• Nie Znaleziono Wyników

Cavitation tests on Hydrofoil of Simple Form Report 4: Difference in performance between experiments with water temperatures of 8 and 20 degrees C

N/A
N/A
Protected

Academic year: 2021

Share "Cavitation tests on Hydrofoil of Simple Form Report 4: Difference in performance between experiments with water temperatures of 8 and 20 degrees C"

Copied!
21
0
0

Pełen tekst

(1)

Lrtt'j ci T3chIoy

vrS Lbratorj

LIrr

Mekelweg 2- 228 CD DeIft

The Netherlands

Cavitation Tests on Hydrofoils of

Simp°ÎM

Fx3l 15781336

(Difference in Performance between Experiments with

\'ater Temperatures of 8 and 20 deg. C)

F. NUMACHI 2,

K. TSUNODA7 and I. CHIDA4

Synopsis

Cavitation tests on simple formed hydrofoil profiles have been carried out at

the water temperature 7-.9 deg. C, and the performance obtained are compared

with those at the temperature 20 deg. C which were stated in Report i

(ijj.

1.

Introduction

The effect of differences in water temperature on cavitation performance has

already been treated in the Report 2 [2) of the present series, but a further study

on larger differences in temperature has been carried out,

which forms the subject

of the present report.

2.

Experimental Method and Test Specimens

The experimental method has already been fully reported [3), and will not

be repeated here.

The specimens tested were 07, 0, 0', 0

and 0 the outline

forms of which are shown in Fig. 1. The procedure for drawing these outlines

and pertinent dimensions are given in Tables i and 2.

The test specimens were

produced with chord and width both of 70 mm.

The temperatures explored this time were 7

9 deg. C (averaging 8 deg.).

Natural seasonal fluctuations of indoor water temperature in Sendai City ranges

from 5 deg. C in winter to about 20 deg. C in summer. The present

experiments

were carried out at natural room temperature at a period

immediately preceding

the height of winter. The degree of dissolved air content a/ag was therefore near

unity (precise values noted in Fig. 2 and etc.).

Rep. No. 84 (in Europiañ language) of the Institute of High Speed Mechanics, Töhoku

University. Read at the 26th General Meeting of the Japan Society of Mechanical

Engineers held on April 5, 1949.

Professor of the Faculty of Engineering, concurrently the Director of the Institute

of High Speed Mechanics.

Technical Official of the Institute.

Assistant of the Institute.

(2)

50

Rep. Inst. High Sp. Mech., Japan,

Vol. 9 (1958), No. 84

01

f)!

UI

U7

/75

U7

Fig. 1.

Outlines of Profiles

Table 1.

Dimensional Proportions for Drawing Profiles with Annexed

Key Diagramme

Trailing Edge

Profiles

L

t

n ¿ R1 R0 R3 R4 R5 w1 w2 ¿ 1 t1 t. t.3

100 7.00 50. 00 189.53 R1 =

0.145 0.145

0.2\ 0.29

70 4.90 35.00 132.67 R1 =

0.1 0.1 0.2

N

loo 7.00 50.00 245.63 189.53 199.64

1.71 0.145 25.00

0.29"\ 0.29

70 4.90 35.00 171.94 132.67 l39.75,'.

1.2 0.1 17.5 0.2 0.2 Ola

100 7.00 50.00 217.90 189.53 123.50

1.05 0.145 15.00 0.29 0.29

70 4.90 35.00 152.53 132.67

86.45 0.74 0.1 10.5

0.2 \.

0.2

100 7.00 50.00 245.63 217.90 l92.86 123.5O'...

1.71 1.06 24.57

15.00 0.29"\ 0.29

70 4.90 35.00 171.94 152.53 135.00

86.45 1.2 0.74 17.2 10.50 0.2 0.2

100 7.00 50.00 252.50 217.90 103.57

61.57 28.57 1.71 1.06 17.10 10.57 0.29 0.57 0.29

o;

--70 4.90 35.00 176.75 152.53 72.50

43.10 20.O 1.2

0.74 12.00 7.40 0.2 0.4 0.2

(3)

F. NUMACHI, K. TSTJNODA and I. CHIDA:

Cavitation Tests on Hydrofoils / 4

51

Table 2. Dimensional Proportion of Profiles

3.

Results

Performance curves.

The comparison between the results obtained from the present tests at 7

9

deg. C and those from the previois ones at 20-22 deg. C (1) is given in Figs. 2

-5 (for the profile 07) and Figs. 6-9 (for the 0). Various values of cavitation

coefficient k

[1 ; 3) have been examined (13 values between 1.8 and 0.25 for the

07, and 15 values between 1.8 and 0.15 for the O).

The polar diagrammes for the three temperatures 7-9 deg. C, 13-16 deg. C

[2) and 20-22 deg. C [1) are compared in Figs. 10-13 (0), 14-17 (0), and 18

-21 (0).

From the above, it is seen that the shifting of the polar diagramme with

temperature differs somewhat according to the profile form and the cavitation

coefficient.

Tables 3 - 7 give detailed values.

Mode of Cavitation Occurrence.

By the procedure already reported in detail (3), the cavitation coefficient at

cavitation inception and the size of incipient cavitation were measured, and the

results compared wìth previous data.

Though we refrain from reproducing

de-tailed comparative diagrammes, it has been ascertained that the domains of erosion

danger and of violent vibrations (represented on the a-kd diagramme) do not

show appreciable susceptibility to temperature differences of the present order.

Reynolds Number.

It is well known that performance curves differ more or less according to the

Reynolds number.

It is a question whether the Reynolds number R or the

cavi-tation coefficient kr

is the dominant in their effect on peiformance.

