• Nie Znaleziono Wyników

Note on the Efficiency of Adiabatic Shock

N/A
N/A
Protected

Academic year: 2021

Share "Note on the Efficiency of Adiabatic Shock"

Copied!
12
0
0

Pełen tekst

(1)

TECHNISCHE HOGESCHOOL

VUEGTUIGBOUWKUNDE

REPORT No. 22

12 Juli 1950

THE COLLEGE OF AERONAUTICS

CRANFIELD

NOTE ON THE EFFICIENCY OF ADIABATIC SHOCK

by

A. W . MORLEY, Ph.D.

of the Department of Aircraft Propulsion.

(2)

TECHNISCHE HOGESCHOOL VLIEGTUIGBOUWKUNDE REPORT KO. 22 SEPTMBSR. 1946. T H E C O L L E G E O F A E R O N A U T I C S C R A N F I E L D

Note on t h e Efficiency of Adiabatio Shock by

-A. W. Morley, Hi. D.

of the Department of Aircraft Propulsion

SUMMARY

This note records some calculations of the efficiency of adiabatic shock in air (X" = 1.40) ; where the efficiency is defined as the ratio of the work used to compress the air in

the shock wave, from the inlet static to the outlet total head

pressure, to the work required if the compression v/ere isentropic. This is the efficiency usually of interest when considering

intakes of propulsive units for supersonic flight.

(3)

2

-Introduction

It was desired to calculate the isentropic efficiency of

tho ordinary adiabatic shock wave as a compressive process from

inlet static to outlet total hoad pressure over a wide range of

possible conditions.

For this purpose, the parameters defining the wave, found

most suitable, were the wave angle ( // ) to the incident flow, and

the wedge angle ( ^ ) through which the gas is deflected.

The well-known equations for conservation of energy, '

equilibrium of forces, continuity of flow and constant tangential

velocity applied to adiabatic shock may be written:

Tl (1 +

X-

1 M^^) = T2 (1 + r - 1

li^ )

(1)

2 2

P^ (1 + y M ^ ^ sin^/A. ) = P2 (1

+ iT M.'^axn^ jZ^S )

(2)

PjMi = P2M2 sin

'AT"- $

(3)

!ir" -— sin

i/^

Ml

^"T-1 C O S /L O

M2

/^2

cos yC<. - S (4)

From these equations, expressions for M-| , M2 and

P2/P1 were obtained in terms of the basic quantities y x and

8

as follows:

M^^ = 2 cos

M - S

(5)

A sin JUL.

2

M2 *• 2 cos /-^ ••• (6)

B sin

JA

"-"5

and ^ = S. (7)

?•! A

where A = sin 2/-t--

% - \

sin

$

•• (8)

B = sin

2JJ'- S

+

ysln S

(9)

With these relationships the required efficiency is calculated

quite easily.

(4)

- 3 "

Efficiency of Compression

The work required per lb. to compress the gas from P-j

to P2t is proportional to {T2-t, - T^ ) whereas ideally it would be

proportional to (T2t' •" ^.j). Here T2-t' is

"^^^

hypothetical

downstream temperature corresponding to isentropic compression from

T-| over the same pressure ratio R2t/Pl • Then we define the efficiency

as:

. T2t'' - Ti

•^^t - Ti t « » « « > « * 9

(10)

or

• / - 1

(Pgt/Pj) ^ - 1

n = T2t/Ti

~

•>..-... (11)

Now

Y"

V'— 1

^ = ] ^ • !2 =

("MS ' ?2

P1 P2 Pi

\ T 2

J

Pi

,y"

= (1 + V - 1 M2^) ^ ". P2

V 2 / ^

and, since T^^^ = T^^ ,

ï*1

^

2

T2t = 1 + y - 1 M-i

T ^ -2.

Substitution for

'F2i/^^ ^^^ '^21^'^]

-^^ equation (11) gives for

y \

the expression:

Y-

1

-1 + r - 1 Mp^L ( p p ] V _ ^

I lPiP

)

1 = ^:

n. ^JÈJJ.

