• Nie Znaleziono Wyników

Vortex tube performance data sheets

N/A
N/A
Protected

Academic year: 2021

Share "Vortex tube performance data sheets"

Copied!
38
0
0

Pełen tekst

(1)

CoA Note No.67

- 5

THE COLLEGE OF AERONAUTICS

CRANFIELD

VORTEX TUBE PERFORMANCE DATA SHEETS

by

(2)

COIIiEGE NOTE NO.67

JULY. 1957

T H E C O L L E G E O P A E R O N A U T I C S

C R A N F I E L D

V o r t e x Tube Performaxice Data S h e e t s

b y

-R. ¥estley,D.C<,Ae,

1, Introduction

Experiments to determine the effect of various operating

and design parameters on the performance of a vortex tube are

described in College of Aeronautics Note No. 30. The present

note gives additional performance data on this tube and should

be used as a supplement to Note No.30.

These data sheets sire intended as an aid to the estimation

of the performance of vortex tubes and to the design of voartex

tubes with given characteristics. In particular, the present

note provides the optimum values of the vortex tube parameters

which give maximijm temperature drops.

Figures 12-53 give temperatixre drop and cold mass flov;

ratio characteristics, figures 54~6l give the cold mass

flovr

ratios

at maximum tsnperature drop •v\*iilst figures 62-65 give the optimum

inlet and cold outlet sizes for maximum temperature drop.

(3)

-2-2. NOTATION

p. inlet pressure

p cold outlet pressure

c

'-p, hot outlet pressure

A p. pressure differential across inlet flow meter

A p " •' " cold " "

•^c

A p, " » " hot " "

•^h

T. i n l e t t e m p e r a t u r e

T c o l d "

c

T, hot "

h

A T s

( T .

- T )

C ^ X c '

A T

A T \ A T 9 °

Ti

for —r~- = 0

T. dix

1

AT_ / AT

AT \ AT "^ T . \ T. ,

T. ; T. a^ - ' 9 d

1 / 2 1 c

AT / AT \ / AT^

AT \ AT ^ T . ^ \ T. / . "^V T. /o

c \ _ c „ 1 ^ i _ '

rs

3 ^ _

_ _ j = _ _ _ for - ^ ^ = 0, 9 a = °' 3 d.

1

/

5

1 c 1

T * / A T

T. ^ V T . ._

1 V 1 / 3

AT . . . . / p

y - 1

c i s e n t r o p i c 5 / l £ \ Y y ^ 1 40

'^i VPiV '

1 \ - " i

AT \

X /2

(4)

-3-AT

D diameter of vortex tube

d diameter of cold outlet

c .

,

• - , . . - , .

T ^ - o . JA- Total inlet area

d. equivalent inlet nozzle diameter =

^ .

length of inlet slot

AT

\ / A T

d \ d V T . y V T . / .

-S.) ^

-^ for

- V - i -

= O, A ^ 1 ^ o

AT \ / -^T \ / A T

^ \ ° i. ^ 1 / ^ ^ c / 1 ^ ^ 1 / 2 „

e ) 3 ^ f o r g^^ = 0 , d = ° > d — °

-9 _£ -9 ^

E D

/

A T

\ /• AT \ / T

d . \ d. V T. J ^V T. / . ^\ T. , „

5^),- r^-

^ -°. ^ ^ ' ° . - M ^ '

'°-R hot valve setting (revolutions)

A / 2 ~ L \D /2

^i^ . r ^ i

A A L VD /^

Ai

2

3

,, „, , . cold mass flow

cold mass flow ratio

(^

cold mass flow ratio at

i n l e l

AT

c

T.

1

II

; mass flow

/AT

/ c

V

T\ 1

-/AT ^

= f °

\ T . ,

i '

- f'^'^c

\ \ ^

\

I

''1

\

)

/ .

^

)

h

(5)

43. LIST OF FIGURES cS: DATA SHEETS

-Pig,1. Inlet chamber and cold outlet.

Pig.2. Hot air outlet valve.

Fig.3. Exploded viev/ of cold outlet diaphragm, inlet nozzle

component and tube.

Pig.4. Alternative vortex tube components.

Pig.5. Cold outlet diaphragm.

Pig.6. Inlet nozzles

Pig,7. General view of vortex tube apparatus.

Pig,8. General layout of vortex tube apparatus.

Pig.9. Vortex tube apparatus: General assembly, front view,

Pig.10. Vortex tube apparatus: General assembly, plan view.

Pig. 11. Thennocouple probe .

Pigs. 12-41. Variation of temperature drop ratio \ T. / with cold

/ P w ^

mass

tlovr

ratio (/i) for various pressure ratios y P /

\ . d.

[ .167

.250

.333

.417

.500

1 .583

.667

.266

-P i g , 12.

F i g . 13.

P i g . 14.

P i g . 15.

P i g . l 6 .

P i g . 17.

.376

F i g . 18.

F i g . 1 9 .

P i g . 20.

F i g . 2 1 .

F i g . 2 2 .

-F i g . 2 3 .

;

.461

F i g . 2 4 .

F i g . 2 5 .

P i g . 2 6 .

F i g . 2 7 .

F i g . 2 8 .

F i g , 2 9 .

F i g . 30.

.532

F i g . 3 1 .

F i g . 32.