Profile 07

Profile

X

0

Profile 0"

X

Profile 0

Profile 0

X Y0 Y Y0 Y

X

Y0 Y

X

Y0 Y, 0 0 0 0 0 21.43

4.83 0.00

7.14

3.23 0.81

7.86 2.67 0.00 11.71 7.14 35.71

6.46 0.00

14.29 4.39' 0.30 15.00

4.19 0.00

24.57

5.69 0.00

17.14

4.86 0.00

50.00

7.00 0.00

25.00

5.71 0.00

32.14 &27 0.00

37.14

6.66 0.00

27.14

5.96 0.00

64.29

6.46 0.00

35.71

6.59 0.00

50.00 7.00 0.00 50.00

7.00 0.00

38.57

6.74 0.00

78.57

4.83 0.00

50.00

7.00 0.00

64.29

6.46 0.00

61.43

6.70 0.00

50.00

7.00 0.00

100.00 64.29

6.46 0.00

78.57 4.83 0.00 72.86

5.30 0.00

62.86

6.61 0.00

78.57

4.83 0.00

92.86 2.09' 0.00

85.00 4.17 0.00

75.71

5.49 0.00

92.86

2.09 0.00

100.00 92.14 89.43 100.00 100.00 100.00

(4)

52

Rep. Inst. High Sp. Mech., Japan,

Vol. 9 (1958), No. 84

û

0,8

49

0,2

8

o

-

Profile 07

tw

8

8°C--I

a/a89

20,O-22,0°CI 50

50

5o/

Ca

)'À.t'

41 L_ «of

í0

J

I

cx30h.uJ JJ 30.

2°á4

'2'

4'

2

t°Fk/8,dfçl/f2

-8o°

û

ICw

Cw Cz,1 Cui Ca

s, RUR!! .

:

-

I

r

:°4R

Profile 07

-'/td=o24

]7'td=48

a/a509

-t

7O98°C

II

80.

R

ooj

W

'_±i

1

R R

tw24û22,û°(

-j°;.

8

482

û« 482

8,8« 61,82 48« 11,86 8,88

Fig. 3.

Ditto with Fig. 2 (Profile 0, k0

=

1.0, 0.9, 0.8)

402

0

402

O 482

0

8,82 o;g«

Fig.

2.

Comparison of Polar Diagrams at 8 deg. and 20 deg. C

Water Temperature (Profile 07, k0=1.8, 1.4, 1.2, 1.1)

a

0,5

a

(5)

F. NUMACHI, K. TSUNODA and I. CHIDA: Cavitation Tests on Hydrofoils /

4

53

+

I

k=

o4

ìa=t

u -'° '°iu

-"-U

¿?02 ¿?0« ¿82 ¿?U ¿?L72

ee«

Fig. 4.

Ditto with Fig. 2 (Profile 07, kd=0.7, 0.6, 0.5)

O

Prof//c Oq

r 60

28,0-22,8 -

- I__

j

°

Y

60 I

Kl

'fa='í«

¡rd=O3 30:

u.

Lil +.

t

uu.

0

UU

402 ¿?83 82 ¿?83 4'835 4'83 Q835

Fig. 5.

Ditto with Fig. 2 (Profile 0, k,=0.4, 0.3, 0.25)

o

0

ITh

(6)

54

Rep. Inst. High Sp. Mech., Japan,

Vol. 9 (1958), No. 84

1,0

o

Ca

88

¡0

a'!

-01 3o

3O4

jO

o

882 ¿7

0

8172 o o

Profile

Oq

-tw

Z8»O°C'---I

t1 ¡9/1-280°C

Fig. 6.

Comparison of Polar Diagrams at 8 deg. and 20 deg. C

Water Temperature (Profile O, k4=1.8, 1.4, 1.2, 1.1)

f

Prof//e 07

kd=88 %ûq

tw0-.0°c---I

190-280°C'-Fig. 7. Ditto with 190-280°C'-Fig. 6 (Profile, O, k= 1.0, 0.9, 0.8)

80'! 805

0

0/120

8820

802

(w

(7)

F. NUMACH!, K. TSUNQDA and I. CHIDA: Cavitation Tests on Hydrofoils / 4

55

2/'J

,fo

-

I

k=

-_0Ï

¡0

a2

--À

--34.,

o

cw O

0020

&t? 0,3 0,2

a'

=«,_

Prof/e

¿2,j

-.

-4+.

«oy

/go2o°c-127

E

o

Nj

_0

-2o

f

io cul

304É0_

J- 0

E'I

¡Cd=

Fig. 8.

Ditto with Fig. 6 (Profile O, k0=

0.7, 0.6, 0.5, 0.4)

Profile O

4-"M3°

a/a=104'

-T

-H-

¡0209°CE

-E

-f

4+20

o

'

2°?

/d02

fid=t?Ì5

-1° '4. -.

cw

-3°

¿w

Fig. 9.

Ditto with Fig. 6 (Profile O, k0=0.3, 0.25, 0.2, 0.15)

002

082

0,8í

(8)

56

Rep. Inst. HghSp. Mech., Japan,

Vol. 9 (1958), No. 84

1,2

0,8

2°.

I

4'82 O 02

û

482 88«

48«

486 486 o

Profile

0,7/a

tu/

¡«8-160°C

1

240 -22,0°C----!!

488

4/8

Fig. 10.

Comparison of Polar Diagrams at 8 deg., 15 deg. and 20 deg. C

La

Water Temperatures (Profile 07

,

kd=1.8, 1.4, 1.2)

u..

.

z

¿v= 3°

± «o

u.

R.

Profi/e

0'a

¡«0-148°c----!

240-22,8°C-21

u..

...

R.

R.

.

u

.

uiuuuuuu

408 0,18

-+

Fig. 11.