(12

2

V - 1 M i

This last equation may be rewritten, so as to expres

r

in ;t9rms of wave angle and

,

}JL2~

and P2/P1 from equa

as a working formula, the expression:

efficiency in ;t9rms of wave angle and wedge angle only, by substituting

for M^ ,

JSQ.'^

and P2/P1 from equations (5), (6) and {7). V/e obtain,

r

y-

1

^'

1

VI = A sin ./^U

i l^\ ^ - \+ L

sin 2 yu. __Jl3)

F ^ T c o s ^ ^ T l^V^/ J 2 ^in2^:^--^

where A euid B are as given in (8) and (9)« Tables of the function

y - 1/ir

X were already available.

(5)

_ 4 -Results

The values of efficiency were worked out for 5 steps in a from 0 to 30° and 5° steps in /t from 25° to 85° for atmospheric air ( is^ = 1.40). These are given, with the corresponding values of M-| , M2 and P2/F1 i" Table I and curves, Fig. 1, 2, 3 and 4.

Prom these curves the points of maximum efficiency may be located. This efficiency is plotted in Fig. 5 and compared with that obtainable with normal shock* at the same entry Mach number.

It is seen that with oblique shock the efficiency is nearly 100^ until M1 reaches about 1,8 wiien an appreciable decrease occurs with increase in M-j. Though the pressure ratio P2/PI is lower tho

same pressure ratio can be obtained at a higher efficiency with oblique than with "normal" shock.

FIGURES ATTACHED

Pig. 1. Relationship between VI , / A and &

ïig. 2. Relationship between Mi, ^,M. and S . Fig. 3* Relationship between M-(, M, A''- and ^

Fig. 4. Relationship between P2/^1, M and S . Fig. 5» Relationship between 1 ^ ^^^ and M-| .

TABLE ATTACHED Table 1. Oblique Shock Data.

* With "normal" shock:

U2' = 2 + r " - 1 M-i^

2 ^ M i ^ - èr+ 1

which may be substituted directly in equation (l2) to obtain the of-P-i A-i Rnnv at. the corresnondine" Mi.

(6)

C O P A REPORT N ° 2 2 I 5 © ' 4 e >

FIG.

O R D i N A Q Y S H O C K R E L A T I O N S M I » esETNA/EEM I S E N T R O P I C E F F I C I E N C Y OF C O M P R E S S I O N ( F R O M U P -S T R E A M -S T A T I C T O O O V V N ' -S T R E A M T O T A L , H E A D ) A N D NA/AVE A N D W E D G E A N G L E S DRAVVNJ F O R ^ = • ' 4 P . S t

1-A ^'JÜ—r-rrrrrrrh '<r

y - 1 CO:

:os(p S) 1 \A y J V B /

8iN

2

()4-

S)

W H E R E A = S I N ( 2 ) X - S ) - ^ 5 I N S

B = S I N { 2 . ) J I - S ) - I ^ 8 ( N S

7 0

9 C

(7)

C O P A REPORT N® 2 2 l 5 - 9 ' 4 &

PIG.

1

ORDINARY' SHOCK R E L A T I O N S H I P BETWEEN ISENTROPIC EFFICIENCY OF COMPRESSION ( F R O M U P -ST REAM S T A T IC TO O o WN ' S T R E A M T O T A L H E A D ) A N O V V A V E A N D W E D G E A N G L E S DQAVVKl FOR ^ = 1-4 P , S t > -^ ^ "V"

f A

S ^ L ; ; / & \ ^ , I

, f A \ . ^ s . N 2 y

^ y-i cos('t^s)i\A/ j

V B / S , ^ ,

2Ü'

WHERE A = S I N ( 2 ^ - S ) - ^ S I K l S B = SIN(2.)i-s)-<^6IN S 9 C W A V E ANIGLE U (DESQEES)

(8)

J5 9 4 8

FIG. 2

C R D I N A R V SHOCK

R E L A T I O N S H I P B E T W E E N ENTRY MACH MUMBËR

VVAVE ANGLE A N D W E D G & A N 6 L E

a

UJ <Q

I

D Z I Ü <

I

> • h Z UJ

Mf -

2cosCju^-S)

SIN jJl(siN ?)J.-5- ^ S I M § )

( D R A W N F O R ^ = 1-4^ 4 Q

5 0 é o 7 o SO

Y/AVt ANGLE y<A

( D E G R E E S )

(9)

C O F A PEPOCtT N 0 2 2

I 5 9 - 4 S

FIG.3

R E L A T I O N S H I P BETWEEN E N T R V M A C H . NUMBER AND E X I T MACH. NUM&ER FOR QSLKPUE SMOCK WAVE IN TE.RMS OF WAVE ANGLE U A N D WEDGE ANGUE S.