F i g . 3 3 .

F i g . 34.

F i g . 3 5 .

F i g . 3 6 .

.595

F i g . 3 7 .

F i g . 3 8

Pig.39. 1

Fig.40. 1

F i g . 4 1 .

-—

(6)

P i g s . 4 2 - 4 6 .

V a r i a t i o n

w i t h c o l d

5

-of maximum t e m p e r a t u r e

o u t l e t d i a m e t e r r a t i o '

drop

V°/D

. r a t i o 1

/ f o r

/AT

•-c

\

M

i

various pressure ratios \ V p

Pig. 47.

Pig. 48.

d.

1

D -

.266

F i g . 4 2 .

.376

F i g . 4 3 .

.461

P i g . 4 4 .

.532

F i g . 4 5 .

.595 1

Fig.

46. 1

Variation of temperature drop ratic;

AT

c

T .

Tdth p r e s s u r e r a t i o \ V p / ^o^ optimum

G

cold outlet diameter, optimum value setting and

given inlet size [_i

Variation of temperature drop ratio with inlet

size for optimum cold outlet and valve setting,

' Pi

— = 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0

AT

c

T

i /2

d i

D

Fig. 49.

Variation of tenrperature drop efficiency with

pressure ratio at optimum cold outlet size,

optimum valve setting and fixed inlet diameter.

d.

^ = .266, .376, .2t£i, .532, .595

AT

Fig. 50.

AT P

c ISETJ G .

Variation of refrigeration efficiency

with pressure ratio(p./ )

at optimum valve setting

and cold outlet diameter for

maximum temperature drop ratio

I"'

AT

AT

(7)

-6-Pig. 51• Variation of temperature drop ratio (

Pig 52.

Pig. 53.

/AT

refrigeration ratio

/AT

'-.(-

°

V

T, /3

and

with pressiore

V ^i /3 J

ratio at maximum temperature drop and optim\jm «onditions.

Power law variation of tempei'ature drop ratio and

refrigeration ratio with pressiire ratio (^i/p j at

maximum temperature drop.

Variation of temperature drop efficiency

AT^

A T _ \ and refrigeration efficiency

'•^i ' ISEN

/AT

n ( c

AT

ISEN

with pressure ratio (

^±, j

at maximum

temperature drop.

Pig. 54-58.

Variation of cold mass .flow.ratio ( M ) with cold

outlet diameter ratio

VD

at optimum valve setting

Fig. 59.

Fig. 60.

d.

1

D =

.266

F i g . 5 4 .

.376

P i g . 5 5 .

.461

F i g . 5 6 .

.532

F i g . 5 7 .

.595

F i g . 58.

Variation of cold mass flow ratio ( /^ ) with inlet

d.

diameter ratio

[

i/j^ ) at optimum valve setting and

optimim cold outlet diameter.

Variation of cold mass flow ratic(

ji

] with pressiire

ratio

VP,

at cyptimum valve s e t t i n g and optimum

(8)

7

-mass

Pig. 61. Variation of coldj|flow ratio with pressure ratio for

optimum valve setting, optimum cold outlet diameter

and optimum inlet diameter

- Pi

Pig. 62. Variation of optimum cold outlet diameter with inlet

diameter f£i - 1.5, 2, 3, 4, 5, 6, 7 j .

'P,

d \ d.

c \

..

1

D y-i D

Pig.63, Variation of optimum cold outlet diameter with pressiore

ratio for fixed inlet diameters, ( _i = .266, .376, .461,

\ \ D

.532

&

.595

^c\

~

Pi

1 -^c

Pig, 64. Optimum inlet and cold outlet diameters for maximum

temperature drop.

^ A

Po

d \

p.

c \ ~

-^1

D /2 Po

Pig. 65. Optjmum inlet and cold outlet areas for maximum

temperature drop.

\ \

^^ A

^°^

A/.

f^ fKt

>

P i

Pc

P i

PQ

(9)

INLET CHAMBER AND COLD CXJTLET FIG. I. TO ORIFICE METER 20 THREADS PER INCH

HOT AIR OUTLET VALVE

(10)

V o r t e x T u b e

Inlet N o z z l e

C o m p o n e n t

Cold Outlet

D i a p h r a g m

FIGURE 3. E X P L O D E D VIEW O F COLD O U T L E T DIAPHRAGM,

I N L E T N O Z Z L E C O M P O N E N T AND T U B E .

& ^ Q

\li^^^^ \ ' l i „ - ^ ^ ^ _ | _ p r

V ^

^ ^

F I G U R E 4. A L T E R N A T I V E V O R T E X T U B E C O M P O N E N T S

(11)

SCALE • ' INCH .

SECTION ' A A '

> A

FIGURE 5. COLD O U T L E T DIAPHRAGM

1/ ,;.^rr7i

h

t

^

^ ^

^

SECTION ' A A '

FIGURE 6. INLET N O Z Z L E S

(12)

P o t e n t i o m e t e r

H y g r o m e t e r

D r i e r C o m p r e s s o r

R e s e r v o i r ƒ After C o o l e r

Hot Outlet

P i p e

Cold Outlet

P i p e

Vacuum

P i p e

(13)

MAIN CONTnOL MkLVE

METEH 1 HOT FLOW HOT I O ATMOSPHERE METER VALVE

• X I •

D—-HfefeEOIffiEb-ATMOSPHCHE

TO M C U U M

VACUUM TANKS

GENERAL LAXDUT OF VORTEX TUBE APPARATUS

FIG. 8 .

