• Nie Znaleziono Wyników

Index of /rozprawy2/10962

N/A
N/A
Protected

Academic year: 2021

Share "Index of /rozprawy2/10962"

Copied!
12
0
0

Pełen tekst

(1)

1

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Wydział Inżynierii Materiałowej i Ceramiki

Katedra Biomateriałów

Rozprawa doktorska

FUNKCJONALNE POWŁOKI

ORGANICZNO-NIEORGANICZNE,

OTRZYMYWANE METODĄ ZOL-ŻEL, DO

ZASTOSOWAŃ MEDYCZNYCH

mgr inż. Anna Donesz-Sikorska

Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej

Politechnika Wrocławska

Promotorzy:

Dr hab. inż. Jerzy Kaleta, prof. nadzw. PWr.

Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej

Politechnika Wrocławska

Prof. Dr hab. inż. Elżbieta Pamuła

Wydział Inżynierii Materiałowej i Ceramiki,

Katedra Biomateriałów, AGH w Krakowie

(2)

2015-2

Spis treści

Wstęp ... 4

I. CZĘŚĆ LITERATUROWA ... 6

1. Matryca krzemionkowa – właściwości, charakterystyka, biokompatybilność ... 6

2. Metoda zol-żel, otrzymywanie powłok i ich aktywacja ... 8

2.1. Hydroliza i polikondensacja ... 9

2.2. Dojrzewanie i stabilizacja ... 11

2.3. Metody nanoszenia powłok otrzymywanych metodą zol-żel ... 12

3. Powłoki organiczno-nieorganiczne ... 14

3.1. Powłoki krzemionkowe – niedomieszkowane oraz funkcjonalizowane substancją

aktywną ... 18

3.2. Powłoki hybrydowe ... 20

3.2.1. Powłoki krzemionkowo-tytanianowe ... 21

3.2.2. Powłoki krzemionkowo-cyrkoniowe ... 22

3.2.3. Powłoki krzemionkowo-glinowe ... 22

II. Teza, zakres i cel pracy ... 24

III. CZĘŚĆ EKSPERYMENTALNA ... 26

1.

Materiały ... 26

1.1.

Synteza ... 26

1.1.1.

Bazowe powłoki krzemionkowe ... 26

1.1.2. Powłoki hybrydowe ... 28

1.1.3. Funkcjonalne powłoki krzemionkowe ... 30

1.2. Procedura nanoszenia powłok ... 33

2. Metody ... 34

2.1. Ocena powierzchni oraz składu pierwiastkowego – analiza SEM-EDX ... 34

2.2. Spektroskopia Ramana ... 34

2.3. Zwilżalność i swobodna energia powierzchniowa (SEP) ... 35

2.4. Pomiar grubości ... 35

2.5. Profilomeria ... 36

2.6. Badania elektrochemiczne (badania odporności korozyjnej) ... 37

2.7. Badania biologiczne in vitro ... 38

2.7.1. Badania in vitro na linii osteoblastopodobnej MG-63 ... 38

2.7.2. Badania in vitro na macierzystych komórkach AdMSCs ... 40

2.8. Badania mikromechaniczne ... 43

2.8.1. Badania scratch-test ... 43

(3)

3

3. Wyniki i dyskusja ... 46

3.1. Bazowe powłoki krzemionkowe ... 46

3.1.1. Wyniki badań strukturalnych i fizykochemicznych ... 46

3.1.2. Wyniki badań elektrochemicznych ... 52

3.1.3. Wyniki badań biologicznych ... 55

3.1.4. Wyniki badań mikromechanicznych ... 63

3.1.5. Dyskusja wyników ... 68

3.2. Powłoki hybrydowe ... 76

3.2.1. Wyniki badań strukturalnych i fizykochemicznych ... 76

3.2.2. Wyniki badań elektrochemicznych ... 86

3.2.3. Wyniki badań biologicznych ... 94

3.2.4. Wyniki badań mikromechanicznych ... 102

3.2.5. Dyskusja wyników ... 107

3.3. Funkcjonalne powłoki krzemionkowe ... 114

3.3.1. Wyniki badań strukturalnych i fizykochemicznych ... 114

3.3.2. Wyniki badań elektrochemicznych ... 125

3.3.3. Wyniki badań biologicznych ... 128

3.3.4. Dyskusja wyników ... 135

PODSUMOWANIE I WNIOSKI ... 141

PROPONOWANE OBSZARY DALSZYCH BADAŃ NAUKOWYCH ... 145

Podziękowania ... 146

Literatura ... 147

SPIS RYSUNKÓW ... 156

(4)

147

Literatura

1. Touzelbaev M.N., Goodson K.E. Applications of micron-scale passive diamond layers for the integrated circuits and micromechanical systems industries. Diamond and Related Materials 7 (1998) 1–14.