Ditto with Fig. 10 (Profile 0°, k4=i.1, 1.0, 0.9)

812 o

kd0

kd=4'

jO°

-1°

_t_/7

0 90 -2

.-3°

-3°

I

(9)

F. NUMACHI, K. TSUNODA and I. CHIDA: Cavitation Tests on Hydrofoils /4

57

a2

o

-ai

Fig. 13.

a2

o

o

082

08f'

aoo

008

082

Fig. 12.

Ditto with Fig. 10 (Profile O°, k=0.8, 0.7, 0.6, 0.5, 0.4)

I

Profile u

2030«0

«-j

jW

-°c---«°

«,

200-220°cI

082

083 082

Ditto with Fig. 10

o

J'

I 8°

/_

=05

Prof/le 07

tw00ûc_--I_

C 30\ W, W

288-220°CI-3°

g_il

=02 ,'

I

L7I\JÇwI

I 0t2? 082

2

Q83 082 083

(Profile O, kl=0.3, 0.25, 0.2, 0.15)

(w

aoz

o

CZ',I 082

p-Cw 082

o

(10)

58

Rep. Inst. High Sp. Mech., Japan,

Vol. 9 (1958), No. 84

o

O 882

0

&02 ¿?0« QOS t?88

0

0,82 04(

Fig. 14.

Comparison of Polar Diagrams at 8 deg., 15 deg. and 20 deg. C

Water Temperatures (Profile O, kd=1.8, 1.4, 1.2)

¿'o

ao

as

¡0.f Imp'

kd=,'l

-2

-2°

lIj;1

X «O

UW.

Il

Profile

07«

lU

t10

8_0a

__

a.

i

aal...

aaa

8/2

t

qo81

I

'_ -'8°

Ca

R1

j

ÇOJ

7oÇ

U5o

ui111iiiIiii

WLUI

1l

,°rofiÏe 0/

12°.

?

2;(

t0 i=18!4=/

kd=2

t,= 0-'0°C ---Z

04

(

/8-f00°t'-- -I

I

Z

Z

W-2/8°CJI

1.ff

'

ii

O

002

8

082

08«

081

088

ato

0

¿02

08«

Fig. 15.

Ditto with Fig. 14 (Profile O, k,=1.1, 1.0, 0.9)

nr 7°

a2

to

a8

as

ato

0/2

¿2°

I

(11)

F. NUMACHI, K. TSUNODA and I. CHIDA: Cavitation Tests on Hydrofoils / 4

59

ff

T1' Z?'

j-2°

-2°

-2°.

1UUI11L.

0

¿702

0

0,82

0

-3°

¿704" ¿706 8,88

û

¿782

0

082

Fig. 16.

Ditto with Fig. 14 (Profile O, k8=0.8, 0.7, 0.6, 0.5, 0.4)

I

Prot,'/cOf

°

O7f

a/at04

-t,'Z0-fJ°C--f

.fO/p

+f.---7-

u0.

--ff.

ltd -03

'I

Id

'dO25

'd82

Le-il

J0J03ff

2°'<". :30C,20'x

Ku

(w

802 801

802 8,81

¿782 881 ¿782

Fig. 17.

Ditto with Fig. 14 (Profile O, k=0.3, 0.25, 0.2, 0.15)

-ff,

O o o

7°_

y

ï

1,7 «O_J 7°

8

2°3/ 501'?470_g0

.:-

;-z

i°ro fi/e 0

/i;'0-/40r----il

r

2170-21,8°CE

(12)

60

Rep. Inst. High Sp. Mech., Japan,

Vol. 9 (1958), No. 84

08

06

02

0

Ca

IOIUUU

-ll

IuUuuR

...

u

Profi/e ol

tw8-80(---I

18-i68°(----ff

1-go

0

002

¿2 082 88« 086 088

0/8

0/2

û

082

08«

Fig. 18.

Comparison of Polar Diagrams at 8 deg., 15 deg. and 20 deg. C

Water Temperatures (Profile O, k=1.8, 1.4, 1.2)

082

0

Q82 08'!

088

a/O

0/2

0

082 004'

Fig. 19.

Ditto with Fig. 18 (Profile O, k=i.i, 1.0, 0.9)

¿0

08

0ff

a

02

(13)

F. NUMACHI, K. TSUNODA and I. CHIDA: Cavitation 'rests on Hydrofoils / 4

61

88

85

84'

82

83

82

a'

-ai

Prof//e

01

tu80°CZ

f fl/I

/4'8-168°c----li -

o-YO

9OO;O7O

Profile

0f

=

t= Z8-8°C---T

z

/1'8-,í8°C---ff

E_L

/O -2z'8

30

)f=82

7L

JJ-L-

dr81

/

-i°

-3° -o [

-2°w

881 61,82 881 882

883

6101 882

883 881

6182

Fig. 21.

Ditto with Fig. 18 (Profile O, k,1-0.3, 0.25, 0.2, 0.15)

4'82 6184' 6185

-82

°

'

(L,''\3[

O

882

8

882

8

0

812

8

882

(14)

Table 3. Variation with Cavitation Coefficient k of Lift and Drag Ccefficients

Ga

and G (Profile O)

Waler temperature L 79 deg. C,

Degree of air content a/ai

= Incidence angle

1.02, 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8 2.0 2.5

_30

Ca°

C,=

-0.080

0.0325

-0.090

0.0335

-0.095

0.0300 0.015 0.0258 0.048 0.0250 0.065 0.0250 0.071 0.0250 0.075 0.0245 0.082 0.0245 0.082 0.0245 0.082 0,0245 0.082 0.0245 0.082 0.0245 0.082 0.0245 0.082 0.0245 0.082 0.0245 2°