TEMPERATURE AND PBESSURE MEASURING POINTS T i — INLET AIR THERMOCOUPLE TAPPING Tc, — COLD AIR THERMOCOUPLE TAPPING T I , , , T * i —HOT AIR THERMOCOUPLE TAPPINGS

R i — INLET AIR STATIC PRESSURE TAPPING

Fk — COLO AIR STATIC PRESSURE TAPPING

P*, - HOT AIR STATIC PRESSURE TAPPING

P , - S T A T I C PRESSURE IN CENTRE OF VOHTEX AT HOT VALVE 4 P i - DIFFERENTIAL PRESSURE AT INLET AIR ORIFICE METER fiPc — OIFFEPENTIAL PRESSURE AT COLD AIR ORiFiCE METER i PA - DIFFERENTIAL PRESSURE AT HOT AIR ORIFICE METER

COLD ORIFICE i f t ^ M f T E R

VORTEX TUBE APPARATUS GENERAL ASSEMBLY FRONT VIEW.

FIG. 9

TEMPERATURE AND PRESSURE MEASURING POINTS COLO A M THERMOCOUPLE TAPPtNGS.

HOT AIR THERMOCOUPLE TAPPINGS. COLO AIR STATIC PRESSURE TAPPING. HOT AIR STATIC PRESSURE TAPPING. STATIC PRESSURE IN CENTRE OF VORTEX AT HCfT WLVE

DIFFERENTIAL PRESSURE AT COLO AIR ORIFICE METER

DIFFERENTIAL PRESSURE AT HOT AJR ORIFICE METER

» f e ^

TERMINAL BASE

TO ATMOSPHERE

VORTEX TUBE APPARATUS GENERAL ASSEHBLY PLAN VIEW.

FIG. l a

THERMOCOUPLE PROBE. FIG. IL

(14)

TECKMISCF;E IIOGFSCHOC

VUEGTUIGBOUvVKUKDt

Kanaalstraat 10 - DELfï

-ia •17 •IS -13 I I 0 9 •O •06 0 3 0 2 0 (

/

/

/ /

1^

'/ /

' /

/ /

/

• ^

y'^

^ ^ ^

\

\

/ '

/

\

N \

^ ^ ^

1 >

\

\

^S. \

^

— ^

^

\

^ 1

\ N

^

K

^ ' ^

%-"

- • 7 1 •^

^

^

'v

^

^ ^

" ^

^

j ^

^

COLD MASS FLOW RATIO . o ^

FIG. 12. VARIATION O F TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS.

I B •17 16 •IS • 14 •13 •12 •1 •10 0 9 • 0 7 .c» « 5 0 4 0 3 OS •0 • /

/ /

- y

-y^

y"^

\

• — f

-\

" ^

^

^

* X

\

\

\

\

\

\

^

\ ^ \

T~~—,

\

\ ^

r -^

^

3

"^

^

i^-=

^

^

W

\

\

W

^

Cold m a s s flow r a t i o

FIG. \i. VARIATION .OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

(15)

20 • l « .IS .17 •16 IS 14 -13 •13 to 0 9 0 7 0 6 OS 0 3 01 o

.

^

/

/ ^

' _/

/

y

/

^

y

L ^ ^

-^

y

y

yX"^

^

y

y^

^

^ ^

-"-^

„„^

^ ^ 0 ^

^

^ —

y^

y^""^

^

~~

1

1

/

1

1 ^ 1

1

— 1 —

1

1

1

\

1

1

1

1

1

1

1

V .

S

^^^

^^•^

-\

V •-V

k ^

p i "

-\

\

\ \

\

N , N ^

X,

3 2

"~

^

V

\

\ \ \

s\

\ ^

s

~v

^

\

^

\ \

s,

^

\ \

N.VV

\ ^

NA

V V

\

N

\

VL

m

V vl^

\ %

'""^

^

^

Cold maaa flow ratio

FIG. 14. VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS \ RESSURE RATIOS "c = .417; "i = . 266 -la • 17 •15 •13 12 II •lO 0 9 C 7 -0 6 • 0 5 0 3 0 2 Ol

/

/

P-V

y

y

.^,,-—

/

/ y

'

---y ^

^^

y

\

1

1

/

/

/

1

\ ^

\

—4

/

/

1

N

\

V s , ^ ^ \

• \ ^

\

^ ^ ^

«

\

^ \

< ^

v5

- ^ 3

" ^ ^

'

SKÜ

\

^

s \

N

^ ^

^^.

