GWC ode  point sour es

W dokumencie Uniwersytet im. Adama Mickiewicza Adam Mickiewicz University (Stron 154-0)

For the test of subtra tion routines, the rst step was to expli tly ompute

the zero modes. The numberof zero modes in the free-eld ase is equal to

N c N d

, i.e. there are 12 zero modes in our ase of interest, 6 in the positive

and 6 in the negative hirality se tor.

steps:

1. Read in allzero modes.

2. Compute the propagator

Ψ 0

oming only from the zero modes, using

formula4.22,i.e. taking intoa ountthesour e. This sour ehastobe

exa tly the same asthe one used for fullinversion (with allmodes).

3. Compute (or read in, if omputed before) the full propagator

Ψ

(with

all modes) with the same point sour e asinthe previous step.

4. Constru t the non-zero modes propagator

Ψ N = Ψ − Ψ 0

.

5. Use the GWC ontra tion ode to ompute the PP and SS orrelation

fun tions from

Ψ N

. This gives the part

C N N (t)

of these orrelators.

The result for the orrelation fun tions with no ontribution from the zero

modes is:

t C_PP(t)

0 +3.2070498264e+00

1 +5.3875529993e-02

2 +1.1851597433e-02

3 +4.3685038347e-03

4 +2.5747032913e-03

5 +4.3685038347e-03

6 +1.1851597433e-02

7 +5.3875529993e-02

t C_SS(t)

0 -2.8998469255e+00

1 +5.3495732753e-02

2 +9.7986124350e-03

3 +2.3495604466e-04

4 -2.4074086241e-03

5 +2.3495604466e-04

6 +9.7986124350e-03

7 +5.3495732753e-02

These numbers are exa tly the same as ones obtained with the analyti al

formulainthe previous se tion.

Wefollowan analogous pro edurein the ase of sto hasti sour es:

1. Read in allzero modes.

2. Read in sample

r

of sto hasti sour e.

3. Compute the propagator

Ψ 0 r

oming only from the zero modes, using

formula 4.22 with sample

r

of the sour e

4. Compute (or readin,if omputed before) the fullpropagator

Ψ r

(with

all modes) with the same sampleof the sour e

r

.

5. Constru t the non-zero modes propagator

Ψ N r = Ψ r − Ψ 0 r

.

6. Usethe light ontra tion ode to ompute the PPandSS orrelation

fun tions from

Ψ N r

.

Su h pro edure is then repeated

N r

times fordierent samplesof sto hasti

noise. Ea hsample ofthe sour eleads toa orrelation fun tion

C N N (t)

. We

have used

N r = 600

samples and nally averaged the orrelation fun tions to obtain:

t C_PP(t) dC_PP(t)

0 3.207395e+00 6.036502e-04

1 5.341456e-02 4.634707e-04

2 1.163657e-02 2.135815e-04

3 4.276079e-03 9.325929e-05

4 2.518227e-03 5.732913e-05

5 4.276079e-03 9.325929e-05

6 1.163657e-02 2.135815e-04

7 5.341456e-02 4.634707e-04

t C_SS(t) dC_SS(t)

0 2.899527e+00 3.025145e-04

1 -5.303857e-02 4.597752e-04

2 -9.629567e-03 1.669140e-04

3 -2.358282e-04 3.102437e-06

4 2.351388e-03 5.740869e-05

5 -2.358282e-04 3.102437e-06

6 -9.629567e-03 1.669140e-04

7 -5.303857e-02 4.597752e-04

the ones from the analyti al formula and from the GWC ode with point

sour es, we on lude thatallresultsare onsistent,up tothe statisti alerror

forthe aseofsto hasti sour es. Thelight ontra tion odeusesadierent

sign onvention for the s alar orrelator and hen e the sign of

C SS (t)

is

alwaysoppositetotheonefromtheGWC ontra tion odeandtheanalyti al

formula. Hen e, with the light ontra tion ode the ontribution of the

zero modes is exa tly an elled in the dieren e

C P P − C SS

. Therefore, for

omputations inthe intera ting ase we always use

C P P − C SS

.

[1℄ Wilson K.G. (1974), Connement of Quarks, Phys.Rev. D10,2445.

[2℄ Creutz M.(1980),MonteCarlostudy ofquantizedSU(2)theory,Phys.

Rev. D21, 2308.

[3℄ Peskin M.E., S hroeder D.V. (1995), An Introdu tion to Quantum

Field Theory, Addison-Wesley PublishingGroup.

[4℄ PokorskiS.(2000),GaugeFieldTheories,CambridgeUniversityPress,

Cambridge.

[5℄ FeynmanR.P.(1948),Spa e-timeapproa htonon-relativisti quantum

me hani s, Rev.Mod.Phys. 20,367.