--0.068

-0.043

0.143 0.165 0.178 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.0184 0.187 0.0187 0.187 0.0187 0.187 0.0187 0.187 0.0187 (J) 0.0273 0.0267 0.0185 0.0183 0.0185 0.0185 0.0185 0.0184 0.0184 0.0184 0.0184 _10 1)010 0.0250 0.110 0.0242 0.285 0.0i60 0.287 0.0147 0.287 0.0147 0.289 0.0147 0.289 0.0147 0.289 0.0147 0.289 0.0147 0.289 0.0147 0.289 0.0147 0.289 0.0147 0.289 0.0146 0.289 0.0146 0.289 0.0146 0.289 0.0146 Ç) P-00 0.082 0.0243 0.197 0.0240 0.367 0.0170 0.378 0.0140 0.378 0.0135 0.388 0.0135 0.388 0.0135 0.388 0.0132 0.388 0.0132 0.388 0.0132 0.388 0.0132 0.388 0.0135 0.388 0.0135 0.388 0.0135 0.388 0.0135 0.388 0.0135 (J 'z, 0.086 0.200 0.395 0.477 0.477 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484 (J z, 10 0.0240 0.0253 0.0226 0.0165 0.0145 0.0145 0.0145 0.0140 0.0140 0.0143 0.0143 0.0147 0.0147 0.0147 0.0147 0.0147 2° 0.132 0.0248 0.223 0.0265 0.402 0.0268 0.508 0.0205 0.567 0.0175 0.592 0.0175 0.553 0.0175 0.553 0.0170 0.553 0.0170 0.553 0.0174 0.553 0.0174 0.553 0.0175 0.553 0.0175 0.553 0.0175 0.553 0.0175 0.553 0.0175

o

0.182 0.257 0.405 0.528 0.638 0.730 0.628 0.618 0.615 0.607 0.605 0.605 0.605 0.605 0.605 0.605 30 0.0260 0.0282 0.0313 0.0268 0.0229 0.0220 0.0220 0.0218 0.0218 0.0218 0.0218 0.0219 0.0219 0.0219 0.0219 0.0219 Ql

i 'na

11 9

n ais

û

.4i

0.647 0746 0.714 0.725 0.726 0.718 0.713 0.699 0.695 0.692 0.687 0.687 40 0.0278 0.0308 0.0363 0.0355 0.0332 o.o318 0.0318 0.0298 0.0280 0.0272 0.0272 0.0275 0.0280 0.0280 0.0280 0.0280

z

9Â û i19

ûd5

ûss6

0.646 0.732 0.800 0.852 0.885 0.866 0.840 0.810 0,800 0.790 0.782 0.778

p

5° 0.0302 0.0338 0.0417 0.0463 0.0500 0.0525 0.0530 0.0478 0.0350 0.0321 0.0330 0.0341 0.0360 0.0355 0.0355 0.0355 60 0.273 0.0330 0.335 0.0375 0.460 0.0474 0.570 0.0603 0.646 0.0720 0.720 0.0770 0.890 0.0780 0.995 0.0705 1.075 0.0440 1.048 0.0375 0.970 0.0395 0.928 0.0420 0.915 0.0450 0.898 0.0440 0.878 0.0440 0.865 0.0440

(15)

co

61'TOO 61'IOO Ol'lOO 2I'IO'O Of'IOO 11'IOO lf'lOO 0i'lOO 11'l0O

T1'IOO

lT'IOO 62100 L1'lOO ¿0100 01100 60100 gSloo 8p10o

uppu =

'O

v/, 1UUOD IU3 JO

'J

6

L = "1

ifloiC1U1i J11M

(O IU0.1d) O

pue "j S1UiDUJ0J

'U P'-'

iJrJ JO I'/ 1U!JJO3 uo!1eÌAeJ 41!M uoe!.ulA

j

jqej

swo swo cro si'ro gwo

gpro zwo zwo

gi'vo

cwo cwo

ocro ¿co loro

oczo

6LVO 1'6oO

cioo

81100 01100 01100 01100 91100 ctjoo 81100 81100 81100 81100 81100 81100 81100 99100 16100 00100 18100 lctoo

2920

2920 2990 9990

T92O 1920 1920

6920

scso

scso

scso

0990

1990

1'99O

9910

9910 9L00

LOOO-¿0100 00100 00100 66000 00100 10100

8610

¿610 9610

i'61O 1610

0610

10100

6810

00100 L81O

00100 00100 01100 01100 10100

9810

98go

cso

1'SlO 'vSlO 11100 9810

29100 06100 csioo

2010 0010 0100 99100

9L00-

01-21100 81100 81100 F1100 911OE0 91100 91100 81100 81100 ¿1100 L110O 91100 91100 igloo ccioo 01100 01Z00

L6FO ¿610 L61O L61O ¿610

¿610

¿610

¿610

¿610

L6FO L6FO L61O L61O 9610

cvo 0900

0900-

0g-89100 O1'IOO OtTO0 csioo ccioo csioo

¿600

¿600

¿600

¿600

¿600

¿600

12100 L600 61100

¿600

61100 61100 61100 ¿1100 9ZIWO

L600

¿600

9600

0600

csoo

21100 0L00 01100

cgoo ggloO

1900 9L00

1900-= V3

os-S

01

WI

91

VI

I VI

01

60

WO L0

90

SO VO C0

930

g.o SVO

oø0O oocoo oocoo L61'OO 00900 86900

9980 OLWO 0680

¿160 8960

CZ60 9L0J

9660

OLS0 9PLO

0990

9690

8090

goo

8L10

oggo

901,00 901'OO 901'0O lOtOO O01'OO 621'OO 00900 0L90O 11900 C690O 09900 L0900 1'C90O 6t1'OO 99900 01900

9LL0

¿StO 0080 LISO 6980 0S0

9160

¿060

0980 68L0 SOLO

1190

L19O

coro

oszo

oggo

11900 11900 11200 81200 11900 ¿1200 91200 91200 go2oo 99200 It't'OO 991'OO 9cl'oo 9L20O 91200 TSgoo