\

V

^ . N

\

K

\

A

x ^

_ \

Cold m a s s flow ratio

FIG. l 3 . VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

(16)

M A . » ^ I''L' >\\ \l\-\\n l - t ) i ; \ A l t H M ^ ! K) vM |{K H A T I ' ) S •tl o a -10 L. £ -09 il

s °»

I

-O'

01 a 01 0 6 OS 0 4 • 0 3 •02 •Ol O

.

y^

- /y/

V

r

A

^

f/

/ _ ^

(^•"^

.i<,\

€^

._ _.^

^

^

^ >^

/

/

/

/

1

1

1

1

1

i

\

\

/

/

. ^

^ ^ \

.^

r ^

^"^^^v^

pi ^ ^ • ^ • ^ ^ ^ p c = 1 5

^ - - ^

"

^ s ^

^ s ^

^ ^ ^

4 N

^ s ^

^

^

N y

\

\

V \

\ s

\

N.N

^

\

~ ^

i

\

V \

\ \

vi\

^

-

^

3 4 5 Gold m a s s How r a t i o

VARIATION O F T E M P E R A T U R E DROP RATIO WITH COLD

MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

(17)

/ 6 [ \

/A

m

Ik

1 \

/ \

\

y^

-i

i

\

1

\

\

f^-^

^ .

%

>

V

^

^

^

^

j 3 4 5 -6 7 8 9 lO Cold m a s s flow r a t i o

PIG. 18. VARIATION O F T E M P E R A T U R E DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS.

Cold m a s s flow r a t i o

FIG. 19. VARIATION O F T E M P E R A T U R E DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS ''c = . 250; "i = . 3 i 6

(18)

•>*

•t9 •17 • 16 •15 13 •II •09 0 8 0 7 •OS C 1 0 3 Ol n • /

/ ,

V

l ^

/

(

/

y

^ ^ — •

-\

\

• — M ~

\

\

—r^

\

N \

\

\

\

^

\

\

^—r\—•

\

\

\

\

\

\

177^,5 . Tic ' =

^

^

. ^ \

\ ^

^ \

N

\

\

\

\

\

^

N

\

" ^

^ ^

^~~^

^

V

Cold maas flow ratio

VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

. l « 17 1S o 2 " tt) .11 2 lo ot 07 • o i o 3 • O l •

/ \

/

1/

/

f

c

'^

/ >

-A

^

^

- ^

y—

—-~.o

\

-v

\

\

\—.

\

\

\

\

\

T5

\

• ^

\

\

\

\

\

\

1

\

1 1 1

- . .

.

1

^

P^

- ^

^

\

^ .

\ \ N

. s

r^

^-—

\

^

- ^

\

^

^ ^

s

xX

A

s

\

^ • ^ . . , _ ^ ^

^

V

^ \J

Cold mass flow ratio

FIG. 21. VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS t RESSURE RATIOS

(19)

I -2 -3 4 S 6 -7 -8 9 I O

Cold m a s s flow r a t i o

FIG. 22 VARIATION O F T E M P E R A T U R E DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS.

c = . 5 jO; i = . y r6

Cold m a a s flow r a t i o

FIG. 2J VARIATION O F T E M P E R A T U R E DROP RATIO WITH COLD MA.S.S FLOW RATIO FOR VARIOUS PRESSURE RATIOS " c ^ .iiiii-, " , = . : i ; 6

(20)

•16 IS '14 •13 • II lO 0 9 0 7 0 6 •05 O 4 •03 0 2 • O l

A

/ i \

(A

\lr\

/ / 1 tt

l/^vi

M

y^

' 1 |E = I S

V

\^L

/ ^

^ ^

Ik

\ .

^ ^ ^ ^

" = j

Cold m a s s flow r a t i o

FIG. 24. VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASSILOW RATIO FOR VARIOUS PRESSURE RATIOS d "c = . 1 6 7 , "1 = . 461 19 18 .17 16 IS 14 13 12 II Ol

°'

•07 O • 0 4 • 0 3 •01

1 1

ViX

A^

1/

A

/ 1

'A

1 \

1 \

/

/

y

y

i

" ^ v l

\

\

\

\

\

\

T;,

.^

7 - 1 5

V

\

s^

v ^ l

^

^ ^

! ^

^'^•^

^ ^

11^''^^

.^

^ ~ - -

s=^

Cold m a s s flow r a t i o

VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

(21)

9 1

m

fyk<\

' / , ^

5 3 1 9 7 4 2 31

'f

1

\

\

i

\ '

\

\

\

\

\

\

'1^-1 =

V

\

N

\

\

.

\

^

^

-\

\

• ^

k.

\ N

^

\

,

-j

Cold mass flow ratio

FIG. 26. VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS.

"c = , 333; "i • , 461 B B 2 0 • 19 17 IS 13 <ia II 0 9 D7 3 6 ) 5 0 3 0 1

/

/ /

7A

/ / /

/

y

f

/ "

-1

1

1

\

-—r

-\ .

\ \

s

\

1

\ J

\

\

^

\ v

" ^

s

| i - s

k

^

\

\

k.

V

\

s,

^

^ ^

\ ,

N

V

-<s

Cold mass flow ratio FIG. 27.

Vt^V?^,9.^ TEMPERATURE DROP RATIO WITH COLD MASS

FLOW RATIO FOR VARIOUS PRESSURE RATIOS "c = ,417; "i = 461

(22)

2 0 .1» • 17 -15 -13 •Il 0 9 • 0 7 OS 0 4 0 3 0 2 O l

/

A

/

/

/

^^.^

-/

^

f

^

1 1

___

1 1 6 | s ^ • '* — ^ 1 3 2 1

\

V

f;-» 1

V

" ^

\

\

\

s^

\

^

^ ^

^ ^ • . . . . ^

\

^

s.