2. Mitura S. Nanotechnology in Materials Science. Elsevier, Amsterdam 2000.

3. Szymonowicz M., Fraczek-Szczypta A., Rybak Z., Blazewicz S. Comparative assessment of the effect of carbon-based material surfaces on blood clotting activation and haemolysis.

Diamond and Related Materials 40 (2013) 89–95.

4. Bose S., Tarafder S., Bandyopadhyay A. Hydroxyapatite coatings for metallic implants. Hydroxyapatite (Hap) for Biomedical Applications. A volume in Woodhead Publishing Series in Biomaterials (2015) 143–157.

5. Joska L., Fojt J., Mestek O., Cvrcek L., Brezina V. The effect of a DLC coating adhesion layer on the corrosion behavior of titanium and the Ti6Al4V alloy for dental implants. Surface &

Coatings Technology 206 (2012) 4899–4906.

6. Dearnaley G., Arps J.H. Biomedical applications of diamond-like carbon (DLC) coatings: a review. Surface and Coatings Technology 200/7 (2005) 2518–2524.

7. Galliano P., de Damborenea J.J., Pascual M.J., Duran A. Sol–gel coatings on 316L stainless steel for clinical applications. Journal of Sol-Gel Science and Technology 13 1998) 723–727. 8. Li P., de Groot K., Kokubo T. Bioactive Ca10(PO4)6(OH)2–TiO2 composite coating prepared by

sol–gel process. Journal of Sol-Gel Science and Technology 7 (1996) 27–34.

9. Ballarre J., Orellano J.C., Bordenave C., Galliano P., Ceré S. In vivo and in vitro evaluation of vitreous coatings on cobalt based alloys for prosthetics devices. Journal of Non-Crystalline

Solids 304/5 (2002) 278–285.

10. Pellice S., Galliano P., Castro Y., Durán A. Hybrid sol–gel coatings produced from TEOS and gamma-MPS. Journal of Sol-Gel Science and Technology 28 (2003) 81–86.

11. Garcıa C., Cere S., Duran A. Bioactive coatings prepared by sol–gel on stainless steel 316L.

Journal of Non-Crystalline Solids 348 (2004) 218–224.

12. Minagar S., Berndt C.C., Wang J., Ivanova E., Wen C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia 8 (2012) 2875–2888.

13. Hamlekhan A., Takoudis C., Sukotjo C., Mathew M.T., Virdi A., Shahbazian-Yassar R., Shokuhfar T. Recent Progress toward Surface Modification of Bone/Dental Implants with Titanium and Zirconia Dioxide Nanotubes. Journal Nanotechnology Smart Materials 1 (2014) 1–14.

14. Hardwick D.A. The Mechanical-Properties of Thin-Films. A Review. Thin Solid Films 154/1 (1987) 109–124.

15. Chan C.M., Cao G.Z., Fong H., Sarikaya M., Robinsona T., Nelsona L. Nanoindentation and adhesion of sol-gel-derived hard coatings on polyester. Journal of Materials Research 15/1 (2000) 148-154.

16. Ballarre J., Jimenez-Pique E., Anglada M., Pellice S.A., Cavalieri A.L. Mechanical characterization of nano-reinforced silica based sol–gel hybrid coatings on AISI 316L stainless steel using nanoindentation techniques. Surface and Coatings Technology 203 (2009) 3325–3331.

17. Carlisle E.M. Silicon as an essential element. Federation proceedings 33/6 (1974) 1758–1766. 18. Bielański A. Podstawy chemii nieorganicznej, PWN, Warszawa 1987.

19. Williams R.J.P. Introduction to silicon chemistry and biochemistry. In: Silicon Biochemistry. Ciba Foundation Symposium 121 (1986) 24–29.

