology 9th Edition. Wydawnictwo:

Elsevier Science Publishers, 2012.

4. Balakrishnan S, Bhat FA, Raja Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif. 2016; 49(6):678-697.

5. Brabletz T. EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell. 2012; 22(6):699-701.

6. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003; 112(12):1776-1784.

7. Felipe Lima J, Nofech-Mozes S, Bayani J, et al. EMT in Breast Carcinoma-A Review.

J Clin Med. 2016; 5(7):65.

8. Liu F, Gu LN, Shan BE, et al. Biomarkers for EMT and MET in breast cancer: An update. Oncol Lett. 2016; 12(6):4869-4876.

9. Polyak JX, Weinberg RA. Transitions between epithelial and mesenchymal states:

acquisition of malignanat and stem cell traits. Nat Rev Cancer 2009; 9:265-273.

10. Hoda S, Brogi E, Koerner F, et al. Rosen's Breast Pathology. Wydawnictwo: Wolters Kluwer, Philadelphia 2014.

11. Wysocka J. Nowa klasyfikacja WHO guzów piersi – wydanie z 2019 roku. Via Medica 2020: 341-343.

12. Breast Tumours, WHO Classification of Tumours, 5th Edition, Ed.WHO Classication Editorial Board, 2019.

13. Gurzu S, Turdean S, Kovecsi A, et al. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update.

World J Clin Cases. 2015; 3(5):393-404.

14. Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus

62 on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011; 22(8):1736-1747.

15. Sethi S, Sarkar FH, Ahmed Q, et al. Molecular markers of epithelial-to-mesenchymal transition are associated with tumor aggressiveness in breast carcinoma. Transl Oncol.

2011; 4(4):222-6.

16. Sarrió D, Rodriguez-Pinilla SM, Hardisson D, et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008; 68(4):989-97.

17. Yang J, Eddy JA, Pan Y, et al. Integrated proteomics and genomics analysis reveals a novel mesenchymal to epithelial reverting transition in leiomyosarcoma through regulation of slug. Mol Cell Proteomics. 2010; 9(11):2405-13.

18. Pieniążek M, Donizy P, Ziętek M, i in. Rola szlaków sygnalizacyjnych związanych z TGF-beta w patogenezie przejścia nabłonkowo-mezenchymalnego (EMT) jako głównego elementu warunkującego progresję choroby nowotworowej. Postepy Hig Med Dosw. 2012; 66:583-591.

19. Zhu QC, Gao RY, Wu W, Qin HL. Epithelial-mesenchymal transition and its role in the pathogenesis of colorectal cancer. Asian Pac J Cancer Prev. 2013; 14(5):2689-98.

20. Devarajan E, Song YH, Krishnappa S, Alt E. Epithelial-mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells.

Int J Cancer. 2012; 131(5):1023-31.

21. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119(6):1420-8.

22. Kuncman W, Braun M, Kordek R. Znaczenie receptora progesteronowego w luminalnych rakach piersi. NOWOTWORY Journal of Oncology. 2015; 65(5):383-388.

23. Wang Y, Zhou BP. Epithelial-mesenchymal Transition – A Hallmark of Breast Cancer Metastasis. Cancer Hallm. 2013; 1(1):38-49.

24. Rosai J. Surgical Pathology. 10th Edition. Wydawnictwo: Elsevier. USA/UK 2011.

25. Elghonaimy EA, Ibrahim SA, Youns A, et al. Secretome of tumor-associated leukocytes augment epithelial-mesenchymal transition in positive lymph node breast cancer patients via activation of EGFR/Tyr845 and NF-κB/p65 signaling pathway.

Tumour Biol. 2016; 37(9):12441-12453.

26. Zheng M, Jiang YP, Chen W, et al. Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma. Oncotarget. 2015; 6(9):6797-810.

63 27. Micati DJ, Hime GR, McLaughlin EA, et al. Differential expression profiles of conserved Snail transcription factors in the mouse testis. Andrology. 2018; 6(2):362-373.

28. Bai JW, Chen MN, Wei XL, et al. The zinc-finger transcriptional factor Slug transcriptionally downregulates ERα by recruiting lysine-specific demethylase 1 in human breast cancer. Oncogenesis. 2017; 6(5):e330.

29. Pulkka OP, Nilsson B, Sarlomo-Rikala M, et al. SLUG transcription factor: a pro-survival and prognostic factor in gastrointestinal stromal tumour. Br J Cancer. 2017;


30. Kusinska RU, Kordek R, Pluciennik E, et al. Does vimentin help to delineate the so-called 'basal type breast cancer'? J Exp Clin Cancer Res. 2009; 28(1):118.

31. Chen Z, Fang Z, Ma J. Regulatory mechanisms and clinical significance of vimentin in breast cancer. Biomed Pharmacother. 2021; 133:111068.

