• Nie Znaleziono Wyników

On properties of thermo-diffusive stresses in solids

N/A
N/A
Protected

Academic year: 2021

Share "On properties of thermo-diffusive stresses in solids"

Copied!
6
0
0

Pełen tekst

(1)

MECHAN IKA yi l PL'87 TEORETYCZ N A

I STOSOWAN A 4, 26 (1988)

ON  PROPERTIES O F  THERMO- DIFFUSIVE STRESSES IN  SOLID S

ZBIGNIEW S. OLESIAK University of W arsaw 1. Introduction] Considering the problems of thermo- diffusion in solid bodies we are interested, as a rule, in finding the distribution of stresses. The effect of uneven heating and that of mass diffusion may result in stress concentration. Likewise there are the cases for which the stresses generated by thermal and (or) diffusive effects can be singular. In this paper we shall not dwell on the dynamical cases. We shall point out the two-dimensional distributions of thermo- diffusive effects resulting in solid body deformation only. It is shown that in the case of simply connected bodies there are no stresses while for multiconnected bodies the problem can be reduced to that of Volterra's dislocations, determining the character of the stresses. N ext we show the features of stresses for the three dimensional layered bodies. Finally we discuss th e character of stresses in solids with cracks, taking as an example a disc shaped crack opened by a flux of heat and that of mass diffusion. The stress intensity factor depends on the distribution of known tem-perature and the distribution of diffusion concentration on the crack surfaces. 2. Basic equations As our point of departure we take the equations of thermo- diffusion, i.e. the generalized Navier equations, the equation of heat conduction (Fourier's law) and Fick's equation. We have the following system of partial differential equations: ( l- 2i') V2

«+ grad diva =  2(1+ 1') (aegrad6> + acgradc), (2.1) V2

0 =  O, V2

c =  0, (2.2) where u =  {u,v,w) is the displacement vector, v — Poisson's ratio, fi, X Lamc's cons-tants, ye =  (3A+ 2/ z)ae, yc =  (3A+ 2/ i)ac, 0(x,y, z) change of temperature with respect to the natural state, c(x, y,z) — concentration of diffusing mass,  ae, ac coefficients of the linear thermal and diffusive expansion, respectively. In the considered case the constitutive equations (generalized Duhamel- N eumann relations), in absolute notation, take the fol-lowing form: <r =  2s- t- (Mivu- ye@- yeć )i, . (2.3) where a, s, 1 — denote the stress, strain, and unit tensors, respectively. 6 Mech. Teoret. i Stos. 4/ 88

(2)

650 Z. S. OLEsrAK

3. Two­dimensional state of strain

For two­dimensional state of strain Eqs. (2.3) reduce in a cartesian coordinate system to the form:

o*p — 2fJ.safi+(2.Uy,v­y00­yccyda(S, a,f},y = 1, 2, (3.1)

and:

CT33 = Hu1,1+u2i2)~y&&­ycC, (3.2)

since Ł33 = 0. Here ut = u, u2 = v, u3 s W.

Let us assume the representation:

"a = u'a+ (1 +J>) (a0wŁ + acwa). (3.3)

We can impose on u* and ua (« = 1,2) the additional conditions, namely:

and (3.4) "1,1 =  # 2 , 2 =  C ( X , J ) ,  «1 > 3 =  ­ M2 > 1.

Then substituting (3.3) into Eqs. (3.1) we obtain:

Gap = i"(w«, /j + u'p,a) + Uap Uy, y: (3.5)

In a similar way, substituting into Navier's equations (3.1), we obtain the system of homo­ geneous equations: /««£, pp + ( A + / 0 "is. pa = 0. (3.6) It is evident from (3.5) that for vanishing tractions u'a = 0. Thus we obtain for simply connected bodies: «« = (1 +v) (aQu* + <xcua), flf^ =  0 , a , ) 8 =  1 , 2 ,  a n d ^ " ' or33 = - 2 ^ ( 1 +») (ae0 + acc). (3.8) Conclusions: l . F o r two­dimensional state of strain and uneven heating and (or) diffusing mass concentration penetrating through the boundary there are no stresses except azz in a simply connected body bounded by any (non­intersecting) contour. The displacements can be found from Eqs. (3.7) while u* and ua from conditions (3.4), 2. This is a generalization of the result given by Muskhelishvili [1] in the case of heat conduction. 3. The same is true for an infinite body with a flux of heat and (or) diffusing mass penetrating through the boundary of a single hole of any shape. 4. The result holds for simply connected two­dimensional solids and plane strain only. In the case of multiconnected regions the problem can be reduced to Volterra's distorsions. Then in the expressions for uf+tu* and u1 + iu2 logarithmic terms appear (compare [1],

§46).