20. Handke M. Krystalochemia krzemianów, Uczelniane Wydawnictwo Naukowo-Dydaktyczne, AGH, Kraków 2005.

(5)

148

21. Kupiec K., Konieczka P., Namieśnik J. Ecological Chemistry and Engineering T. 14, Nr S4, 2007.

22. Unger G., Masic N. Order in the rotator phase of n-alkanes. The Journal of Physical Chemistry 89/6 (1985) 1036-1042.

23. Snyder L.R., Kirkland J.J., Glajch J.L. Practical HPLC Method Development, Wiley, New York, 1997.

24. Jesionowski T., Żurawska J., Krysztafkiewicz A. Surface properties and dispersion behaviour of precipitated silicas. Journal of Materials Science 37 (2002) 1621–1633.

25. Parida S.K., Dash S., Patel S., Mishra B.K. Adsorption of organic molecules on silica surface.

Advances in Colloid and Interface Science 121/1-3 (2006) 77-110.

26. Carlisle E.M. Silicon: a possible factor in bone calcification. Science 167 (1970) 279– 280. 27. Carlisle E.M. Silicon: an essential element for the chick. Science 178 (1972) 619–621.

28. Schwarz D., Milne B. Growth promoting effects of silicon in rats. Nature 239 (1972) 333–340. 29. Schiano A., Eisinger F., Detolle P., Laponche A.M., Brisou B., Eisinger J. Silicon, bone tissue and immunity. Revue du rhumatisme et des maladies osteo-articulaires 46/7-9 (1979) 483–486.

30. Eisinger J., Clairet D. Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study. Magnesium research: official organ of the International Society

for the Development of Research on Magnesium 6/3 (1993) 247–249.

31. Rico H., Gallego-Lago J.L., Hernández E.R., Villa L.F., Sanchez-Atrio A., Seco C., Gérvas J. Effect of silicon supplement on osteopenia induced by ovariectomy in rats. Calcified Tissue

International 66/1 (2000) 53–55.

32. Calomme M.R., Wijnen P., Sindambiwe J.B., Cos P., Mertens J., Geusens P., Vanden Berghe D.A. Effect of choline stabilised orthosilicic acid on bone density in chicks. Calcified Tissue

International 70 (2002) 292–296.

33. Calomme M. J. Sindambiwe, P. Cos, C. Vyncke, P. Geusens, D. Vanden Berghe Effect of choline stabilized orthosilicic acid on bone density in ovariectomized rats. Journal of Bone and

Mineral Research 19 (2004) 449–458.

34. Loeper J., Goy-Loeper J., Rozensztajn L., Fragny M. The antiatheromatous action of silicon.

Atherosclerosis 33/4 (1979) 397–408.

35. Schwartz K. Silicon, fibre and atherosclerosis. Lancet 26/1 (1977) 457–470.

36. Absher M.P., Trombley L., Hemenway D.R., Mickey R.M., Leslie K.O. Biphasic cellular and tissue response of rat lungs after eightday aerosol exposure to the silicon dioxide cristobalite.

American Journal of Pathology 134 (1989) 1243–1251.

37. Donesz-Sikorska A., Marycz K., Śmieszek A., Grzesiak J., Kaliński K., Krzak-Roś J. Biologicznie aktywne powłoki otrzymywane metodą zol-żel na metalicznych materiałach implantacyjnych. Przemysł Chemiczny 92/6 (2013) 1110–1116.

38. Ballarre, J., Liu, Y., Mendoza, E., Schell, H., Díaz, F., Orellano, J.C., Fratzl, P., García, C., Ceré, S.M. Enhancing low cost stainless steel implants: bioactive silica based sol–gel coatings with wollastonite particles. International Journal of Nano and Biomaterials 4 (2012) 33–53. 39. Beck Jr.G.R., Ha S.W., Camalier C.E., Yamaguchi M., Li Y., Lee J.K., Weitzmann M.N.

Bioactive silica-based nanoparticles stimulate forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine:

Nanotechnology, Biology and Medicine 8 (2012) 793–803.