^ \

" ^ ^

A

^

\

\

\

^ ^

s.

s \

\

\

w ^

^

Cold m a s s flow ratio

Fid. 26. VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

2 09 DS 0 4 • •

//

I

f

l^

-/

V

^

^ ^

1 ! -1

^

^

.

I

1

1

1

\

V

\

\

%

3 5 .4 3

'<?

\

\

\

4 ^^

^

N

"v.

\

\

^

&

\

^

\l

\

• - - - ,

7

\

^ ^

\

9

.

\

^

9 1 Cold m a s s flow r a t i o

VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS.

(23)

0 7 O 6 OS •04 03

-•

-J

^

/

/

/

y

/ ' ^

y

/

y

- —

1

1

- — 1

' 1

1

1

\

i>i 1^=1-5

^ ^ ^

~ ~ < ^

3 1

\

\

h - \

\

\

\

V.

\

^

^

\

k ^

~

\

- ^

\

V

\

\

^

FIG. a ) . •3 -4 -5 .6 7 •a ^9 Cold m a s s flow r a t i o

VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS.

d _ c c d, c = . 66V, . 4Ó1 D 14 •13 '12 •II 09 08 0 7 O S 0 3 • 0 1

rV

A

7*\il

\

/ \ \

'K\

\ ^

• y 2 \

1

I I

4-='

V

^ ^ ^

= = — 1

° ^ ° ™ ^

Cold m a s s flow ratio

VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

(24)

Cold m a s s flow ratio

F^G. 32. VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

•'o . .2o0; "i = .532

B B •19 . 1 7 .15 •13 II 0 9 • 0 7 0 6 OS • 0 4 • 0 3 • 0 2 • O l 1

/

t-- / /

\

/ / '

' / "

^

/

-r

^ —

-i

\

' \ \

\

\

\

T<

—\T

(

1

1

— 1 —

1

r

1

1

f^"

1

\

^ \

\

s " ^ v

\ \ ,

^

^

!S

X

^ O s

. ^

^

\ .

^

^

" ^

\ ,

^

\ s ^

= ^ ^ ^ 5 ^

^ ^

Cold m a s s flow r a t i o

VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

c =

(25)

:

'C 3 tï = •

^

.19 -18 17 16 •IS 13 '13 II 0 9 0 8 0 7 0 6 OS 0 3 oa O l 0

/"

/

-/ -/

/-/—

'/

/ ^

/

/

y

/

^

6 »

O

^k N ••f \ '

\

1 4 •+-

\

\

—\.

f

1

1

1

1

f i - "

1

\

^

^^

" ~~

\

\

•3

V

\

s A^

N. ^

\

^^

-»-,

• 4

s

V

>

" ^

- ^ ^

5 k

V

^

6

V

^

" ^ ^

1

V

^

e

Ss

V

^

l O 1(1 Miasg riow r a t i i

VAlUATInN ()!•- TKMI r H , \ T ü i ( i : n i i l ' l ' U..\'lIO WITII COLD MA.-i.-; 1''LC)\V I t A T I u KOll \ A I U ( M i S i l!i:.-;.-;U!:K HATI(;S

18 •17 •16 15 13 0 9

^

1

/

• L

i

f

o7 y

0 5 O 3 0 1

/

-yy% j y ^ y^^' 2

" ? ; " "

' T " " " ^

1

1' ^

1

Lj

\

\

\

\

•^

\-1

1

— f —

/

„ - -T

\

"N \

^

-\

\

\ ,

x^

k

^

A

^ • ^ ^ s ^ V

\ ,

^

'

V

^

^

^

Cold m a s a flow r a t i o

FIG 35 VARIATION OF T E M P E R A T U R E DROP RATIO WITH COLD M A I S FLOW RATIO TOR VARIOUS P R E SSURE RATIOS

(26)

• 0 7 •O 6 0 5 O 4 0 3 O 2 •Ol

l

^

-,

- /y

-/

/ /

Y

- ^

5

/

^

x ^

^ ^

\

* 1

1

1

\

\

\

- 2 \ ^ - . s

i

1

^

X

' —

^

^

S

^

V

^

N

y

"

^

.3 4 S Cold m a s s flow r a t i o

FIG. 'i6. VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS •^c = . 583; "^i = . 532

U T5

3 -4 S Cold m a s s flow r a t i o

FIG. 37. VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

(27)

16 15 14 •13 12 .2 •"

ï

o u 0 9 oj 0 8 O 7 0 6 0 5 0 4 , 0 3 0 2 -O l | 6 1

-/ l \

// ^ \\

f/ \ >

/ \

/ 1

/ *

• y ^

1

1

\

\

r--^

1

^ ~ \

ï^^

^ \

^

^

Cold m a s s flow r a t i o

FIG. ï » . VARLIVTION O F T E M P E R A T U R E DROP RATIO WITH COLD MASS FLC^W RATIO FOR VARIOUS PRESSURE RATIOS

IS U • 13 •12 a •ii U CL l O O

t

o'

3 rt •OS

I

•07

01 0 6 OS 0 4 O 3 0 2 •O I

,>^

\A

V ^

{

-j

-\

> \ \

1

1

1

/

\

\

^

^

V

-

^

V

\

V

" ~ - ^

^

^

• ^

^ 5

' ^ ^

^

Cold m a s s flow ratio

VARIATION OF TEMPERATURE DROP RATIO WITH COLD MASS FLOW RATIO FOR VARIOUS PRESSURE RATIOS

(28)