32. Domagala W, Lasota J, Bartkowiak J, et al. Vimentin is preferentially expressed in human breast carcinomas with low estrogen receptor and high Ki-67 growth fraction.

Am J Pathol. 1990; 136(1):219-227.

33. Angst BD, Marcozzi C, Magee AI. The cadherin superfamily: diversity in form and function. J Cell Sci. 2001; 114(Pt 4):629-41.

34. Bhandari A, Zheng C, Sindan N, et al. COPB2 is up-regulated in breast cancer and plays a vital role in the metastasis via N-cadherin and Vimentin. J Cell Mol Med.

2019; 23(8):5235-5245.

35. Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, et al. Role of Cadherins in Cancer – A Review. Int J Mol Sci. 2020; 21(20):7624.

36. Wong SHM, Fang CM, Chuah LH, et al. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018; 121:11-22.

37. Corso G, Figueiredo J, De Angelis SP, et al. E-cadherin deregulation in breast cancer.

J Cell Mol Med. 2020; 24(11):5930-5936.

38. Blick T, Hugo H, Widodo E, et al. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/) CD24(lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 2010; 15(2):235-252.

39. Aleskandarany MA, Negm OH, Green AR, et al. Epithelial mesenchymal transition in early invasive breast cancer: an immunohistochemical and reverse phase protein array study. Breast Cancer Res Treat. 2014; 145(2):339-48.

64 40. Foroni C, Broggini M, Generali D, Damia G. Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev.

2012; 38(6):689-97.

41. Koerner F. Diagnostic problems in breast pathology. Wydawnictwo: Saunders Elsevier. Philadelphia 2009.

42. Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010; 101(2):293-9.

43. Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia. 2010; 15(2):253-60.

44. Carvalho ST, Stiepcich MM, Fregnani JH, et al. Evaluation of prognostic factors in stage IIA breast tumors and their correlation with mortality risk. Clinics (Sao Paulo).

2011; 66(4):607-12.

45. Dongre A, Rashidian M, Reinhardt F, et al. Epithelial-to-Mesenchymal Transition Contributes to Immunosuppression in Breast Carcinomas. Cancer Res. 2017;


46. Guarino M. Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol. 2007; 39(12):2153-60.

47. Christofori G. New signals from the invasive front. Nature. 2006; 441(7092):444-50.

48. Ye X, Tam WL, Shibue T, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015; 525(7568):256-60.

49. Oliveras-Ferraros C, Corominas-Faja B, Cufí S, et al. Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin). Cell Cycle.

2012; 11(21):4020-4032.

50. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005; 17(5):548-58.

51. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006; 7(2):131-42.

52. Peinado H, Cano A. New potential therapeutic targets to combat epithelial tumor invasion. Clin Transl Oncol 2006; 8:851-857.

53. Bellovin DI, Simpson KJ, Danilov T, et al. Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene. 2006; 25(52):6959-67.

65 54. Spaderna S, Schmalhofer O, Hlubek F, et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer.

Gastroenterology. 2006; 131(3):830-40.

55. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007; 39(3):305-18.

56. Damonte P, Gregg JP, Borowsky AD, et al. EMT tumorigenesis in the mouse mammary gland. Lab Invest. 2007; 87(12):1218-26.

57. Kokkinos MI, Wafai R, Wong MK, et al. Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs. 2007; 185(1-3):191-203.

58. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition:

new insights in signaling, development, and disease. J Cell Biol. 2006; 172(7):973-81.

59. Trimboli AJ, Fukino K, de Bruin A, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008; 68(3):937-45.

60. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer.

2002; 2(6):442-54.

61. Gavert N, Ben-Ze'ev A. Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med. 2008; 14(5):199-209.

62. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer:

parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010; 15(2):117-134.

63. Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003; 120(11):1351-83.

64. Yamanaka Y, Ralston A, Stephenson RO, Rossant J. Cell and molecular regulation of the mouse blastocyst. Dev Dyn. 2006; 235(9):2301-14.

65. Muller H. Of mice, frogs and flies: generation of membrane asymmetries in early development. Dev Growth Differ. 2001; 43(4):327-42.

66. Solnica-Krezel L. Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol. 2005; 15(6):R213-28.

67. Hay E. The mesenchymal cell, its role in the embryo and the remarkable signaling mechanisms that create it. Dev Dyn. 2005; 233(3):706-20.

68. Choi SS, Diehl AM. Epithelial-to-mesenchymal transitions in the liver. Hepatology.

2009; 50(6):2007-13.

66 69. Tucker RP. Neural crest cells: a model for invasive behavior. Int J Biochem Cell Biol.

2004; 36(2):173-7.

70. Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs. 2007; 185(1-3):146-56.

71. Chaffer CL, Thompson EW, Williams ED. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs. 2007; 185(1-3):7-19.

72. Birchmeier C, Brohmann H. Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol. 2000; 12(6):725-30.

73. Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br.J.Cancer 2008; 99:1375-1379.