40. Gomez-Vega J.M., Iyoshi M., Kim K.Y, Hozumi A., Sugimura H., Takai O. Spin casted mesoporous silica coatings for medical applications. Thin Solid Films (2001) 398–399. 41. Ehlert N., Mueller P.P., Stieve M., Lenarz T., Behrens P. Mesoporous silica films as a novel

biomaterial: applications in the middle ear. Chemical Society Reviews 42/9 (2013) 3847–3861. 42. Li P. In vitro and in vivo calcium phosphate induction on gel oxides. The Netherlands: Leiden

(6)

149

43. Kortesuo P., Ahola M., Karlsson S., Kangasniemi I., Yli-Urpo A., Kiesvaara J. Silica xerogel as an implantable carrier for controlled drug delivery-evaluation of drug distribution and tissue effects after implantation. Biomaterials 21/2 (2000) 193–198.

44. Skorodumova O.B., Semchenko G.D., Goncharenko Ya.N., Tolstoi V.S. Crystallization of SiO2

from Ethylsilicate-Based Gels. Glass and Ceramics 58/1-2 (2001) 31–33.

45. Falaize S., Radin S., Ducheyne P. In vitro behavior of silica-based xerogels intended as controlled release carriers. Journal of the American Ceramic Society 82 (1999) 969–976. 46. Radin S., Falaize S., Ducheyne P. In vitro bioactivity and degradation behavior of silica xerogels

intended as controlled release materials. Biomaterials 23 (2002) 3113–3122.

47. Santos E.M., Radin S., Ducheyne P. Sol–gel derived carrier for the controlled release of proteins. Biomaterials 20 (1999) 1695–700.

48. Kłonkowski A. Od roztworu przez zol-żel do szkła, Wiadomości Chemiczne 47, 1993.

49. Brinker C.J., Scherer G.W. Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, Academic Press, Inc., San Diego, 1990.

50. Maruszewski K. Fizykochemia molekuł zamkniętych w zeolitach i zol-żelach, Wydawnictwo Uniwersytety Wrocławskiego, Wrocław 2000.

51. Cheong K.Y., Jasni F.A. Effects of precursor aging and post-deposition treatment time on photo-assisted sol-gel derived low-dielectric constant SiO2 thin film on Si. Microelectronics

Journal 38 (2007) 227–230.

52. Barbé C.J., Cassidy D.J., Triani G., Latella B.A., Mitchell D.R.G., Finnie K.S., Short K., Bartlett J.R., Woolfrey J.L., Collins G.A. Sol-gel bonding wafers part 1: influence of the processing temperature on final bond morphology and interfacial energy. Thin Solid Films 488 (2005) 153– 159.

53. Buckley, A., Greenblatt, M. The sol-gel preparation of silica gels. Journal of Chemical Education, 71/7 (1994) 599-602.

54. Fardad, M.A. Catalysts and the structure of SiO2 sol-gel films. Journal of Materials Science 35

(2000) 1835–1841.

55. Chiodini N., Morazzoni F., Paleari A., Scotti R., Spinolo G. Sol-gel synthesis of monolitic tin-doped silica glass. Journal of Materials Chemistry 9 (1999) 2653–2658.

56. Pavan F., Gobbi S.A., Moro C.C., Costa T.M.H., Benvenutti E.V. The influence of the amount of fluoride catalyst on the morphological properties of the anilinepropylsilica xerogel prepared in basic medium. Journal of Porous Materials 9 (2002) 307–311.

57. Hench L.L., Orefice R. Sol–gel technology. Kirk-Othmer Encyclopedia of chemical technology, 2000.

58. Klein C., Patka P, van der Lubbe HBM, Wolke JGC, de Groot K., „Plasma-sprayed coatings of tetracalciumphosphate, hydroxylapatite, and alpha-TCP on titanium alloy: an interface study.

Journal of Biomedical Materials Research 25 (1991) 53–65.

59. Atia S.M., Wang J., Wu G., Shen J., Ma J. Review on sol-gel derived coatings. Process, techniques and optical apllications. Journal of Materials Science and Technology 18/3 (2002) 211–219.

60. Scriven L.E. Better ceramics through chemistry III. Materials Research Society, Pittsburgh, 1988.

61. Sperling L.H. Interprenetrating polymer network and related materials. Springer Science & Business Media, 2012.

62. Hernàndez-Escolano M., Juan-Díaz M., Martínez-Ibáñez M., Jimenez-Morales A., Goñi I., Gurruchaga M., Suay J. The design and characterisation of sol–gel coatings for the controlled-release of active molecules. Journal of Sol-Gel Science and Technology 64 (2012) 442–451. 63. Teoli D., Parisi L., Realdon N., Guglielmi M., Rosato A., Morpurgo M. Wet sol-gel derived

(7)

150

64. Jin W., Brennan J.D. Properties and applications of proteins encapsulated within sol-gel derived materials. Analytica Chimica Acta 461/1 (2002) 1–36.