19 18 17 IS 13 II 39 37 0 3 01

f

11

/

il/

-L

\

A

1

i

1

1

1

\

r ^

^ ~ "

. = 1.5

\

^

^

V

X

Sv

^

s

— —

^

Ss

^ ^

^

Cold m a s s flow r a t i o VARIATION O P T E M P E R A T U R E D R O P R A T I O WITH C O L D MASS F L O W R A T I O F O R VARIOUS P R E S S U R E R A T I O S . E 0 7

^

^

[

1 /

/ /

i/-¥

i--^"'**

^

[-ra

A

r ^

K

\

1

1

;

\'

1

^Ic-IS

k

k

s

V

p^ k.

^

^

N ^

TN

Cold m a s s flow r a t i o

FIG. 4 1 . VARIATION O F T E M P E R A T U R E D R O P R A T I O WITH C O L D MASS F L O W R A T I O F O R VARIOUS P R E S S U R E R A T I O S ' ' c - . 5 6 0 , ""i . . 5 a 5

(29)

0-22 O 21 O 2 0 O'l» o i e O I 7 OI& O^I5 O^I4 O^I3 O I 2

o n

O^IO 0 0 9 0 0 8 0 0 7 0 0 6 0 O 5 0 0 4 O 0 3 0 0 2

w

W

>

•J

>

s

o

<

s

o

H 1 DS 1 ö

w

X

<

s

u

<

BS

w

o,

w

H

/

/

1

/

/

y

y

^

' /

f

/

/

y^

^

y

<

. ^

^

1 • ^ ^ • ^

^

- +

'

1

s

V

pN

^ .

• ^ ULilJ U U l L i J ! . ! U l A M t ï P l i K

\

k^

\

\

\

VORTEX TUBE DIAMETER

k

A

l\

\

s

\

\

*-^»«

"~^

\

0^

\N

\

\l

V . ,

s

" ^

^

k

N

\

\

\

^

^

FIG. 42 VARIATION O F MAXIMUM T E M P E R A T U R E DROP RATIO WITH COLD O U T L E T DIAMETER RATIO FOR VARIOUS PRESSURE RATIOS. '^i = . 266 0 2 2 0 2 1 0 2 0 0-19

oie

0 1 7 O^I6 ©•IS O^I4 O I 3 O I 2 O^ll 0^10 0 0 9

ooe

0^07 0 0 6 COS 0 0 4 O^03 0 0 2 O O I

L W

r >

•J

<

r

^\

s

L P

r f^

o

\

fr'

<;

L ^

g

r w

r

t-<

t-l X

u

E-i

<

PS

w

dl Iri M '

/

/ ^

V /

1

/

' /

/

/

/

/

/

/

' /

r

/

/

/

y

y

y

/

/

/

/

^

z '

^

^

^

/

/

y^

\

^

^^

1

I

\

^

1

1;

11

k.

1

1

1

1

^ ^

[\

'N

"^

• ^

-- -- .

\ ^

\

N

^

^ v

COLD O U T L E T DTAMFTFR

'

VORTEX T U B E DIAMETER 1

s

\ \

v ^

\

s

\

s

N

\

%

\ \

\

s

\

\

^

>\

N^l

\

\

\

\

^

FIG. 43. VARIATION OF MAXIMUM TEMPERATURE DROP RATIO WITH COLD O U T L E T DIAMETER RATIO FOR VARIOUS PRESSURE RATIOS.

(30)

o

33 S > " C/"J ^ ^ i- . .a?^.

goo

^3

' § l

ö S

PS

w H H M M g W f O G

r-a r-a

i^

is

o o

o i

<,

- o

X - H

a

1—1

- >

H - H H R! 1 O

c

r

o

G

r

a

pi

y

/

1 1 1 1 1 1 1 1 1 r — — 1 1 — i

MAXIMUM T E M P E R A T U R E DROP AT O P T I M U M VALVE bL TTING

\

\

\

1

/

/

f

A

\

/

\

\

/

/

\

\

7

/

/

./

i w i

\

^ ""

y

V

\

""•

-V

/

\

\

- —

/

y

"x

\

X

\

1

— —

y

/

^

' > *

• v V

N

V

\

r

1

y

^

^

\

\

- ^

/

^

^

^

V

N

\

^

.A

/

^

N

X

X

\

7

/

y.

: ^

.._^.

^

\

\

^ "

y

^

N

\

7

U

'y

s.

\

S7

N

/

^

\ ,

\

y

/

ai

o

^0.>tl £ <

II

" S w

O r

Wx

H Ü

O?

^ 2

S ^

Hg

c c

O O 1% o o

rol

hM X Cd

a

1 M TH

w

O

o

g

r

ö

g

MAXIMUM T E M P E R A T U R E D R O P A T O P T I M U M 1 1 1 —1 1 1 1 1—

\

k,

\

>

._

i

/

\

\

\

L

^~

/

/

V

N

/

\^

\

/

/

i r

^

\

\

/

f

LE-l

s

V

y T l

^

N

>

y

J M P i

^

^

^ V

\

y

I;KAI

^

\

\ >

J

/

^

U K t

s.