( D R A W N F O R y - i - 4 )

M^ =

2 e C O S U -$ COSEC^ S I N ^y-% - 2 J S i N $ 2 COSEC j T ^ g C 0 5 ^ S I N 2 T F § + a S I N S M l E N T R V M A C H N U M B E R

(10)

C O F A REPORT MO £2 15' 9- 4a

OCDINARY SHOCK

FIG. 4

RELATIONSHIP BETWEEN PRESSURE RATIO W A V E A N G L E A N D WEDGE ANGLE Ë2 ~ SIN(g>N-S) i ^ S I N S P. S i N ( 2 j J - S ) - X S I N J S ( D R A W K » F O R X « 1-4) Q h < a; D 10 «0 UJ

a

or

2^

S5 3 o 4-0 5 o Go 7 0

WAVE ANGLE U (DeeRE.es)

(11)

C OF A REPOQT N o , 2 2 1 5 ' 9 ' 4-8

FIG. 5

O B L I Q U E S H O C K . M A X M Ü M tSENTCOPiC E F F I C I E N C Y A H O C O M P A R I S O N W I T H N O R M A L S M O C K ( F O R

^ = I-4-)

i

lOO

7c

lU

u

a

Ul

a

>-u

z

Ul Ü iT tl. Ul Ü

o

It

z

Ul U3 9 0

80

7 0 G O

5 0

S-o ^

, ^ s

=. c

!/^o°

y i 5 »

Xo=

6 = 5" 1 S « W E \ \ , 0 ^ 2 5 " OÖECS EMI) A M G L E ( • / > / V

y^"

X

DE6C • 8

7.

5_ 4- 5-2 1-E N T R V M A r W KILJMP.FO 2'O

3 0

(12)

The College of Aeronautics

Eeport Ifo. 22 .

TABLE 1

OBLIQUS SHOCK DATA

For a d i a b a t i c flow and '* = 1.4

y^-L = wave angle

S

t

wedge (semi) angle

i s e n t r o p i c e f f i c i e n c y of compression from 1 t o P, 2 t !—

S - f

\ S= 10°

S=15°

1

1 S» 25°

1

5=28°

I g= 30=

1

S= oo

A

M1 M2 P2/P1 M1 M2 P2/PI Mi P2/P1 lit. M1 M2 P2/P1 M1 M2 P2/PI Mi Mp P2/P1 Ml P 2 / P I M1 25° 2.756 2.5281 1.4161 .994 i 3 . 3 8 1 2 . 8 1 0 : 2.216 . 9 8 1 4 . 6 9 5 3 . 3 4 2 4.430 . 8 9 4 1 4 . 8 3 4 . 6 4 45.78 .330 1 2.366

30° i

2.280! 2 . 0 8 5 1.350 .9991 2 . 6 8 1 2.166 1.932 .986 3.348 2.500 3 . 1 0 1 .939 4 . 9 0 2

3*665

6.840

I2.0

35°

1.962 1.782 1.310 .999 2 . 2 5 2 1.868 I.78O .989 2.678 2 . 0 1 2 2.586 .959 3 . 4 2 5 2 . 2 5 6 4 . 3 3 5 .882 ,5.452 2 . 6 9 6 111.25 : .658 ' 1 . 7 4 4 40° 1.738 1.567 1.288 .999 1.966 1.610 1.698 .990 2 . 2 7 6 1.690 2 . 3 3 4 .966 2.74Ö 1.825 3 . 4 7 2 . 9 1 3

3.635

2.048 6 . 1 9 5 .794 4.827 2.258 1 1 . 0 6 .647 6.812 2 . 4 5 2 2 2 . 1 9 .360 1.556

45°

1

1.5741 1.403 1.278 .999 1.768 1.417 1.657 . 9 9 1 2 . 0 1 5 1.459 2 . 2 0 2 .969 2.358 1.536 3.079 .926 2 . 9 0 6 1.661 4 . 7 5 6 .643 3 . 4 6 1 1.771 6.826 .758 14.059 ; i . 8 6 9 i9.432