969'O lOLO OlLO

LILO 81LO

91'LO 1'9LO

26tO

lOSO LOWO FCLO

2190

ozco

coro

OLlO

9110

01'

LV1OO L1'lO,O LP1OO lPZ0O ¿2100 cgZoø 01100 21100 00100 CllO'O OocOO I9COO ggcoo 91200 OLZOO oczoo 01100 19100

1190 9190 1190 1190 1190

8190

2290

¿990

OlLO lOLO L690

1090

2t90

coi'o

OLlO 011O 1910 02 0T10

06100 06100 9810'O ¿8100 08100 OLTO0 9L100 OLIO0 0L100 SLTO0 tozoo ozgoo ozgoo 69100 09100 91100 0610O 19100

Lg90

6190 ico cco osco

osco

osco

osco

csco

999'O

gvco

osco

ooco

coVo 1910 9610

8110

0g

ccoo

(16)

JUT1

UpJU =

se/p UUOD Jit' JO

'3 P 6L

J

jn

ix1tua ''PM

(Ø jIJ0.I) ') puL'

'3 SUUJJO3

pui

jrj jo

1UiDUJO3 U0tWI1AL'3 qIIM UOi1t.11\

01800 90800 91'81Y0 09600 01110

11'lIO 92110 36010 98600 69800 Z8900

01900

¿3100

86100 4101

8901

1601 0901 6231 9831 LIFT l'OOl

t16O

0180

lIL0

19O

0990 O1i'O

0390

8930

0010

119O0 81-60

0F900 09900 90L00 0180.0 996110 28800

8L60 0001 01-01 6601 21-11 3801

860V0 69010

6001

4160

90010 41600 01'80O 1CL00 369110

O3WO OIVO 0190 LISO 901-O 19f0O

1020

982110 81-lO 9L300

0030

0L c13

681-00 1-61-00 00400 60900 01-400 98900 03900 81800 998110 L380O CSLO0 16900 ¿0900 L0900

06200

62200

99Z00

o

z

6980

0680

1-060

0260

8960 8001 0101

6860

6060

0180

LOLO 01110 8040 001-0

8830

8C10 OOlO

2L90O 0820,0 08200 0820'O 9L20'O 06200 89900 69900 93900 01900 1-6900 Z640'O 961'OO ¿ll'O'O

32200

¿6100 300

98VO 008'O 608'O

8180

098'O 9L8O 9160

9160

1-L80 96V0 OTL'O

¿090

1090

¿620

0810

0430

08VO Lt C.' 1

18100 8830'O 88100 88100 ¿8300 LLZOO 1-Ll00 ¿3200 09900 09200 21'1-O'O

031-00 16200 2920'O

06100 19100 91100 a.' 90V0 OIVO CIVO 81V0 01-VO 21-VO 99V0 08VO 98VO 19V0 63V0 1190 0040 9620 8L1'O 1-130 OLIO

o

03300 1-1300

l'llO'O

1-3300 23300 91100 11300 1010.0 ¿8100 ¿8100 90900 867.00 00900 2610'O

09100 13100 90100 OC

9190

¿190

0190 6190 0990 0990

0290

8290

8490

FL9'O SILO 2090 0040

9620

SL1'O

0010

1-1-l'o

9L10'O 9L100 8L10'O 8L10'O 8L10'O 1LTO'O 69100 99100 LS10'O ¿9100 t610'O 16100 OZl0'O 21-Z0'O

01-300

LIbO

06100 p. 619'O

0290

8340

6190

¿190

¿190

8190

9140

O1-9'O 1-990 699'O 11-40 181-O 889'O 4910 98VO

6010

0g 31-100 01-100 11-100

1P10'O 01-100 0F1O'O 69100 69100 12100 12100 6Z10'O 61100 61-100 9010'0

91100

41300

98100

01

u

91-t'O SWO 01-1-0 691-0 68VO 6Cl-O 691-0 8Cl-O 821-O 881"O 621-0 01-1-0 91-1-0

0820

0930

9910

8900

01100 T-1100 41100 91100 11100 01100 011O'O 80100 60100 60100 OTIO'O 01100 1-110'O 04100

¿0300 801110

98100

1620 1620 0690 0620 068'O

¿890

9880

2890

6LC'O 6LC0 8LC'Q ¿1.20 SLC'O 9LC0 0330

9110

930'O (I)

¿11O'O 4110.0 C110'O 11100 01100 601110 60100 9010'O ¿0100 ¿0100 01100 01100 CTIO'O 41100

¿8100

91100

O0lO'O -p bfj

9610

4610

9610 961'O 9610 461'O 1-630 961'O

¿610

L61'O

8610

861'O

0090

0090 0910 1-00'O 190'O

3l-1OO 9910'O 99100 38100 02100 81100 81100 81100 91100 91100 Cl10'O 931110 0310'O L1100

¿610'0 CT-lO'O

31300

9610

9610 1-610 6610 0010 8610

8610

0010

0010

0030 0010 6610 6610 1610 0900 Sl-O'O

1110

I-OLIOO

2600

64100 S410'O C410'O O9T0'O O910'0 09100

0010 860'O 0010 4010 1010 101'O 09100 S1-1O'O

0010

0010

91-100 IT'IO'O 11-100 94100 SLIO'O 0010 660'O 4600 8L0'O 91-00 991(10

0800

-68100

6L0'O -32300

9400

=°1

=

113

03

81

9'I

Y1

l'i

VI

01

60

80

¿'O 9'O 9'O 1-O O 91'O l'O

(17)