S

• _

X

y^

^^

N,

1 . »

-V

x

^

: ^

• i - - - r - 1 VALVE S E T T I N G

' \

\

i

7

/

^

V . _ •

y^'

y

\

\

• 3

/

/

\

- )

/

(31)

.c5

, „ ? "O ^ < • c o . ^ UI ^, ö ^ « H ? H C

aS

^ g

Hg

» t

gS

o a o " W O o

2 o o

O — w O o o u o

^

o UI o p

-<

0 H X " - i C ca w o > H M -W O

r

c H

r

n

^

m

M A X I M U M TEMPERA'! URE DROP A'T OPTIMUM

_

\ ,

s

\ ,

N

/

\

\

\ \

7

/

\

\

/

/

k

/

/

^ \

N

/

• V , •v

^

/

c::^

\

\]

J

A

^

s^

N

/

/ ,

vT

-V

/

/ /

/

1 1 1 1 VALVE SETTING

^

\

- )

A

Y

\

f

/

Temperature drop ratio

S

3

m 01l< H H W B M C g w >

5go

o 1^ H

>g§

öga

2ow

^oS

N o a

wp

' H M

w

o

o

2

S

g

S

S

2

°

g

5 = = " i

^

^ \

t^

^

^

^

\

^ in i

^

^

• N

^ :Ö 0

V

^

V

\ ^

\

•o Ui

' ]

\

\

kN

— _ ni ) - N

\

(32)

•»1

C c

C S

H n

^>

< H

Si

zw

O H

oo

<

H _ X

-!

— C 3

n

_>

_ H 3

r

H

r

-i o 2 K S I— 1 • • 1 T VIAXIMUM 1 K M I M 1 1 — ;KATURI

\

\

)

\

\

\

1

\

*

1

L

/

/

k

\

N

^ ^

^

\

\

1

-^

y

\

\

-4

j

/

: nuoi' AT OPTIMUM dc AND VALVI

^

-\

, -^

l J

\

\

-N

k

\

\

y

i

f

\

\

\

\

rr

1

\

\

• - "

/

/

\

^

\

N

/

/

>

/y

: S E T T I ^

\

\

y

\

\

f

/

/

/

/

i^

^

\

\

\

\

-- —*

>

/

/

t ^

\

\

\

\

\

-r

/

/

V

\

\

\

^ \

•"

1

/

/

G

V

\

^

\

\

1

1

/

t>l t>

o n h-. 1 ^ £2 2 < - D I -O

o^<

^ 3 3 > -3 M M H J D- S cfl t ! to Ol

ft

"

U I cc ro UI co C C ^ H

S^S

|5^

0 - - • ^ a>Scs

i g w

^.P§

M o 1 3 H H

« 3

o 0 o 0

o ° 2 2 ï

h

h a

h

H

r w

w

r

w

•0 O O O ° ° O o O o C O o Ó 0 O ^ - - - ï < i i 9 ^ a « 0 ~ i u u > *

9 9

5 5

c

J V I A X I M U M T E M P E R A T U R E D R O P A T O P T I M U M d c , d i .

^ ^ ^

1

^ ^

WLE

r ' v

1 -1 • t M i

«^,

V

' E K ^

X

i T U «

X

£

N ,

0 c O 0

o ° o

w A N D V A L V E S E T T I N G

\

\

\

s

\

\

>

V

\

\

\

(33)

/U2 VTI '2

C-^)3

FIG. 5". VARIATION OF REFRIGERATION EFFICIENCY WITH PRESSURE RATIO AT OPTIMUM VALVE SETTING AND COLD OUTLET DIAMETER FOR MAXIMUM TEMPERATURE DROP RATIO.

FIG. 51. VARIATION OP TEMPERATURE DROP RATIO AND REFRIGERATION RATIO WITH PRESSURE RATIO AT MAXIMUM TEMPERATURE DROP AND OPTIMUM CONDITIONS.

(34)

- l o ,

[!-m

(.\Vi.ll LA'V ' • A K I A T I d X D ! ' T i : M M - : h ' A ' l ' ü ^ < K D I l O P ; A I K . A M I ; ! : i ' i ; i a i : n A T l ( ; s ,;A-|I'> W I T i i-'iKS.suHK l A T I O A'|- \ | . \ . \ I M L ' M T l : . M I ' K l ; . \ T l i i { i ' : I1R(;1', 5 2 4 8 4 6 4 4 4 0 3 6 3 2 2S 2 4 2 0 •18 (6 14 •12 lO •08 06 0 4

A

\

-— - ^

^ ^ _

""—

~-^ ( ~-^ ) 3

C-^)

S E N

~^= ifrX

(m

SEN PL pc

V A R I A T I O N O F TEMI ERATURE DROP EFFICIENCY AND REFRIGERATION EFFICIENCY WITH PRESSURE RATIO AT MAXIMUM TEMPERATURE DROP.