65. Bottcher H., Slowik P., Suss W. Sol-gel carrier systems for controlled drug delivery. Journal of Sol-Gel Science and Technology 13/1–3 (1998) 277–281.

66. Radin S., Chen T., Ducheyne P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials 30/5 (2009) 850–858.

67. Radin S., Ducheyne P. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. Biomaterials 28/9 (2007) 1721–1729.

68. Wojcik A., Klein L.C. Transparent organic/inorganic hybrid gels: a classification scheme.

Applied Organometallic Chemistry 11 (1997) 129–135.

69. Sanchez C., Ribot F. Design of hybrid organic–inorganic materials synthesized via sol–gel chemistry. New Journal of Chemistry 18 (1994) 1007–1047.

70. Brandrup J., Immergut E.H., Grulke E.A., Abe A., Bloch D.R. Polymer handbook 4ed., John Wiley&Sons, New York, 1999.

71. Maruszewski K., Jasiorski M., Salamon M., Stręk W. Physicochemical properties of Ru(bpy)32+ entrapped in silicate bulks and fiber thin films prepared by the sol-gel method.

Chemical Physics Letters 314 (1999) 83–90.

72. Figueira R.B., Silva C. J. R., Pereira E.V. Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progres. Journal of Coatings Technology and Research 12/1 (2014) 1–35.

73. Chujo Y., Saegusa T. Organic polymer hybrids with silica gel formed by means of the sol-gel method. Advances in Polymer Science 100 (1992) 11–30.

74. Innocenzi P., Kidchob T. Hybrid organic-inorganic sol-gel materials based on epoxy-amine systems. Journal of Sol-Gel Science and Technology 35 (2005) 225–235.

75. Rahimi A., Farhadyar N., Ershad Langroudi A. Preparation and characterization of aromatic amine cured epoxy-silica hybrid inorganic-organic coating via in situ sol-gel process. Iranian

Polymer Journal 14/2 (2005) 155-162.

76. Donesz-Sikorska A., Grzesiak J., Śmieszek A., Krzak J., Marycz K. The influence of sol-gel-derived silica coatings functionalized with betamethasone on adipose-sol-gel-derived stem cells (ASCs). Journal of Biomaterials Applications (2014) 0885328214534003.

77. Braem A., Neirinck B., Schrooten J., Van der Biest O., Vleugels J. Biofunctionalization of porous titanium coatings through sol–gel impregnation with a bioactive glass–ceramic.

Materials Science and Engineering C 32 (2012) 2292–2298.

78. Rahoui S., Turq V., Bonino J.P. Effect of thermal treatment on mechanical and tribological properties of hybrid coatings deposited by sol–gel route on stainless steel. Surface and Coatings

Technology 235 (2013) 15–23

79. Ershad-Langroudi A., Mai C., Vigier G., Vassoille R. Hydrophibic hybrid inorganic-organic thin film prepared by sol–gel process for glass protection and strengthening applications.

Journal of Applied Polymer Science 65 (1997) 2387–2393.

80. Sanchez C, Julián B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry 15 (2005) 3559–3592.

81. Mackenzie JD. Structures and properties of ormosils. Journal of Sol-Gel Science and

Technology 2/81 (1994) 81–86.

82. Colilla M, Salinas AJ, Vallet-Regí M. Amino-polysiloxane hybrid materials for bone reconstruction. Chemistry of Materials 18/5 (2006) 676–683.

83. Julian B, Gervais C, Cordoncillo E, Escribano P, Babonneau F, Sanchez C. Síntesis and characterization of transparent PDMS-Metal-Oxo based organic–inorganic nanocomposites.

Chemistry of Materials 15 (2003) 3026–3034.

84. Lyndon J.A., Boyd B.J., Birbilis N. Metallic implant drug/device combinations for controlled drug release in orthopedic applications. Journall Controlled Release 179 (2014) 63–75.