5. In the classical theory of elasticity it is shown that the two­dimensional stress cases differ by magnitude of constants occurring in the equations. In the case of thermo­diffusive

(3)

THFRMO­DIFEUSIVE STRESSES 651 effects it is difficult to expect that for two­dimensional stress the heat conduction and diffusion of mass could be in plane only. Thus it does not make much sense to consider the two­dimensional stress to be analogous to the two­dimensional strain. 4. Stresses in solids bounded by a plane We assume that the bounding plane is free from tractions and that over certain domains QB and Qc there act the fluxes of heat and of mass diffusion, respectively. The system of partial differential equations of thermodiffusion in elastic solids can be reduced by applying the exponential Fourier transform: i, v) =  ^ [ / t * . y ) i • * ­> f, y ­* ij], f ( x , y) ­  S F ­ ^ m  ) l S x \ to the following system of the linear ordinary differential equations in the transformed space: = ­2(l+v)iŁ(ct@G+acc), = ­2{l+v)ir,(.a9Q + acc), • ­iŁDu­ir)Dv+ [2(1 ­v)D2­(1 ­2v) ($2 + r)2)]w = 2(1+v) {a.&D®+ acDc), (D2­C2­r)2)0=;O,  ( D2­ f2­ V ) c = 0, where D s ­=­. dz The solution to this system of differential equations, with the regularity conditions at infinity taken into account, takes the following form: u = c = with the relationships: (4.3) )/J2Tif[2(l~v)B3­A3] = (l+v)(«@A@+acAc), v)(cceA@ + acAc). In the case when the shear stress components disappear on the plane z = 0 we obtain: rjA, = §A2, iVFW&z­**) ­ «M» + Mi• C4.4) If we also assume that the normal component of the stress tensor vanishes on z = 0, we obtain the condition: (4-5)

(4)

652 Z . S. OLESIAK This condition results from the formula for the transform of the normal stress tensor component: (4.6) • exp(- z]/ |2 + ?]2 ). I t is evident from Eq. (4.6) that normal stresses are identically zero in the whole space Though orIS stress tensor component vanishes in the entire solid, the stress components axx and ayy exist. The corresponding results for the thermal stresses were obtained by Sternberg and McDowell [3] and W. Nowacki [4]. 5. Stresses generated by tlierinodiffusion in solid with a crack In the case of axial symmetry the system of partial differential equations (3.1) can be reduced by means of the H ankel transforms of the zero and the first order to a system of ordinary differential equations [7]. The solution can be written down in the form of the following H ankel's integrals: 00

f

00

J

i r

 ( 5 < 1 ) ac(1+ y)a

 J

CO and the z component of the stress tensor: (5.2) The above solution is valid for the boundary conditions <rrs(r, 0) =  0, r e [O, oo), z = 0. F unction y>(?7) can be determined from the remaining mechanical boundary condition on z =  0 while c>i(?j) and q>2 (łj) from the thermal and diffusion boundary conditions,

respectively. The solution to the problem is obtained from the corresponding dual integral equations when on the crack surface temperature and diffusion of mass are prescribed.

(5)

THERMO­DIFFUSrVE STRESSES  6 5 3

i

In the case when the crack surface is traction free the stresses around the crack are genera­ ted by the distribution of uneven heating and (or) mass diffusion through the crack sur­ faces. Here an important remark should be made. For the traction free surfaces the crack is openend only provided the sum acc0 + a&­&0 is negative. If it is positive we deal with

a source of heat and that of mass diffusion in an infinite solid and there is neither crack opening nor non zero stress intensity factor.