(35)

y

P' 1

1

'y

'f^

^

^

^

y^

> ^ :

Z^'

°

1

/

/

2 pi

/}

^

•3

> r ^

^

^

; —

b^

V ^ 2

^

J^

^

#

.'IC. .4. VARIATION O F COLD MASS FLOW RATIO WITH COLD OUTLET DIAMETER RATIO AT OPTIMUM VALVE SETTING ''i • , 2G5

1 )

VARIATION O F COLD MASS FLOW RATIO WITH COLD OUTLET DIAMETER RATIO AT OPTIMUM VALVE SETTING "i = . 3 7 6 /^l

/

/ ^

pi

^

' " ^

^

'.^

\y^

"v.,

/k

#

/

^ >

Y

'

VARIATION O F COLD MASS FLOW RATIO WITH COLD OUTLET DIAMETER RATIO AT OPTIMUM VALVE SETTI.NG

VARIATION OF COLD MASS FLOW RATIO WITii COLD OUTLET DIAMETER RATIO AT OPTI.MUM VALVK .SKTI INC.

(36)

M'

é

^

^

.

— ~ ^ 2

V

y^

.6 1 ^ J pi pt

^

\ "

< S

X

o

^

> ^

^

S T - ^

"^*v7^

^T^s

T H

^ .

i

^

/«J

bj

= ^

VARIATION OF COLD MASS FLOW RATIO WITH COLD

OUTLET DIAMETER RATIO AT OPTIMUM VALVE SETTING DIAMETER RATIO AT OPTIMUM VALVE SETTING AND VARIATION OF COLD MASS FLOW RATIO WITH INLET OPTIMUM COLD OUTLET DIAMETER.

/Ui •376 461 •532 •595 Mi

FIG 60 VARIATION OF COLD MASS FLOW RATIO WITH PRESSURE RATIO AT OPTIMUM VALVE SETTING AND OPTIMUM COLD OUTLET DIAMETER

FIG. 61. VARIATION OF COLD MASS PLOW RATIO WITH PRESSURE RATIO FOR OPTIMUM VALVE SETTING, OPTIMUM COLD OUTLET DIAMETER RATIO AND OPTIMUM INLET DLAMETER.

(37)

o o W UI UI &

l

11

os

W O

wz

Z H

si

«o

g8

g r

W D

r

M H

[—

<

.o

SI

1 M H - G iJ M O

>

M _ W 3

-|-—

Z

r

H

o

>

M

1

(

D P T I M U M C O L D O U T L E T n i A M f : T E T , ^ _ _ , „ , , m T T r l f - T-l T A n/T t-HT^ f 15 1

!

. i ._

1 -1 1

i

^

j - ^ ^ * j

\ ,

^

\ ,

\

^

^

^

^%-'

-•-^

\

\

\

^

w

^

: : ^

S

s,

N

\ ,

\

^

^

^

\

\

\

\

\

\

\

V

v \

\

V

4

y^

y \

V

\

\ ^

v

k^

\

\ \

>v

x\V

\ j

J

YA

>

o

VA

' \

)

\

\

'i

ƒ

1/

• o o ^

of

N

H

»

H 1

w • M

3

-3

S

1 1 1 1 1 1 1 1 O P T I M U M C O L D O U T L E T D I A M E T E

<r^^ ™,-i-i-ïi- rT^T<rT-.T-i T-.T t i. T-ifm-ir^

1

1

i

/

/

(

/

/

/

/

V

N

/

/

K

\

\

\

1

'

^

\

\

/

/

/

/

/

i

N

/

/

(

A

/

/

^.

^

> ^

f ^

1

/

1

i

j

p<

\

\

/

/

1

/

i'7

/

/

^

H

\

1

/(

//

1

(38)

•^o O

-—

0 LD f M

'^

W (jz 1 kw 1

fc

Lw

z

r

w

•H •ü C • -r

y

IPTT

N

j

/

f

V I T T M

y

\

\

1

/

/

f

nrt 1 • 1 1 r- 1 1 oi-'i'!.\iu.\i I N L I : T I J I A M K T E R ^VOUTIIX T _J

/

/

T n

/

/

7

/

'

n r p T UBK

/

D I A M E I

/

VORTEX TUBE DIAMETER

1 1 1 1 1 1 1

y

VAK

y

.^

^

-..

[ o o o • ^

6

G

Cytaty

Powiązane dokumenty

The pressure distribution and the location of the points of maximum pressure, usu- ally below the ischial tuberosities, was measured for subjects sitting on a flat, hard and

Such an approach enables us to study not only the DMR between important sub-regions of the South American continent (e.g., the Amazon and the La Plata basin), but also the

As can be observed from the numerical results, the GLRT based on the Rician distribution performs signif- icantly better than the GLMT (i.e., the GLRT for complex data, random

Rozwój osobowości chłopca jest poniekąd determinowany przez dojrzewanie w przestrzeniach silnie tabuizo- wanej pamięci rodzinnej, pamięci o wydarzeniach uchylających się

La redefinición del doble especular, del cuerpo asomado al espejo desde una mirada crítica, es más fácil de llevar a cabo en aquellos poemas –la mayoría de los aquí

Ostatnie lata przyniosły bardzo rozbudowaną dyskusję nad definicją konku- rencyjności regionów oraz nad czynnikami wpływającymi na poprawę pozycji konkurencyjnej. O po-

roku życia i studenci powinni być zwolnieni z dopłat 49,0 51,0 7 Czy osoby niepełnosprawne ruchowo powinny być zwolnione z dopłat 80,3 19,7 8 Czy osoby z chorobą przewlekłą

[r]