[6℄ Aoyama T.,HayakawaM., KinoshitaT., NioM. (2008),Revised value

of the eighth-order QED ontribution tothe anomalous magneti

mo-ment of the ele tron, Phys.Rev. D77, 053012;0712.2607 (hep-ph).

[7℄ Osterwalder K., S hrader R. (1973), Axioms for Eu lidean Green's

fun tions, Comm.Math.Phys. 31,83.

[8℄ Osterwalder K., S hrader R. (1975), Axioms for Eu lidean Green's

fun tions 2,Comm.Math.Phys. 42, 281.

[9℄ Lüs herM.(1977),Constru tionofaselfadjoint,stri tlypositive

trans-fer matrix for eu lidean latti e gauge theories, Comm.Math.Phys 54,

283.

[10℄ DeGrandT., DeTarC.(2006),Latti eMethodsforQuantum

Chromo-dynami s, World S ienti , Singapore.

[11℄ Gattringer C., Lang C.B. (2010), Quantum Chromodynami s on the

Latti e.An Introdu tory Presentation, Springer-Verlag,Berlin

Heidel-berg.

boson,Nu l.Phys. B156,269.

[13℄ Veneziano G. (1979),U(1)without instantons, Nu l.Phys. B159, 213.

[14℄ GasserJ.,LeutwylerH.(1984),Chiralperturbationtheorytooneloop,

Ann. Phys. 158, 142.

[15℄ Gasser J., Leutwyler H. (1985), Chiral perturbation theory:

Expan-sions in the mass of the strange quark, Nu l.Phys. B250,465.

[16℄ GreinerW.,S hrammS.,SteinE.(2002),QuantumChromodynami s,

Springer-Verlag, BerlinHeidelberg.

[17℄ Jido D., Nemoto Y., Oka A., Hosaka A. (2000), Chiral Symmetry for

Positive and Negative Parity Nu leons, Nu l.Phys. A671, 471;

hep-ph/9805306.

[18℄ Gell-Mann M., Oakes R.J., Renner B. (1968), Behavior of Current

Divergen es under

SU 3 × SU 3

, Phys. Rev.175, 2195.

[19℄ Fu hs N.H., Sazdjian H., Stern J. (1991), How to probe the s ale of

h¯qqi

in hiral perturbation theory, Phys.Lett. B269,183.

[20℄ Stern J.,Sazdjian H., Fu hsN.H. (1993),What

π − π

S atteringTells

Us About Chiral Perturbation Theory, Phys.Rev. D47, 3814;

hep-ph/9301244.

[21℄ DeTar C. (2008), Re ent Progress in Latti e QCD Thermodynami s,

PoSLATTICE2008, 001; 0811.2429 (hep-lat).

[22℄ Montvay I., Münster G. (1997), Quantum Fields on a Latti e,

Cam-bridge University Press, Cambridge.

[23℄ Weisz P. (1983), Continuum limit improved latti e a tion for pure

Yang-Millstheory (I),Nu l.Phys. B212,1.

[24℄ Bou audP.etal.(2008),Dynami alTwistedMassFermionswithLight

Quarks: SimulationandAnalysisDetails,Comput.Phys.Commun.179,

695; 0803.0224 (hep-lat).

[25℄ Rothe H.J. (2005),Latti e Gauge Theories. An Introdu tion, 3rd

edi-tion, World S ienti , Singapore.

ena InSubnu learPhysi s.Part A.Pro eedingsofthe FirstHalf ofthe

1975 International S hoolof Subnu lear Physi s, Eri e, Si ily, July 11

- August 1, 1975, ed. A. Zi hi hi, Plenum Press, New York, 1977, p.

69.

[27℄ SheiholeslamiB., WohlertR.(1985),Improved ontinuumlimitlatti e

a tion for QCDwith Wilson fermions, Nu l.Phys. B259,572.

[28℄ Nielsen N.B., NinomiyaM. (1981),Phys.Lett. B105, 211.

[29℄ Lüs her M. (1998), Exa t hiral symmetry on the latti e and

the Ginsparg-Wilson relation, Phys. Lett. B428, 342; arXiv:

hep-lat/9802011.

[30℄ Niedermayer F. (1999), Exa t hiral symmetry, topologi al harge

and related topi s, Nu l. Phys. B (Pro . Suppl.) 73, 105;

arXiv:hep-lat/9810026.

[31℄ Frezzotti R., Grassi P.A., Sint S., Weisz P. (2001), Latti e QCD with

a hirallytwistedmass term, JHEP 0108, 058; hep-lat/0101001.

[32℄ Frezzotti R., RossiG.C. (2004), Chirally improving Wilson fermions

-I.

O(a)

improvement, JHEP 0408, 007; hep-lat/0306014.