OOLO0 ogLoO 90L00 0180O 060'0

60U0 ZTOVO 81600 L800 08L00 OLLOO

800 6000 0O00

1160

¿160

860

lOOT 1601

0601

8860

1060

66V0

0110

090 00 091'O 80 01l'0

8L10 OZt0

600 600 86OO 81900 11L00 00800

1600 1'600

t'600

6800 0l'800

9L00 08900 0900 0It'00 I900 89100

8f'80

Z8'0

¿980

L680

L60

L60 8S60

8880

1080

lILO

1C90

090

09V0 OlEO 8110 ZLI0 OlIO

09100 091'OO 091'OO OLt'OQ 00000 01000 11'lOO 01900 09L00 EOLOO OZLO0 81'90O 08000 01000 8LEOO EZCO0 81'lOO

OLLO OLLO 8LLO 96L0 OERO

0980

0060

C9WO 1080 11L0 I'E90

0000

091'O 80EO 011O OLIO 81F0

l'IEOO flEO0 I'OEO'O 8F100 81'COO 01'EOO 0ECO0 09100 00000 01000 01000 11000 8L1'OO 8I10O 01100 08100 01100

1690

t690

1'690 lOLO OlLO 10L0

1180

l'180

8LL'O OlLO E1'90

0090

09170 8910 1110 ZLIO

0910

ZLZO0 ZL1O0 ZLZO0 89100 89100 09100 90100 9OZ0O OL1OO OLZO0 00900 06100 OLEO0 017100 06100 00100 91100

9190

9190

9190

¿190

1190 Cl'90

i'990

0690

9L90 8L90

¿990

9990 01170 0910

8110

1810

8110

80100 80100 80100 90100 90100 90300 90300 OOZO0 00300 08100 96100 017100 L9300 89100 Igloo 01100 00100 19100

0190 0190 0990

0100

0190

11790 81790

3900

8990

1090

1190

9990

9ll'O

0910 01710

0810

OltO OLO0

39100 39100 19100 19100 Z910O 19100 19100 19100 19100 09100 99100 19100 06100 30300 13300 31300 06100 00100

IWO IWO IWO

917170 Ii'FO

OWO IWO

00170 09170 8L1'O 98170 09170 017170 0910

6110

0910

3010

0100

81100 811110 83100 81100 83100 83100 81100 83100 83100 83100 83100 93100 01100 09100 i'6100 96100 08100 917100

0910

0990

0990

0910

9910 1110 9110

1990

9110

1110

1910

1110

1090

1110

¿030

3110 8900 0

60100 60100 60100 60100 60100 80100 80100 80100 80100 80100 80100 80100 011110 911110 09100 ELTOO OLIO0 317100

OLlO OLlO OLlO OLIO

0910

0910 0930

8110

8110

8130

8930

8130

8130 9030 1130 08VO 0

3300-6010O 60100 60100 60100 60100 80100 80100 80100 80100 90100 80100 80100 LOIO0 ¿1100 33100 91100 08100 19100

8910

9910

8910

8910

0910

0910

0910 3110 311,0

3110

3010 3110 3910 0110 1310 9000

11700-

9900-83100 9900-83100 9900-83100 9900-83100 9900-83100 13100 13100 13100 13100 13100 03100 03100 LIbO 91100 13100 16100 90300

1900

9900

1900

1900 1900

1900

9900 0900

0900

0900

0900 0100

9100

OT'OO

17000- OLO'O- 1100-

0100-19100 99100 09100 09100 09100 01100 99100 10100 09100 00100 ¿17100 00100 09100 ¿0100 017300 19300 83300

8100- 8100- 8100- 8100- 8100- 8300- 8100- 89110- 8100- 8900- 0100- 9900- 9L00- 0910- 1600- OLO'O- 17900-

1900-13

WZ

81

91

l'I

31

l'I

01

60

80

¿'0 9'O

00

170 l'O

930

Z0

910

tIt

DUIJIDU =

'7,01 ='V/V 1UjUOD J!L' J0

'D

6-L°' in.idiui

ft'M

Ço

j1JO.Id)

'3 pU

»3 SUID9JO3 I0.1Q pUi

JJ JO »2/ 1Utz)JO3 U0ITjL'1iA3 qIIM UO1

LL/

'9

Iq,L

09 03 01 o L

(18)

Table 7.

Variation with Cavitation Coefficient kd of Lift and Drag Coefficients Ga and C0 (Profile O)

Water temperature t

7

9 deg. C,

Degree of air content a/ai

= Incidence angle

1.02,

a

0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8 2.0 2.5

_30

Ca

-0.063 -0.075 -0.095 -0.170 -0.068 -0.057 -0.049 -0.038 -0,030 -0.026 -0.024 -0.024 -0.024 -0.026 -0.030 -0.035 -0.035

Cw =

0.0234 0.0265 0.026]

0.0241

0.0185 0.0173 0.0161 0.0158 0.0158 0.0159 0.0159 0.0159 0.0160 0.0162 00165 0.0165 0.0168

-2°

-0.055

0.0175

-0.056

0.0206

-0.060

0.0203

-0.049

0.0151 0.040 0.0126 0.050 0.0123 0.065 0.0125 0.066 0.0126 0.065 0.0126 0.067 0.0128 0.067 0.0130 0.067 0.0130 0.067 0.0130 0.067 0.0131 0.067 0.0132 0.065 0.0137 0.065 0.0137 0.065 0.0139

-1°

-0.038

0.0160

-0.045

0.0185 0.029 0.0173 0.130 0.0135 0.160 0.0114 0.172 0.0116 0.173 0.0115 0.169 0.0117 0.170 0.0117 0.170 0.0117 0.170 0.0118 0.170 0.0120 0.170 0.0120 0.170 0.0121 0.170 0.0121 0.170 0.0124 0.170 0.0124 0.170 0.0127 0°