(8)

151

85. Marciniak J., Biomateriały, Gliwice, Wydawnictwo Politechniki Śląskiej, 2002. 86. Niinomi M. Metals for biomedical devices. Elsevier, 2010.

87. López D.A., Durán A., Ceré S. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions. Journal of Materials Science:

Materials in Medicine 19/5 (2008) 2137–2144.

88. Wintere G. Tissue reactions to metallic wear and corrosion products in human patients. Journal

of biomedical materials research 8/3 (1974) 11–26.

89. Geringer J. Fretting corrosion processes and wear mechanisms in medical implants.

Bio-Tribocorrosion in Biomaterials and Medical Implants (2013) 45–73.

90. Kortesuo P., Ahola M., Kangas M., Lein T., Laakso S., Vuorilehto L., Yli-Urpo A., Kiesvaara J., Marvola M. In vitro release of dexmedetomidine from silica xerogel monoliths: effect of sol– gel synthesis parameters. International Journal of Pharmaceutics 221 (2001) 107–114.

91. Domingues Z., Cortes M., Gomes T., Diniz H., Gomes J., Faria A., Sinisterra R. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with b-cyclodextrin.

Biomaterials 25 (2004) 327–333.

92. Tsuru K., Hayakawa S., Osaka A. Synthesis of bioactive and porous organic–inorganic hybrids for biomedical applications. Journal of Sol-Gel Science and Technology 32 (2004) 201–205. 93. Hoffmann E.N.A., Luessenhop T., Gross G., Mueller P. P., Stieve M., Lenarz T., Behrens P.

Amino-modified silica surfaces efficiently immobilize bone morphogenetic protein 2 (BMP2) for medical purposes. Acta Biomaterialia 7/4 (2011) 1772–1779.

94. Zhou Z.Y., Zhu S.M., Zhang D. Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. Journal of

Materials Chemistry 17/23 (2007) 2428–2433.

95. Vallet-Regi M, Balas .F, Arcos D. Mesoporous materials for drug delivery. Angewandte Chemie

International Edition 46/40 (2007) 7548–7558.

96. Song S.W., Hidajat K., Kawi S. pH-controllable drug release using hydrogel encapsulated mesoporous silica. Inorganic Chemistry Communications 42 (2007) 4396–4398

97. Sieminska L., Ferguson M., Zerda T.W., Couch E. J. Diffusion of steroids in porous sol-gel glass: application in slow drug delivery. Sol-Gel Science Technology 8 (1997) 1105–1109. 98. Slowing I.I., Vivero-Escoto J.L., Wu C.W., Lin V.S.Y. Mesoporous silica nanoparticles as

controlled release drug delivery and gene transfection carriers. Advanced drug delivery reviews 60/11 (2008) 1278–1288.

99. Andersson J., Areva S., Spliethoff B., Lindén M. Sol–gel synthesis of a multifunctional, hierarchically porous silica/apatite composite. Biomaterials 26/34 (2005) 6827–6835.

100. Czarnobaj K. Sol–gel-processed silica/polydimethylsiloxane/calcium xerogels as polymeric matrices for metronidazole delivery system. Polymer Bulletin 66 (2011) 223–237.

101. Czarnobaj K., Czarnobaj J. Sol–gel processed porous silica carriers for the controlled release of diclofenac diethylamine. Biomedical Materials Research Part B: Applied Biomaterials 87/1 (2008) 114–120.

102. Miyata N., Fuke K., Chen Q., Kawashita M., Kokubo T., Nakamura T. Apatite-forming ability and mechanical properties modified CaO–SiO2–TiO2 hybrids derived from sol–gel processing.

Biomaterials 25 (2004) 1–7.

103. Castro Y., Ferrari B., Moreno R., Durán A. Corrosion behaviour of silica hybrid coatings produced from basic catalysed particulate sols by dipping and EPD. Surface and Coatings

Technology 191 (2005) 228–235.

104. Wang D., Bierwagen G.P. Sol–gel coatings on metals for corrosion protection. Progress in

Organic Coatings 64 (2009) 327–338.

