• Nie Znaleziono Wyników

Dynamie Programming with Returns in Random Variables Spaces

N/A
N/A
Protected

Academic year: 2021

Share "Dynamie Programming with Returns in Random Variables Spaces"

Copied!
7
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

FO LIA O EC O N O M IC A 175, 2004

S e b a s t i a n S i t a r z *

D Y N A M IC P R O G R A M M IN G W IT H R E T U R N S

IN R A N D O M V A R IA B LES S P A C E S

Лlistrad This paper presents a m odel o f dynam ic, discrete decision-m aking problem (finite number o f periods, states and decision variables). Described process has returns in random variables spaces equipped with partial order. The model can be applied for many multi-stage, multi-criteria decision m aking problem s. There are a lot o f order relations to com pare random variables. Properties o f those structures let us apply Bellman’s Principle o f dynamic programming. The result o f using this procedure is obtainm ent o f a whole set o f optim al values (in the sense o f order relation). For illustration, there is presented a numerical exam ple.

Key words: dynam ic program ming, partially ordered set, stochastic dom inance.

L IN T R O D U C T IO N

T h e p ap e r p resents an o p tim al m odel involved into a shap e o f dyn am ic

program m ing. T h is th eo ry was intro duced by R. Bellm an (a m eth o d o f

solving such tasks is nam ed B ellm an’s principle). N ext T . A. B r o w n and

R. E. S t r a u c h (1965) generalized B ellm an’s principle to a class o f

m u lti-criteria dynam ic p ro g ram m in g with a lattical o rd er. T h en , th e use o f

optim ality principle w as the interest o f L. M i t t e n (1974) w ho considered

preferences relatio n , M . I. H e n i g (1985) - w ho developed the th eo ry o f

infinite d ynam ic process with values o f criteria fu n ctio n in a p artially

ordered set. O thers w ho to o k interest in th e use o f m ulticriterial m eth o d s

in dynam ic p ro g ram m in g have been: T . T r z a s k a l i k (1998), D . L i and

Y. Y. H a im e s (1989).

In the m ean tim e som e theories o f com parin g ra n d o m variables has

developed as well 'Г. R o l s k i (1976), M . S h a k e d a nd J. G. S h a n t -

h i k u m a r (1993). It enabled us to use such stru ctu re s in o u r dyn am ic

m odel, w hich is th e essence o f th e paper. In the exam ple, th ere is show n

* M A , In stitu te o f M a th em a tics, U n iversity o f S ilesia, K a to w ice , ssitarz@ - ux2.m ath.us.edu.pl.

(2)

a com bination o f fields, nam ely, dynam ic program m ing and rand om variables

with stochastic dom inance.

2. D Y N A M IC M O D E L

W e consider m u ltistag e dyn am ic process with finite n u m b er o f periods,

states and decision variables. T o describe the process we will use the

follow ing n o tatio n :

T - the n u m b er o f periods,

S, - the set o f all feasible state variables at th e beginning o f period

t e { 1, ..., T ) ,

D,(st) - the set o f all feasible decision variables for period t and state

s , e S „ we assum e th a t all these sets are finite,

P - den o tes the process, w here all sets: T, S,, Dt(s,) are identified, on

the base o f these term s we define:

r, = (sf, s(+ i) - th e period realization, s , e S , an d st+1 e D , ( s t),

R , - the set o f all period realizations in period £,

(s„ ..., s r +i ) - the partial realization in period t an d swe S w, and

S w + i ^ D J s J for w e ( t ,

T),

R,(s,) - th e set o f all p a rtia l realizatio n s w hich begin a t s ta te s„

R,(St) = R t(st) : s , e S t - the set o f all p artia l realizations which begin at the

beginning o f period t,

R = R i ( S j) - the set o f all process realizations,

We consider the follow ing stru ctu re, functions and o p e ra to rs to describe

m ulti-period criteria fun ctio n o f process realization.

(W, < , °) - the stru c tu re in which ( W., < ) is the partially ord ered set, and

(W, °) is sem igroup satisfies follow ing co nd ition

a ^ b = > ( a ° c ^ b o c an d c ° a ^ c ° b ) \ a, b, c e W (m o n o to n icity co n d itio n )

(

1

)

F o r each finite subset A c W we define

т а х ( Л ) s { a * e A : ~ Э 0бЛа * < а and

а* Ф a)

(2)

Values o f the crite ria fun ctio n are given by the stru ctu re ( W, ^ , °)

f t : R t —* W - the period criteria functions with re tu rn s in W.

F, : R, (St) —* W - the fu nctions defined in the follow ing way

(3)

t = T , .... 1

(3)

F = F l - the m ulti-p erio d criteria function,

(P , F) - d enotes discrete dynam ic decision process. It is given, if there

arc discrete d ynam ic process P and m ulti-period criteria fu n ctio n F d e­

fined.

R ealization d * e D is said to be efficient, if

F( d * )e m ax F(D )

(4)

Theorem 1. Let (P , F) be decision dynam ic process.