-0.030

0.028 0.100 0.183 0.278 0.285 0.282 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273

0.0149 0.0173 0.0180 0.0161 0.0120 0.0119 0.0119 0.0120 0.0120 0.0120 0.0120 0.0121

0.0121 0.0121 0.0121 0.0121 0.0124 0.0129 1°

-0.002

0.055 0.123 0.200 0.340 0.396 0.382 0.376 0.376 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370

0.0143 0.0183 0.0203 0.0209 0.0161 0.0149 0.0140 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0151

0.0151 2° 0.026 0.086 0.142 0.210 0.345 0.447 0.490 0.499 0.499 0.490 0.468 0.468 0.468 0.468 0.465 0.465 0.465 0.465

0.0145 0.0190 0.0216 0.0235 0.0210 0.0202 0.0199 0.0197 0.0177 0.0177 0.0185 0.0185 0.0186 0.0185 0.0185 0.0185 0.0186 0.0183

0.057 0.105 0.158 0.215 0.326 0.428 0.541 0.632 0.645 0.599 0.579 0.572 0.570 0.562 0.555 0.555 0.555 0.555 30

0.0156 0.0198 0.0228 0.0248 0.0270 0.0286 0.0297 0.0271 0.0210 0.0210 0.0220 0.0229 0.0232 0.0229 0.0229 0.0229 0.0229 0.0229

4° 0.118 0.170 0.213 0.313 0.405 0.510 0.600 0.672 0.673 0.725 0.705 0.695 0.662 0.469 0.648 0.644 0.640

0.0214 0.0262 0.0290 0.0335 0.0369 0,0426 0.0390 0.0321 0.0321 0.0302 0.0300 0.0307 0.0300 0.0300 0.0300 0.0300 0.0300

5° 0.130 0.173 0.213 0.307 0.393 0.485 0.580 0.660 0.735 0.826 0.835 0.810 0.768 0.743 0.738 0.727 0.721

0.0233 0.0312 0.0335 0.0403 0.0460 0.0600 0.0543 0.0558 0.0558 0.0458 0.0416

0.0402 0.0392 0.0392 0.0392 0.0392 0.0392

6° 0.179 0.215 0.310 0.400 (1.491 0.589 0.682 0.790 0.881 -0.915 0.919 0.877 0.843 0.822 0.807 0.799

0.0343 0.0380 0.0483 0.0567 0.0744 0.0710 0.0779 0.0808 0.0671 0.0591

0.0569 0.0548 0.0526 0.0514 0.0505 0.0505

7° 0.185 0.225 0.323 0.421 0.522 0.621 0.722 0.830 0.917 0.982 1.019 0.990 0.946 0.908 0.882 0.867

0.0364 0.0427 0.0568 0.0690 0.0855 0.0885 0.0960 0.1023 0.1002 0.0950 0.0890 0.0781 0.0693 0.0655 0.0623 0.0623

8° 0.191 0.245 0.345 0.464 0.570 0.676 0.770 0.844 0.946 1.035 1.113 1.114 1.055 0.990 0.952 0.925

0.0372 0.0470 0.0660 0.0820 0.0949 0.1066 0.1121

0.0904 0.0811 0.0765 0.0765

(19)

Table 8.

Relation of Cavitation Coefficient kd to Reynolds Number R

07 07

0

twmean=7.8°C twmean=22.l°C

2O.8°Ctwrne

= 8.6°C twmea

22.7°C tomeapI

19.8°C ttomean= 8.2°C tumea,i= 14.7°C t.wme= 21.2°C

vm/secR. 10vm/sec R iOvm/secR 105vm/sec R. l0vm/sec R.

105vm/secR' 105vm/secR 10vm/secR. 105vm/secR

lo-.

3.0 8.00 4.03 8.00 5.8 8.02 5.7 8.03 4.04 8.02 5.9 8.02 5.5 8.01 4.03 8.04 4.9 7.98 5.7 1.8 9.57 4.82 9.54 7.0 9.60 6.8 9.60 4.83 9.60 7.1 9.60 6.6 9.58 4.82 9.62 5.8 9.52 6.8 1.4 10.33 5.20 10.34 7.6 10.35 7.3 10.37 5.22 10.35 7.7 10.37 7.2 10.35 5.21 10.38 6.3 10.30 7.4 1.2 10.80 5.44 10.81 7.9 10.82 7.6 10.84 5.46 10.82 8.0 10.81 7.5 10.81 5.46 10.85 6.6 10.77 7.7 1.1 11.05 5.56 11.05 8.1 11.07 7.8 11.09 5.58 11.06 8.2 11.06 7.6 11.07 5.57 11.11 6.8 11.02 7.9 1.0 11.33 5.71 11.30 8.3 11.36 8.0 11.37 5.73 11.34 8.4 11.35 7.8 11.34 5.71 11.27 6.9 11.29 8.1 0.9 11.62 5.85 11,59 8.5 11.66 8.2 11.66 5.87 11.65 8.6 11.64 8.0 11.64 5.86 11.67 7.1 11.58 8.3 0.8 11.95 6.02 11.92 8.7 11.97 8.5 11.98 6.03 11.98 8.9 11.95 8.2 11.96 6.02 11.98 7.3 11.90 8.5 0.7 12.29 6.19 12.27 9.0 12.31 8.7 12.33 6.21 12.34 9.1 12.28 8.5 12.31 6.20 12.31 7.5 12.24 8.7 0.6 12.67 6.37 12.65 9.3 12.68 9.0 12.70 6.39 12.71 9.4 12.67 8.7 2.68 6.38 12.69 7.7 12.60 9.0 0.5 13.07 6.58 13.05 9.5 13.08 9.2 13.10 6.60 13.14 9.7 13.08 9.0 13.08 6.59 13.11 8.0 13.00 9.3 0.4 13.51 6.80 13.50 9.9 13.54 9.6 13.55 6.82 13.58 10.1 13.53 9.3 13.52 6.80 13.56 8.2 13.45 9.6 0.3 14.00 7.05 14.03 10.3 14.05 9.9 14.04 7.07 14.07 10.4 14.04 9.7 14.02 7.06 14.08 8.6 13.97 10.0 0.25 14.27 7.18 14.30 10.5 14.31 10.1 14.32 7.21 14.34 10.6 14.31 9.9 14.28 7.19 14.36 8.7 14.23 10.2 0.2 14.55 7.32 14.62 10.7 14.62 10.3 14.60 7.35 14.63 10.8 14.60 10.1 14.57 7.33 14.65 8.9 14.53 1 1)1 0.15 14.85 7.47 14.97 10.9 14.97 10.6 14.90 7.51 14.91 10.3 14.87 7.48 14.97 9.1 14.85 10.6