Let us take an example. Over the crack surface Q = {z = 0,r e [0,a)} there act a flux of heat Q = — Qc and a flux of mass diffusion 501 = —M9, Then we obtain the

solution: U ­ ^

2^5

CO

+ «

9

#o) / {foC 0

-CD

f

[2rf

V 0 2(1 -v) °" "* ~ 2(1 ­v) a^c C°

f(e, 0 =

where: 2

 , 5

2

 , •

£ "Tfc — L We have the special cases, namely: (5­4) The stress intensity factor assumes the value:

Kl

 . 4

—v In a similar way we can find the stress intensity factors in all the cases for which the classical "mechanical" solution is known.

(6)

654 Z . S. OLESIAK References

1. N . I . MUSKHELISHVILI, Some basic problems of the mathematical theory of elasticity, transl. from Russian. 1953, N oordhoff Ltd.,

2. N . N OWAC KI, Thermo elasticity, 2nd Edition,  P W N — Pergamon Press Warsaw, 1986.

3. E . STERN BERG , E. L. M CD OWELL, On the steady state thermoelastic problems for the half space, Quart, Appl. M ath ., 14, 1957, p . 381.

4. W. N OWACKI, TWO steady state thermoelastic problems, A.M .S., 9, 1957, pp. 579 -  592.

5. Z . OLESIAK, I . N . SN EDDON , The distribution of thermal stress in an infinite elastic solid containing apenny-shaped crack, Arch. R at. M ech. Anal., 3, 1960, pp. 238 -  254.

6. Z . OLESIAK, On a method of solution of mixed boundary- value problems of thermoelasticity, J. Therm. Stresses, 1981, pp. 501- 508.

7. Z . S. OLESIAK, Cracks opened by thermodiffusive effects, in course of publication, Bull. Pol. Ac. Sci. P e 3 to M e

O CBOKCTBAX TE P M O- flH **y3H OH H BI X HAnPH>KEHHti

B paSoTe p a c c M o ip em i H eK oioptie 3aflaiH Teopnn Hanpfl>KeHHił  B03HHKaionrHe  J O K pe3yjiHaT noTOKa Tenna H flH (pdpy3H H  MaccŁi. 06o6m eH a H 3BeciH a 3afla*H  H .  H . M ycxejimiuBiuiH , Haft-pacn peR en eH im nanpH>i<eHHft OT IIOTOKOB Tenna H  Aatb(by3HH Ha H ei«yropoft n acrH nnocKoaH orpsaaMOBaiowfiVi TeJio3 a TaKiKe HaftfleH K03<J><})HU(HenT inneHCHBHOCTH H anpH weH H ti B cn yqae flHci<o-o6pa3H oft TpemH H M.

S t r e s z c z e n i e

O WŁASN OŚ CIACH  N AP RĘ Ż EŃ  OD  TER M OD YF U Z JI

W pracy przedstawiono kilka zadań teorii naprę ż eń wywoł anych strumieniem ciepł a i dyfuzji masy. U ogólniono znane zagadnienie N . I . Muscheliszwilego, znaleziono naprę ż enia, gdy strumień ciepł a i dyfuzji masy dział a n a czę ś ci pł aszczyzny ograniczają cej ciepł o. Wyprowadzono również wzór na współczynnik intensywnoś ci naprę ż eń w przypadku szczeliny osiowo symetrycznej.

Cytaty

Powiązane dokumenty

The second application, is an op- erational version of CACTus that scans in real time, the last available LASCO images for recent CMEs.. Key words: Sun: corona, Sun:

In this section we shall present some considerations concerning convergence of recurrence sequences, and their applications to solving equations in Banach

[r]

As mentioned in Section 5, the plan is to apply Theorem 3.1 to equations of the form (3.2) defined by certain minimal forms L ∈ L(T ).. Since we must apply transformations to the

In 1842 Dirichlet proved that for any real number ξ there exist infinitely many rational numbers p/q such that |ξ−p/q| &lt; q −2.. This problem has not been solved except in

In case µ = 0 of the ordinary Hermite transform the product formula (27) of GHP is not correct in case of even degree n of the polynomials, since they are connected with the

We consider the first initial-boundary value problem for the 2-D Kura- moto–Sivashinsky equation in a unit disk with homogeneous boundary conditions, peri- odicity conditions in

Key words and phrases: graded-commutative algebras, supermanifolds, Levi flat su- per CR structure, locally direct sheaf, super real integrable distribution, super complex