0

)

F o r all t = T — 1,

1 and all у ,е У , holds

m ax {F,(R,(s,)} = m ax

s( + 1) ° m a x F, + 1( R t +l (s, + l ) ) : s f + l e D f(s,)}

(5)

(ii)

m ax {F( R) } = m a x jm a x F 1( R l (si ) ) : s i e S l }

(6)

3. P R O C E D U R E

W c now p re sen t an a lg o rith m fo r d e te rm in a tio n o f th e set o f all

m axim al re tu rn s o f th e process, w hich is based on T h . 1. T his p rocedu re

is stated as follows:

step 1

C alculate the set: m a x ^ ^ K ^ ) } fo r all states sT e S T.

step ( T + 1 - t ) , for t = T - 3, T — 4,

1.

C alculate th e set: m a x { F f(R f(st)) using T h. 1 (i).

step T + 1

C alculate the set: m ax{F (R )} using T h. 1 (ii).

4. E X A M PLE

T h e alg o rith m presented in the th ird section is now applied to solve

dynam ic problem . W e use d ifferent o rders to co m p are values o f th e criteria

(4)

function i.e. ran d o m variables. T h e n o tatio n below agrees with sym bols

previously used.

T h e process (P , F ) is defined as follows:

We consider a process, which consists o f 3 periods [ T = 3], in which:

S, = {0,1}, for t = 1, 2, 3, 4; D,(0) = D ,(l) = {0, 1}, for t = 1, 2, 3 (7)

T he term s connected w ith the criteria fu nction arc defined as follows. Set

W is described as the set o f discrete random variables

Л

W =

{(po,

Pi, P2, -, P„)' neN, pn>0, p^O,

£ p , = l} (8)

1 = 0

where

pt

den o tes p ro b ab ility o f num ber i.

O p e rato r p is defined as a sum o f ran d o m variables.

T h e values o f the crite ria function are presented in the Fig. 1.

5. T H E O R D E R S U S E D IN T H E EX A M PL E

T o co m p are such values o f the criteria function we use k no w n orders

generated by:

1) first o rd e r sto ch astic d om in ance F S D ,

2) second o rd e r sto ch astic dom in an ce SSD,

3) second o rd e r inverse stochastic d om inan ce SISD ,

4) m ean-variance m odel (as two-criteria: m axim izing m ean and m inim izing

variance).

T h o se classical defin ition can be found am ong o th ers in M . S h a k e d

a nd J. G. S h a n t h i k u m a r (1993) - stochastic orders; and m ean -v arian ce

m odel in H . M . M a r k o v i t z (1989). T h e relations used in this exam ple

(5)

arc n o t antisym m etric, w hich is one o f the condition s o f p artia l o rd e r, b u t

one can c o n sid e r th e eq u iv ale n ce re la tio n (x < 'у о x < у an d y < x )

G. B i r k h o f f (1973). T h e m o n o to n icity co n d itio n s o f these stru ctu re s are

show n in M . S h a k c d and J. G. S h a n t h i k u m a r (1993). M o re o v er the

rest o f the co n d itio n s w hich are needed to hold the T h . 1 are easy to check.

6. R ESULTS

Below, th ere arc results o f using algorithm presented. T h e tables show

m axim al values o b tain ed in each step.

T a b l e 1

The com putation in the case o f first order stochastic dom inance (F S D ) and second order

stochastic dom inance (SSD ). The values connected with SS D case are bold

I m ax{F ,(R ,(0)) m a x {F ,(R ,(l)) 3 (0,1) (.2, .3, .5), (0, .6, .4) 2 (0, .2, .3, .5), (0, 0, .6, .4) (0, 0, 1), (.1, .25, .4, .25), (0, .3, .5, .2) 1 (0, 0, .2, .4, .4), (.02, .09, .22, .31, .26, .1), (0, .06, .22, .36, .28, .08) (0,

0

,

0

, 1), (0,0, .24, .52, .24), (0, .08, .24, .38, .3) max F (R ) (0, 0, 0, 1), (0, 0,. 2, .4, .4), (.02, .09, .22, .31, .26, .1), (0, .06, .22, .36, .28, .08) T a b l e 2

The com putation in the case o f second order inverse stochastic dom inance (SISD )

t m ax{F ,(R ,(0)) m ax {F ,(R ,(l)) 3 (0, 1) (.2, .3, .5), (0, .6, .4) 2 (0, .2, .3, .5), (0, 0, .6, .4) (0, 0, 1), (.1, .25, .4, .25), (0, .3, .5, .2) 1 (0, 0, .2, .4, .4) (.02, .09, .22, .31, .26, .1) (0, .06, .22, .36, .28, .08) (0, 0, .24, .52, .24), (0, .08, .24, .38, .3) max F (R ) (0, 0, .2, .4, .4), (.02, .09, .22, .31, .26, .1), (0, .06, .22, .36, .28, .08)

(6)

The com putation in the case o f m ean-variance model. There arc values o f the mean and variance, instead o f elem ents o f W, in the follow ing form: (mean, variance)

t (mean, variance) o f nrnfF ^R ^ O )) (mean, variance) o f m a x {F ,(R ,(l))

3 (1, 0) (1.4, .24)

2 (1.8, .16), (2.4, .24) (2, 0)

1 (3.2, .56), (2.9, .49), (2.3, .41) (3, 0) (mean, variance) o f max F (R )

(3.2, .56), (3, 0)

max F (R ) = (0, 0, .2, .4, .4), (0, 0, 0, 1)

REFEREN CES

B i r k h o f f G . (1973), L a ttice Theory, American Mathematical Society, Colloquium Publications, 25.