74. Vergara D, Merlot B, Lucot JP, et al. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010; 291(1):59-66.

75. Brabletz T, Hlubek F, Spaderna S, et al. Invasion and metastasis in colorectal cancer:

epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs. 2005; 179(1-2):56-65.

76. Usami Y, Satake S, Nakayama F, et al. Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol. 2008; 215(3):330-9.

77. Woodward WA, Strom EA, Tucker SL, et al. Changes in the 2003 American Joint Committee on Cancer staging for breast cancer dramatically affect stage-specific survival. J Clin Oncol. 2003; 21(17):3244-8.

78. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009; 119(6):1429-37.

79. Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006; 10(6):515-527.

80. Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009; 138(4):645-659.

81. Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009; 106(33):13820-5.

82. Moody SE, Perez D, Pan TC, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 2005; 8(3):197-209.

67 83. Blanco MJ, Moreno-Bueno G, Sarrio D, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;


84. Martin TA, Goyal A, Watkins G, et al. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol.

2005; 12(6):488-96.

85. Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 2008; 27(55):6958-69.

86. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression:

an alliance against the epithelial phenotype? Nat Rev Cancer. 2007; 7(6):415-28.

87. Bolós V, Peinado H, Pérez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003; 116(Pt 3):499-511.

88. Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol. 2020; 10:499.

89. Vesuna F, van Diest P, Chen JH, Raman V. Twist is a transcriptional repressor of E -cadherin gene expression in breast cancer. Biochem Biophys Res Commun. 2008;


90. Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci. 2003; 116(Pt 10):1959-67.

91. De Boer TP, van Veen TA, Bierhuizen MF, et al. Connexin43 repression following epithelium-to-mesenchyme transition in embryonal carcinoma cells requires Snail1 transcription factor. Differentiation. 2007; 75(3):208-18.

92. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol. 1997; 137(6):1403-1419.

93. Jordà M, Olmeda D, Vinyals A, et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci. 2005;

118(Pt 15):3371-85.

94. Cannito S, Novo E, Compagnone A, et al. Redox mechanisms switch on hypoxia -dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis. 2008;


68 95. Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem. 2003; 278(23):21113-23.

96. Yook JI, Li XY, Ota I, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006; 8(12):1398-406.

97. Matysiak M, Kapka-Skrzypczak L, Jodłowska-Jędrych B. et al. EMT promoting transcription factors as prognostic markers in human breast cancer. Arch Gynecol Obstet 2017; 295:817–825.

98. Heatley MK, Ewings P, Odling Smee W, et al. Vimentin expression does not assist in predicting survival in ductal carcinoma of the breast. Pathology. 2002; 34(3):230-2.

99. Cóme C, Maginino F, Bibeau F, et al. Snail and Slug play distinct roles during breast carcinoma progression. Clin Cancer Res. 2006; 12(18):5395-5402.

100. Jeong H, Ryu YJ, An J, et al. Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology.

2012; 60(6B):E87-95.

101. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004; 117(7):927-39.

102. Korsching E, Packeisen J, Liedtke C, et al. The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol.

2005; 206(4):451-7.

103. Zajchowski DA, Bartholdi MF, Gong Y, et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res. 2001;


104. Raymond WA, Leong AS. Co-expression of cytokeratin and vimentin intermediate filament proteins in benign and neoplastic breast epithelium. J Pathol. 1989;


105. Constantinidou A, Jones RL, Reis-Filho JS. Beyond triple-negative breast cancer: the need to define new subtypes. Expert Rev Anticancer Ther 2010; 10(8): 1197-1213.

106. Yamamoto M, Ito T, Shimizu T, et al. Epigenetic alteration of the NF-κB-inducing kinase (NIK) gene is involved in enhanced NIK expression in basal-like breast cancer.

Cancer Sci. 2010; 101(11):2391-7.

107. Wang X, Belguise K, Kersual N, et al. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol. 2007; 9(4):470-8.

69 108. Loboda A, Nebozhyn MV, Watters JW, et al. EMT is the dominant program in human

colon cancer. BMC Med Genomics. 2011; 4:9.

109. Whittle MC, Hingorani SR. Disconnect between EMT and metastasis in pancreas cancer. Oncotarget. 2015; 6(31):30445-6.

110. Bartis D, Mise N, Mahida RY, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? Thorax. 2014; 69(8):760-5.

111. Wang Z, Ahmad A, Li Y, et al. Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochim Biophys Acta. 2010; 1806(1):122-30.

112. Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 2016; 65(4):798-808.

113. Wu Y, Sarkissyan M, Vadgama JV. Epithelial-Mesenchymal Transition and Breast Cancer. J Clin Med. 2016; 5(2):13.


W dokumencie POMORSKI UNIWERSYTET MEDYCZNY W SZCZECINIE. lek. Bernardeta Chajnowska (Stron 61-70)