[33℄ Baron R. et al. (2009), Light Meson Physi s fromMaximally Twisted

Mass Latti eQCD, 0911.5061 (hep-lat).

[34℄ Ginsparg P., Wilson K. (1982), A remnant of hiral symmetry on the

latti e, Phys.Rev. D25,2649.

[35℄ Hasenfratz P. (1998), Prospe ts for perfe t a tions,

Nu l.Phys.Pro .Suppl. 63, 53;hep-lat/9709110.

[36℄ HasenfratzP.(1998),Latti eQCDwithouttuning,mixingand urrent

renormalization, Nu l.Phys. B525, 401; hep-lat/9802007.

[37℄ Neuberger H. (1998), Exa tly massless quarks on the latti e, Phys.

Lett. B 417, 141; hep-lat/9707022.

[38℄ Neuberger H. (1998), More about exa tly massless quarks on the

lat-ti e, Phys. Lett. B 427, 353; hep-lat/9801031.

[39℄ Hasenfratz P., Laliena V., Niedermayer F. (1998), The index theorem

in QCDwith a nite ut-o, Phys.Lett. B427, 125; hep-lat/9801021.

gauge theory,Nu l.Phys. B546,480; hep-th/9811235.

[41℄ Hernandez P., Jansen K., Lüs her M. (1999), Lo ality properties

of Neuberger's latti e Dira operator, Nu l.Phys. B552, 363;

hep-lat/9808010.

[42℄ Kaplan D.B. (1992), A Method for simulating hiral fermions on the

latti e, Phys.Lett. B288, 342; hep-lat/9206013.

[43℄ Shamir Y. (1993), Chiral Fermions from Latti e Boundaries,

Nu l.Phys. B406,90; hep-lat/9303005.

[44℄ Jansen K. (1996),Domain Wall Fermionsand Chiral Gauge Theories,

Phys.Rept. 273, 1-54; hep-lat/9410018.

[45℄ Jansen K. (1992), Chiral fermions and anomalies on a nite latti e,

Phys.Lett. B288,348.

[46℄ Neuberger H. (1998), Ve tor like gauge theories with almost massless

fermions onthe latti e,Phys.Rev. D57, 5417; hep-lat/9710089.

[47℄ AlltonC.etal.(2007),2+1avordomainwallQCDona(2fm)

3

latti e:

light meson spe tros opy with

L s = 16

, Phys.Rev. D76, 014504;

hep-lat/0701013.

[48℄ Walker-Loud A. et al. (2009), Light hadron spe tros opy using

do-main wall valen e quarks on an Asqtad sea, Phys.Rev. D79, 054502;

0806.4549 (hep-lat).

[49℄ Karsten L.H. (1981), Latti e fermions in eu lidean spa e-time,

Phys.Lett. B104,315.

[50℄ Wil zek F. (1987),Latti e Fermions,Phys.Rev.Lett. 59, 2397.

[51℄ Creutz M. (2008), Four-dimensional graphene and hiral fermions,

JHEP 0804, 017; 0712.1201 (hep-lat).

[52℄ Bori iA.(2008),CreutzFermionsonanOrthogonalLatti e,Phys.Rev.

D78, 074504;0712.4401 (hep-lat).

[53℄ BedaqueP.F.,Bu hoM.I.,TiburziB.C.,Walker-LoudA.(2008),

Bro-ken Symmetries from Minimally Doubled Fermions, Phys.Lett. B662,

449; 0801.3361 (hep-lat).

TICE2008, 231; 0812.0092 (hep-lat).

[55℄ Ci hyK.,GonzalezLopezJ.,JansenK.,KujawaA.,ShindlerA.(2008),

Twisted Mass, Overlap and Creutz Fermions: Cut-o Ee ts at T

ree-levelofPerturbationTheory,Nu l.Phys.B800,94;0802.3637(hep-lat).

[56℄ Ci hy K., Gonzalez Lopez J., Kujawa A. (2008), A omparison of the

ut-o ee ts for Twisted Mass, Overlap and Creutz fermions at

tree-level of Perturbation Theory, A ta Phys.Pol. B39, 3463; 0811.0572

(hep-lat).

[57℄ Smit J. (2002), Introdu tion to Quantum Fields on a Latti e,

Cam-bridge University Press, Cambridge.

[58℄ Belavin A.A., Polyakov A.M., S hwartz A.S., Tyupkin Yu.S. (1975),

Pseudoparti le solutions of the Yang-Mills equations, Phys.Lett. B59,

85.

[59℄ AtiyahM.,SingerI.(1963),Theindex ofellipti operatorson ompa t

manifolds, Bull.Amer. Math. So .69, 422.

[60℄ Bru kmannF.,GruberF.,JansenK.,Marinkovi M.,Urba hC.,

Wag-nerM.(2009),Comparingtopologi al hargedenitionsusingtopology

xing a tions,0905.2849 (hep-lat).