B r o w n T. A. , S t r a u c h R. E. (1965), D ynam ic Program m ing in M ultiplicative L attices,

J. M ath. A nalysis and Applications, 12, 2, 364-370.

F u c h s L. (1963), P artially O rdered Algebraic System s, “International Series o f M onographs on Pure and A pplied M athem atics” , 28.

H e n i g M. I. (1985). The Principle o f O ptim ality in D ynam ic P rogram m ing with R eturns in

P artially O rdered S ets, M ath, o f Oper. Res., 10, 3, 462-470.

L i D ., H a i m e s Y. Y . (1989), M ultiobjective D ynam ic Program m ing: The S ta te o f the A rt, “Control Theory and A dvanced T ech nology” , 5, 4, 471-483.

M a r k o v i t z H. M. (1989), M ean-V ariance A nalysis in Portfolio Choice a n d C apital M a rkets, Basic Blackwell, O xford-C am bridge.

M i t t e n L. (1974), Preference Order D ynamic Programming, “Management Science", 21, 1, 43-46. R o l s k i T. (1976), O rder R elations in the S et o f Probability D istributions and their Applications

in the Q ueneining Theory, “ D issertation M athem aticae” , 132.

S h a k e d M. , S h a n t h i k u m a r J. G. (1993), Stochastic Orders a n d their Applications, Academ ic Press, Harcourt Brace & C o., Boston.

S z e k l i R. (1995), S to ch a stic Ordering a n d Dependency in A pplied Probability, Springer Verlag, N ew York.

T r z a s k a l i k T . (1994), M u ltip ly C riteria Discrete D ynam ic Program m ing, “ M athem atics T od ay” , XII-A, 173-199.

T r z a s k a l i k T. (1998), M ultiobjective Analysis in D ynam ic E nvironm ent, T he A cadem y o f Econom ics, K atow ice.

T r z a s k a l i k T. , S i t a r z S. (2001), D ynam ic Discrete P rogram m ing with P artially O rdered

Criteria S e t, [in:] T . T r z a s k a l i k , J. M i c h n i k (eds.), M ultiobjective a n d Goal P ro­ gram m ing, Springer Verlag, 186-195.

W h i t e m o r e G. A. , F i n d l a y M. C. (eds.) (1978), Stochastic D om inance: A n Approach to

(7)

Sebastian S ita rz

Z M IE N N E L O S O W E W D Y SK R ETN Y M PR O G R A M O W A N IU D Y N A M IC Z N Y M

W artykule opisano dyskretny model program owania dynam icznego z w artościam i funkcji kryterium z przestrzeni zmiennych losow ych wyposażonej w częściow y porządek. Opisany proces dynam iczny ma charakter deterministyczny. Porównując zmienne losow e stosow ane są różne rodzaje relacji porządkujących. W łasności struktur zm iennych losow ych pozw alają stosow ać uogólnioną m etodę program owania dynam icznego - tzw. zasadę Bellmana. Efektem tej procedury jest uzyskanie pełnego zbioru wartości optymalnych (w sensie relacji częściow ego porządku). A nalogicznie, jak w program owaniu wielokryterialnym, tak i tu rozwiązaniem problemu optym alizacyjnego m oże być duży zbiór wartości optym alnych. Przedstawione są metody zawężające ten zbiór, wykorzystujące dynam iczną postać zadania oraz własności zmiennych losow ych.

Cytaty

Powiązane dokumenty

Definition of a continuous random variable and a density

CUMULATIVE DISTRIBUTION FUNCTION, EXPECTED VALUE – INTRO... Plan

mean value, depends on the distribution only for a finite set S, the EX always exists... Expected value –

When verifying independence of random variables, we may – in some cases – be able to decompose these random variables into functions of simpler random variables (or, inversely,

If during a given month there are no insurance claims, the discount for the next month grows by 10 percentage points (until reaching the maximum level of 30%); if there is a claim,

Let (X„)„gN be a sequence of centered associated random variables with the same distribution belonging to the domain of attraction of the standard normal law with the

Jeśli zatem uznamy środki semantyczne, do jakich odwołuje się logika LBD, za autonomiczne, to okazuje się, że zobowiązania do istnienia zbiorów, wyraża ­ ne w logice

First, we would like to find fairly general assumptions that will allow us to reverse inequality (1), that is we want to obtain the Sudakov minoration principle for a large class