(20)

'l'able 8.

(._

jill

1111 k4

o;

8.50C 1u'rneam 15.1°C 'wmeuò 20.7"C twmea, 7.9°C 15.1°C twmean= 20.4°C

um/sec R. 10vm/sec R. 10vm/secR. 105vm/sec R. 10vm/secR.

10um/sec R. 10

3.0 8.03 4.04 8.00 4.9 8.00 5.6 8Á3 4.04 8.00 4.9 8.00 5.6 1.8 9.60 4.83 9.61 5.9 9.58 6.8 9.60 4.83 9.61 5.9 9.56 6.7 1.4 10.37 5.22 10.37 6.4 10.34 7.3 10.38 5.23 10.35 6.3 10.34 7.2 1.2 10.84 5.46 10.82 6.6 10.82 7.6 10.84 5.46 10.82 6.6 10.79 7.6 1.1 11.09 5.58 11.06 6.8 11.06 7.8 11.10 5.59 11.07 6.8 11.05 7.7 1.0 11.37 5.73 11.35 7.0 11.33 8.0 11.37 5.73 11.35 7.0 11.33 7.9 0.9 11.66 5.87 11.65 7.1 11.62 8.2 11.67 5.88 11.64 7.1 11.62 8.1 0.8 11.98 6.03 11.97 7.3 11.97 8.4 11.99 6.04 11.98 7.3 11.93 8.3 0.7 12.33 6.21 12.31 7.5 12.31 8.7 12.34 6.21 12.32 7.6 12.26 8.6 0.6 12.70 6.39 12.69 7.8 12.68 8.9 12.71 6.40 12.70 7.8 12.64 8.9 0.5 13.10 6.60 13.09 8.0 13.07 9.2 13.11 6.60 13.09 8.0 13.05 9.1 0.4 13.55 6.82 13.54 8.3 13.52 9.5 13.55 6.83 13.55 8.3 13.50 9.5 0.3 14.04 7.07 14.06 8.6 14.04 9.9 14.05 7.08 14.07 8.6 14.02 9.8 0.25 14.32 7.21 14.34 8.8 14.30 10.1 14.32 7.21 14.35 8.8 14.30 IOU 0.2 14.60 7.35 14.62 9.0 14.60 10.3 14.60 7.35 14.63 9.0 14.60 10.2 0.15 14.90 7,51 14.95 9.2 14.92 10.5 14.90 7.51 14.94 9.2 14.90 10.1

(21)

F. NUMACHI, K. TSUNODA and I. CHIDA: Cavitation Tests on Hydrofoils / 4

69

In the present series of tests the Reynolds number R (R = vi/ii,

y :

flow

velocity, i: chord length) varies with velocity and with temperature.

If, as in the

case of wind tunnel experiments, the performance is chiefly determined by R, the

lift and drag should change with water temperature. Upon drawing the GaR and

C,0R curves we have found that the effect on performance of changes in R

dependent on water temperature was extremely small within the range examined,

in contrast to the overwhelming influence yielded by differences in cavitation

coefficient.

(The Ca - R and C -. R curves have not been reproduced here, but

the relevant values are found

in Tables 3

7,

while Table 8 gives the kgR

relationship).

4.

Conclusion

The results obtained from the present study is as follows:

(1) The effect of differences in water temperature (range: 8, 15 and 21 deg. C)

on cavitation performance, especially lift and drag, were clarified.

( 2 )

It was determined that the effect of differences

in Reynolds number

on cavitation perfomance was small, in contrast to the determining factor

consti-tuted by the cavitation coefficient.

In conclusion, acknowledgement is due to Mr. S. Nakayama, technical officer of

the ex-Japanese Navy for his valuable collaboration in developing the profiles and

in preparing the specimens. The able assistance in the experiments provided by

Mr. K. Izumi is also

appreciated.

Bibliography

i i

F. Numachi, K. Ysunoda and I. Chida,

Cavitation Tests on Hydrofoils of

Simple Form/Rep. i (On Five Profiles of 7 Per Cent Thickness Ratio),

Rep. Inst. High Sp. Mech., Japan, Vol. 8 (1957), p. 67.

(2)

F. Numachi, K. Tsunoda and

I. Chida,

Cavitation Tests on Hydrofoils

of Simple Form / Rep. 2 (Difference in Performance between

Experi-ments with Water Temperatures of 20 and 15 deg. C), Rep. Inst. High

Sp. Mech., Japan, Vol. 8 (1957), p. 89.

3

F. Numachi, Kraftmessungen an vier Fliigelprofilen bei Hohlsog, Forsch.

Cytaty

Powiązane dokumenty