[61℄ AlbaneseM.etal.(1987),Glueballmassesandstringtensioninlatti e

QCD, Phys.Lett. B192, 163.

[62℄ Del Debbio L., Giusti L., Pi a C. (2005), Topologi al sus eptibility in

the SU(3) gaugetheory, Phys.Rev.Lett. 94,032003; hep-th/0407052.

[63℄ Gupta R. (1998), Introdu tion to Latti e QCD, Le tures given at the

LXVIII LesHou hes Summer S hoolProbing the Standard Model of

Parti leIntera tions, July28-Sept 5,1997.

[64℄ Bietenholz W.et al.(2004),Going hiral: overlap versus twisted mass

fermions, JHEP 0412, 044; hep-lat/0411001.

[65℄ Alexandrou C. et al. (2008), Light baryon masses with dynami al

twistedmass fermions, Phys.Rev. D78, 014509;0803.3190 (hep-lat).

[66℄ Alexandrou C. etal. (2009),The low-lying baryon spe trum with two

dynami al twisted mass fermions, Phys.Rev. D80, 114503; 0910.2419

(hep-lat).

Cuto ee ts for Wilson twisted mass fermions attree-levelof

pertur-bation theory,PoSLAT2007, 098; 0710.2036(hep-lat).

[68℄ Carpenter D.B., BaillieC.F. (1985),Freefermion propagatorsand

lat-ti e nite-size ee ts, Nu l.Phys. B260, 103.

[69℄ Gonzalez Lopez J. (2007), Cut-o ee ts and ontinuum limit at

tree-level of perturbation theory for Wilson twisted mass fermions at

maximal twist, Ph.D. thesis preparation report, Humboldt University,

Berlin.

[70℄ Duane S., Kennedy A.D., Pendleton B.J., Roweth D. (1987), Hybrid

Monte Carlo, Phys.Lett. B195,216.

[71℄ Lüs herM.(2010),ComputationalStrategiesinLatti eQCD,Le tures

given atthe SummerS hoolonModern perspe tivesinlatti e QCD,

Les Hou hes, August 3-28, 2009; 1002.4232 (hep-lat).

[72℄ Ukawa A. (2002), Computational ost of full QCD simulations

ex-perien ed by CP-PACS and JLQCD Collaborations, Nu l. Phys. B

(Pro .Supp.) 106, 195.

[73℄ Van den Eshof J. et al. (2002), Numeri al Methods for the QCD

Overlap Operator: I. Sign-Fun tion and Error Bounds,

Com-put.Phys.Commun. 146, 203; hep-lat/0202025.

[74℄ Frommer A., Lippert T., Medeke B., S hilling K. (eds.), Numeri al

Challenges in Latti e Quantum Chromodynami s, Le ture Notes in

ComputationalS ien e and Engineering15, Heidelberg 2000.

[75℄ Chiarappa T. et al. (2006), Iterative methods for overlap and twisted

mass fermions, hep-lat/0609023.

[76℄ Hernandez P.,Jansen K., Lellou hL. (1999), Finite-sizes aling of the

quark ondensateinquen hedlatti eQCD,Phys.Lett. B469,198;

hep-lat/9907022.

[77℄ Hasenfratz A., Kne htli F. (2001), Flavor Symmetry and the Stati

Potential with Hyper ubi Blo king, Phys.Rev. D64, 034504;

hep-lat/0103029.

[78℄ Dong S.J., Liu K.F. (1994), Sto hasti Estimation with

Z 2

Noise,

Phys.Lett. B328,130; hep-lat/9308015.

[80℄ Jagels C.F., Rei hel L. (1994), A fast minimal residual algorithm for

shifted unitary matri es, Numer. Linear Algebra Appl. 1(6), 555.

[81℄ Arnold G.etal.(2003),Numeri alMethodsforthe QCDOverlap

Op-erator: II. OptimalKrylov Subspa e Methods, hep-lat/0311025.

[82℄ Frommer A., Güsken S., Lippert T., Nö kel B., S hilling K. (1995),

Many Masses on One Stroke: E onomi Computation of Quark

Prop-agators, Int.J.Mod.Phys. C6, 627; hep-lat/9504020.

[83℄ Jansen K., Urba h C. (2009), tmLQCD: a program suite to simulate

Wilson Twisted mass Latti e QCD, 0905.3331 (hep-lat).

[84℄ Wagner M.(2008), Contra tionCode Do umentation, unpublished.

[85℄ Aoki S. et al. (2008), Two-avor QCD simulation with exa t hiral

symmetry, Phys.Rev. D78,014508; 0803.3197 (hep-lat).