1 .676

11.414 5 0 ° ! 1.453^ 1.275 1.2801 .999 1.625 1.302 1.643 .990 1.837 1.285 2 . 1 4 2 .968 2 . 1 1 2 1.325 2 . 8 9 2 .929 2 . 5 1 4 : 1.398 | 4 . l 6 0 .862 2 . 8 7 1 1.461

5.475

.800 3.199 1.519 6.838 .745

IL^O-^

55°

1.364; 1.174! 1.290i .998 1.526 1.150 1.656 .988 I . 7 I 8 1.146 2 . 1 4 2 .966 1.960 1.163 2.837 .928 2.286 1.202 13.924 .866 12.556 1.239 4.948 .814 2.787 1.270 5.912 .770 [ l . ? ? l

60° j

1.299 1.090 1.312 .998! 1.460 I.O5O' 1.698 .985 1.644 1.032 2 . 2 0 1 .960 1.870 1.031 2 . 8 9 2 .919 2.162 ,1.048 3 . 9 2 2 .858 2 . 3 9 2 11.066 14.842 1 .809 2 . 5 8 2 1.085

5.667

.771 I 1 . I 5 5

65° 1

1.258 1.018 1.350 .9971 1.426 .964' 1.782! .981 1.615

.933

2.332 .950 1.840 .918 3.077 .902 2 . 1 2 4 : .919 14.160 .838 {2.343

.927

5.094

1 .788

12.518 . 9 3 5 5.913 .750 11.103 70° 1.240i .954^ 1.417 .99'5 1.427 .884 1.932 .972

1.635

.841 2 . 5 8 6 .930 1.882 .615 3 . 4 7 2 . 8 7 1 2 . 1 8 6 .804 4 . 7 6 2 .798 2 . 4 2 1 .804

[5.870

1 .744

2.6O8 .806 6.840 .702 11.064

7f j

1.252 .890 1.540 .990 1.480 .803 2.217 .953 1.732 .748 3 . 1 0 1 .893 2 . 0 3 4 .713 4 . 3 3 2 .816 2.417 .692 6.194 .721 2.720 ,686 7 . 8 8 6 .658 !2.970 .684 9.428 .610 80° 1.322 .813 1.811 .976 1.644 . 7 0 5 2 . 8 9 3 .905 2 . 0 1 6 .640 4.430 .806 2 . 4 8 9 .598 6.840 . 6 9 1 3-.175 .571 1 1 . 2 5 .558 3.817 . 5 6 1 1 6 . 3 2 .466 4.448

.556

2 2 . 2 0 _i398j 1.035 l l . O l ^ 85° 1.596 .682 2 . 7 8 3 .913 1 2 , 2 9 3 '

•.555 1

5.923 .727

3»373 !

.486 1 3 . 0 2 .497

6-329 1

.443 ,46.17 1

1 '^"^

1.004 %'

Cytaty

Powiązane dokumenty

The UTIAS 10x18cm Shock Tube with a 23cm diameter field of view Mach-Zehnder interferometer was used to obtain isopycnics of the flow field from infinite-fringe

Aktywność fizyczna, sposób odżywiania się i zawartość tkanki tłusz- czowej u chłopców trenujących i nietrenujących w wieku 14 – 15 lat.. Physical activity, dietary habits

The current article is similar in that it puts forward a comparison between the Bowtie method and Leveson’s Systems-Theoretic Accident Model and Processes

[r]

Dane dotyczące fal upałów obejmują daty wystąpienia, czas trwania oraz charakterystykę meteorologiczną wszystkich fal upałów, jakie wystąpiły na 16 stacjach w Polsce,

For the sequence learning, the following features were used: The end-effector position in the cylindrical frame and the Cartesian frame as well as the data from the force sensor at

Pamiętnik Literacki : czasopismo kwartalne poświęcone historii i krytyce literatury polskiej 53/3,

Lekcja Herdera została przyjęta przez romantyków w Polsce i szerzej, w Europie Środkowej, jako zbawienna, gdyż małe i średnie narody „pomię- dzy Rosją i Niemcami” (Kundera