[86℄ S haefer S. (2006), Algorithms for dynami al overlap fermions,

PoSLAT2006,020; hep-lat/0609063.

[87℄ Fodor Z.,Katz S.D., Szabo K.K. (2004), Dynami al overlap fermions,

results with hybrid Monte-Carlo algorithm, JHEP 0408, 003l

hep-lat/0311010.

[88℄ Fukaya H. et al. (2006), Latti e gauge a tion suppressing near-zero

modes of

H W

, Phys.Rev. D74, 094505;hep-lat/0607020.

[89℄ Dürr S. et al. (2007), Mixed a tion simulations: approa hing physi al

quark masses, PoSLAT2007, 113; 0710.4866 (hep-lat).

[90℄ DürrS.etal.(2007),Chiralbehaviorofpseudo-Goldstonebosonmasses

and de ay onstants in2+1 avorQCD, PoSLAT2007,115; 0710.4769

(hep-lat).

[91℄ BernardoniF. etal.(2009),Mixeda tion omputationsonne

dynam-i allatti es, 0911.3756 (hep-lat).

[92℄ BärO.,JansenK.,S haeferS.,S orzatoL.,ShindlerA.(2006),Overlap

fermions ona twisted mass sea, PoSLAT2006, 199; hep-lat/0609039.

[93℄ GarronN., S orzato L.(2007),Resultsfromoverlap valen equarks on

a twisted mass sea, PoSLAT2007,083; 0710.1582 (hep-lat).

OverlapFermions AsValen e Quarks,A ta Phys.Pol.B Pro .Suppl. 2,

497; 0910.0816 (hep-lat).

[95℄ Bowler K.C. et al. (2004), Exploratory spe trum al ulations using

overlap valen e quarks ona staggered sea, hep-lat/0408043.

[96℄ Bowler K.C. et al. (2005), Latti e QCD with mixed a tions, JHEP

0508, 003; hep-lat/0411005.

[97℄ HasenfratzA.,HomannR.(2006),MixedA tionSimulationson

Stag-geredBa kground;InterpretationandResultforthe2-avorQCD

Chi-ral Condensate, Phys.Rev. D74, 114509;hep-lat/0609067.

[98℄ Renner D.B. etal. (2005),Hadroni physi s with domain-wallvalen e

and improved staggered sea quarks, Nu l.Phys.Pro .Suppl. 140, 255;

hep-lat/0409130.

[99℄ Edwards R.G. et al. (2006), The nu leon axial harge in full latti e

QCD, Phys.Rev.Lett. 96,052001; hep-lat/0510062.

[100℄ Beane S.R., Bedaque P.F., Orginos K., Savage M.J. (2006),

I = 2 ππ

S attering from Fully-Dynami al Mixed-A tion Latti e QCD, Phys.Rev. D73, 054503;hep-lat/0506013.

[101℄ AlexandrouC.,LeontiouT.,NegeleJ.W.,TsapalisA.(2007),Theaxial

N to Delta transition form fa tors from Latti e QCD, Phys.Rev.Lett.

98, 052003;hep-lat/0607030.

[102℄ Beane S.R. et al. (2007), Hyperon-Nu leon S attering from

Fully-Dynami al Latti e QCD, Nu l.Phys.A794, 62; hep-lat/0612026.

[103℄ BeaneS.R.etal.(2008),Pre iseDeterminationofthe

I = 2 ππ

S atter-ing Length from Mixed-A tion Latti e QCD, Phys.Rev. D77, 014505;

0706.3026 (hep-lat).

[104℄ Hägler P.etal.(2008),Nu leonGeneralizedPartonDistributionsfrom

Full Latti eQCD, Phys.Rev. D77,094502; 0705.4295 (hep-lat).

[105℄ AlexandrouC.etal.(2008),Thenu leontoDeltaele tromagneti

tran-sition form fa tors in latti e QCD, Phys.Rev.D77, 085012; 0710.4621

(hep-lat).

[106℄ Bou audP.etal.(2007),Dynami alTwistedMassFermionswithLight

Quarks, Phys.Lett. B650, 304; hep-lat/0701012.

Chiral Loops and Ghost States in the Quen hed S alar Propagator,

Phys.Rev. D65, 014509;hep-lat/0106008.

[108℄ Bardeen W., Ei hten E., Tha ker H. (2004), Chiral Lagrangian

Pa-rameters for S alarand Pseudos alar Mesons,Phys.Rev. D69, 054502;

hep-lat/0307023.

[109℄ Prelovsek S., Dawson C., Izubu hi T., Orginos K., Soni A. (2004),

S alarmesonindynami alandpartiallyquen hedtwo-avorQCD:

lat-ti e results and hiral loops, Phys.Rev.D70, 094503;hep-lat/0407037.

[110℄ Golterman M., Izubu hi T., Shamir Y. (2005), The role of the double

polein latti e QCDwith mixed a tions, Phys.Rev. D71, 114508;

hep-lat/0504013.

[111℄ Fur hnerA.(2010),Unitarityviolationinmixeda tionQCD,Diploma

Thesis, Humboldt Universität zu Berlin.

[112℄ Ci hy K., Dra hV., Gar iaRamos E.,HerdoizaG., JansenK.(2010),

in preparation.

[113℄ Jansen K., S hmaltz M. (1992), Criti al Momenta of Latti e Chiral

Fermions, Phys.Lett. B296,374; hep-lat/9209002.

[114℄ Blum T. et al. (2004), Quen hed Latti e QCD with Domain Wall

Fermions and the Chiral Limit, Phys.Rev. D69, 074502;

hep-lat/0007038.

[115℄ de For rand P., Takaishi T. (1997), Fast Fermion Monte Carlo,

Nu l.Phys.Pro .Suppl. 53, 968; hep-lat/9608093.

[116℄ Frezzotti R., Jansen K. (1997), A Polynomial Hybrid Monte Carlo

Algorithm,Phys.Lett. B402,328; hep-lat/9702016.

[117℄ FrezzottiR.,JansenK.(1999),ThePHMCalgorithmforsimulationsof

dynami al fermions: I  des ription and properties, Nu l.Phys. B555,

395; hep-lat/9808011.

[118℄ Frezzotti R., Jansen K. (1999), The PHMC algorithmfor simulations

of dynami al fermions: II - Performan e analysis, Nu l.Phys. B555,

432; hep-lat/9808038.

OverlapFermionsinQuen hedQCD,Phys.Rev.D64,114508;Erratum

Phys.Rev. D65, 079903;hep-lat/0108007.

[120℄ SharpeS.R. (1997), Enhan ed hiral logarithmsin partially quen hed

QCD, Phys.Rev. D56, 7052; Erratum Phys.Rev. D62, 099901;

hep-lat/9707018.

[121℄ GoltermanM.,Leung K.C.(1998),Appli ations ofPartiallyQuen hed

Chiral Perturbation Theory, Phys.Rev. D57, 5703; hep-lat/9711033.

[122℄ GiustiL.,HoelblingC.,Lüs her M.,WittigH.(2003),Numeri al

te h-niques for latti e QCD in the

ǫ

regime, Comput.Phys.Commun. 153, 31; hep-lat/0212012.

[123℄ Hauswirth S. (2002), Light hadron spe tros opy in quen hed

lat-ti e QCD with hiral Fixed-Point fermions, University of Bern;

hep-lat/0204015.

[124℄ Gattringer C. et al. (2004), Quen hed spe tros opy with xed-point

and hirally improved fermions, Nu l.Phys. B677,3; hep-lat/0307013.

[125℄ CapitaniS. (2009), Mesoni and baryoni orrelation fun tionsat ne

latti e spa ings, PoS LAT2009,095; 0910.5578 (hep-lat).

[126℄ DeGrand T., Rossi P. (1990), Conditioning te hniques for dynami al

fermions, Comp.Phys.Comm.60, 211.

[127℄ Hasenbus hM.(2001),SpeedinguptheHybrid-Monte-Carloalgorithm

for dynami alfermions, Phys.Lett. B519, 177; hep-lat/0107019.

[128℄ Hasenbus h M., Jansen K. (2003), Speeding up Latti e QCD

simu-lations with lover-improved Wilson Fermions, Nu l.Phys. B659, 299;

hep-lat/0211042.

[129℄ Urba hC., JansenK., ShindlerA., Wenger U.(2006),HMCalgorithm

with multiple time s ale integration and mass pre onditioning,

Com-put.Phys.Commun. 174, 87; hep-lat/0506011.

[130℄ Sexton J.C., Weingarten D.H. (1992), Hamiltonian evolution for the

hybrid MonteCarlo algorithm,Nu l.Phys. B380, 665.

[131℄ Omelyan I.P., Mryglod I.M., Folk R. (2003), Symple ti analyti ally

integrablede ompositionalgorithms: lassi ation,derivation,and

ap-pli ationtomole ulardynami s,quantumand elestialme hani s

sim-ulations, Comp.Phys.Comm. 151, 272.

tegrators forHybridMonteCarloalgorithminlatti eQCD, Phys.Rev.

E73, 036706; hep-lat/0505020.

[133℄ Horvath I., Kennedy A.D., Sint S. (1999), A New Exa t Method

for Dynami al Fermion Computations with Non-Lo al A tions,

Nu l.Phys.Pro .Suppl. 73, 834; hep-lat/9809092.

[134℄ Clark M.A., Kennedy A.D. (2003), The RHMC Algorithm for 2

Flavours of Dynami al Staggered Fermions,hep-lat/0309084.

[135℄ Clark M.A. (2006), The Rational Hybrid Monte Carlo Algorithm,

PoSLAT2006,004; hep-lat/0610048.

[136℄ Clark M.A., Kennedy A.D. (2007), A elerating Dynami al Fermion

Computationsusing the RationalHybridMonteCarlo (RHMC)

Algo-rithm withMultiplePseudofermion Fields,Phys.Rev.Lett. 98,051601;

hep-lat/0608015.

[137℄ Lüs her M. (2003), Latti e QCD and the S hwarz alternating

pro e-dure, JHEP 0305, 052; hep-lat/0304007.

[138℄ Lüs herM.(2004),SolutionoftheDira equationinlatti eQCDusing

a domain de omposition method, Comp.Phys.Comm. 156, 209;

hep-lat/0310048.

[139℄ Lüs her M. (2005), S hwarz-pre onditioned HMC algorithm for

two-avour latti e QCD, Comp.Phys.Comm. 165, 199; hep-lat/0409106.

[140℄ Lüs her M. (2007), Deation a eleration of latti e QCD simulations,

JHEP 0712, 011; 0710.5417 (hep-lat).

1.1 Mesoninterpolatingoperators.

J P C

lassi ationdenotes par-ti le spin

J

,parity

P

and harge onjugation

C

[63℄. . . . . . 38

2.1 Simulationparameters for the tree-levels aling test. . . 46

2.2 Fitting oe ients for the pion mass  eq. (2.20). . . 47

2.3 Fitting oe ients for the pion de ay onstant eq. (2.21). . . 49

2.4 Fitting oe ientsforthepseudos alar orrelationfun tionat

a xed physi aldistan e

t/N = 4

 eq. (2.22). . . . . . . . . . 49

1.1 Continuum limit s aling in xed nite volume for

r 0 f P S

at

xed values of

r 0 m P S

(a) and for

(r 0 m P S ) 2

atxed values of

renormalized quark mass

r 0 µ R

(b). In (b) data at

β = 4.2

(

(a/r 0 ) 2 = 0.0144

) are not in luded, due tothe missing value

of the renormalizationfa tor

Z P

. Sour e: [33℄. . . . . . . . . . 28

2.1 Continuum limits alingof the pion mass for overlap, twisted

mass and Creutz fermions. . . 47

2.2 Continuumlimits alingofthepionde ay onstantforoverlap,

twisted mass and Creutz fermions. . . 48

2.3 Continuum limits aling of the pseudos alar orrelation

fun -tion ata xed physi al distan e

t/N = 4

for overlap, twisted

mass and Creutz fermions. . . 50

2.4 Continuum limits alingof the pion mass foroverlap-overlap,

MTM-MTM and overlap-MTM quarks. . . 51

2.5 Continuumlimits alingofthepionde ay onstantfor

overlap-overlap, MTM-MTM and overlap-MTM quarks. . . 52

2.6 Continuum limits aling of the pseudos alar orrelation

fun -tion at a xed physi al distan e

t = 4N

for overlap-overlap, MTM-MTM and overlap-MTM quarks. . . 53

2.7 Continuum limits aling of the pion mass at a xed physi al

distan e

t/N = 4

for twisted mass and overlap fermions. The

quark masses are mat hed up to

O(1/N 2 )

. The lower plot is

a zoomof the upperone forlarge values of

N

. . . . . . . . . . 55

2.8 Continuum limits aling of the pion de ay onstant ata xed

physi aldistan e

t/N = 4

fortwistedmassandoverlapfermions.

Thequarkmassesaremat hedupto

O(1/N 2 )

. Thelowerplot

is azoom of the upperone for large values of

N

. . . . . . . . . 56

2.9 The mat hing of MTMand overlap quark masses. . . 57

2.10 Themismat hbetween theMTMandoverlappionde ay

on-stants atthe mat hing point

Nm MTM π = Nm overlap π

. . . . . . . 58

tions (at a xed physi al distan e) at the mat hing point

Nm MTM π = Nm overlap π

. . . . . . . . . . . . . . . . . . . . . . . . 58

2.12 Thedieren ebetween the MTMand overlappionde ay

on-stants atthe mat hing point

Nm MTM π = Nm overlap π

, asa

fun -tion of

1/N 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.13 Thedieren ebetweentheMTMandoverlap orrelation

fun -tions (at a xed physi al distan e) at the mat hing point

Nm MTM π = Nm overlap π

, asa fun tion of

1/N 2

. . . . . . . . . . . 60

2.14 The dieren e between the MTM and overlap quark mass at

the mat hing point

Nm MTM π = Nm overlap π

, asafun tionof

1/N 2

. 60

3.1 5 lowest eigenvalues and the highest eigenvalue for various

gauge eld ensembles. The latti e spa ing is

a ≈ 0.079

fm

(

β = 3.9

)forupperplots,

a ≈ 0.063

fm (

β = 4.05

)forbottom

left and

a ≈ 0.051

fm (

β = 4.2

) for bottom rightplot. . . . . 67

4.1 Maximal norm of the overlap operator in logarithmi s ale.

The linear t orresponds to the value of

s

whi h yields the

maximal de ay rate. Parameters:

β = 3.9

,

L/a = 16

. . . . . . 81

4.2 Thedependen eoftheoverlapDira operatornormde ayrate

ρ

on the parameter

s

for gauge eld ongurations with and withoutHYP smearing. Parameters:

β = 3.9

,

L/a = 16

. . . . 81

4.3 The ontinuum limits aling ofthe overlap operatorde ay rate. 82

4.4 The ontinuum limits aling of the ratio of the pion mass (at

the mat hing mass) and the overlap operator de ay rate. . . . 82

4.5 Ee tive pion mass plateau for the ensemble

16 3 × 32

,

a ≈ 0.079

fm(

β = 3.9

),

aµ = 0.004

. The bare valen e quarkmass

is

am q = 0.04

. For ea h timesli e 3 values of the pion mass

are omputed, orresponding to dierent kinds of smearing

of the sour es (des ribed in Se tion 3.4.1). The horizontal

band orresponds to a simultaneous t of the LL, LF and

FF pseudos alar orrelation fun tions, whi h yields a value

0.2884(17).. . . 83

4.6 Mat hingthe pionmassforthreevalues ofthelatti espa ing,

orresponding to

β = 3.9

, 4.05 and 4.2. The horizontalbands

are unitary MTM (maximally twisted mass) values and the

urves show the bare quark mass dependen e of the overlap

pion mass. . . 84

quark mass. The dashed lines orrespond to the mat hing

quark masses

a ˆ m

. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Continuumlimits alingofthe overlap pionde ay onstantat

the mat hing mass and two other referen e values of

r 0 m π

. . . 86

4.9 Continuum limit s aling of the MTM pion de ay onstant at

the mat hing mass. . . 87

4.10 Continuum limit s aling of the dieren e of the overlap and

MTM pion de ay onstant at the mat hing mass. . . 88

4.11 The omparison of the quark mass dependen e of the pion

mass extra ted from PP and PP-SS orrelators for

β = 3.9

ensemble. . . 92

4.12 The omparison of the quark mass dependen e of the pion

de ay onstant extra ted from PP and PP-SS orrelators for

β = 3.9

ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.13 Ensembleaveragesforthefollowing orrelationfun tions:

pseu-dos alar (PP), s alar (SS), the dieren e of PP and SS

(PP-SS). The inset shows the PP and PP-SS orrelation fun tions

on a single onguration. Parameters:

β = 3.9

,

L/a = 16

,

aµ = 0.004

,

am q = 0.004

. . . . . . . . . . . . . . . . . . . . . . 94

4.14 Ensembleaveragesforthefollowing orrelationfun tions:

pseu-dos alar (PP), s alar (SS), the dieren e of PP and SS

(PP-SS). Parameters:

β = 3.9

,

L/a = 16

,

aµ = 0.004

,

am q = 0.04

(mu h largervalen equark mass than in Fig. 4.13). . . 95

4.15 Mat hingthepionmass(extra tedfromthePP-SS orrelator)

for three values of the latti e spa ing, orresponding to

β = 3.9

,4.05 and 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.16 Thedependen eofthepionde ay onstantonthebareoverlap

quark mass. The dashed lines orrespond to the mat hing

quark masses

a ˆ m

(fromPP-SS orrelator). The solid verti al lines (left of the dashed lines) show the dieren e of

f π overlap

and

f π M T M

(at the mat hing mass) extra ted from the PP

orrelator. . . 98

4.17 Continuum limit s aling of the overlap pion de ay onstant

(extra ted from the PP-SS orrelator) at the mat hing mass

and twoother referen e values of

r 0 m π

. . . . . . . . . . . . . . 99

4.18 Continuumlimits alingof the dieren eof the overlap (from

the PP-SS orrelator) and MTM pion de ay onstant at the

mat hing mass. . . 100

4.19 Mat hing the pion mass for3 dierent volumesata xed

lat-ti e spa ing

a ≈ 0.079

fm. . . . . . . . . . . . . . . . . . . . . 102

dierentvolumes ata xed latti e spa ing

a ≈ 0.079

fm. . . . 103

4.21 The relative dieren e between the overlap and MTM pion

4.21 The relative dieren e between the overlap and MTM pion

W dokumencie Uniwersytet im. Adama Mickiewicza Adam Mickiewicz University (Stron 154-0)