105. Głuszek J., Tlenkowe powłoki ochronne otrzymywane metodą sol-gel. Oficyna Wydawnicza PWr, Wrocław 1998.

(9)

152

106. Chęcmanowski J.G., Szczygieł B. Effect of a ZrO2 coating deposited by the sol–gel method on

the resistance of FeCrAl alloy in high-temperature oxidation conditions. Materials Chemistry and

Physics 139/2–3 (2013) 944–952.

107. Chęcmanowski J.G., Szczygieł B., Tylus W., Szczygieł I. The behaviour of FeCrAl alloy with a silica-rich ceramic coating SiO2–Al2O3 under high temperature oxidation conditions and

thermal shocks. Materials Chemistry and Physics 126 (2011) 409–416.

108. Chęcmanowski J.G., Głuszek J., Masalski J., Krysztafkiewicz A. Rola nanokrzemionki w preparatyce powłok SiO2 otrzymywanych metodą zol-żel. Inżynieria Materiałowa 5 (2002)

359–363.

109. Chęcmanowski J. Szczygieł B. Wpływ rodzaju obróbki cieplnej wielowarstwowych powłok SiO2 otrzymanych metodą zol-żel na zachowanie korozyjne stali nierdzewnej typu 316L.

Ochrona przed Korozją 7 (2007) 290–292.

110. Marycz K., Krzak J., Donesz-Sikorska A., Śmieszek A. The morphology, proliferation rate, and population doubling time factor of adipose-derived mesenchymal stem cultured on to non-aqueous SiO2, TiO2 and hybrid sol-gel derived oxide coating. Journal of Biomedical Materials

Research Part A 102/11 (2014) 4017–4026.

111. Vives S., Meunier C., Mixed SiO2–TiO2 (1:1) sol–gel films on mild steel substrates: sol

composition and thermal treatment effects. Surface and Coatings Technology 202 (2008) 2374– 2378.

112. Jokinen M., Pȁtsi M., Rahiala H., Peltola T., Ritala M., Rosenholm J.B. Influence of sol and surface properties on in vitro bioactivity of sol–gel-derived TiO2 and TiO2–SiO2 films deposited

by dip-coating method. Journal of Biomedical Materials Research Part A 42/2 (1998) 295–302. 113. Ȁȁritalo V., Areva S., Jokinen M., Linden M., Peltola T. Sol–gel derived TiO2–SiO2 implant

coatings for direct tissue attachment. Part I. Design, preparation and characterization. Journal

of Materials Science: Materials in Medicine 18/9 (2007) 1863–1873.

114. Areva S., Ȁȁritalo V., Tuusa M., Jokinen M., Linden M., Peltola T. Sol–gel-derived TiO2–SiO2

implant coatings for direct tissue attachment. Part II. Evaluation of cell response. Journal of

Materials Science: Materials in Medicine 18/8 (2007) 1633–1643.

115. Vitala R., Jokinen M., Peltola T., Gunnelius K., Rosenholm J.B. Surface properieties of in vitro bioactive and non-bioactiv sol-gel derived materials. Biomaterials 23/15 (2002) 3073–3086. 116. Chang S., Doong R. ZrO2 thin films with controllable morphology and thickness by spin-coated

sol–gel method. Thin Solid Films 489 (2005) 17–22.

117. Nouri E., Shahmiri M., Rezaie H.R., Talayian F. Investigation of structural evolution and electrochemical behavior of zirconia thin films on the 316L stainless steel substrate formed via sol–gel process. Surface and Coatings Technology 205 (2011) 5109–5115.

118. Śmieszek A., Donesz-Sikorska A., Grzesiak J., Krzak J., Marycz K. Biological effects of sol-gel derived ZrO2 and SiO2/ZrO2 coatings on stainless steel surface-In vitro model using

mesenchymal stem cells. Journal of Biomaterials Applications 29/5 (2014) 699–714.

119. Morks M.F., Kobayashi A. Development of ZrO2/SiO2 bioinert ceramic coatings for biomedical

application. Journal of the Mechanical Behavior of Biomedical Materials 1/2 (2008) 165–171 . 120. Ferraris M., Vernè E., Appendino P., Moiescu C., Krajewski A., Ravaglioli A., Piancastelli A.

Coatings of zirconia for medica applications. Biomaterials 21 (2000) 765–773.

121. Yuncang L., Chao H., Zhu X., Cuie W., Hodgson P. Nanoscale SiO2/ZrO2 particulate-reinforced

titanium composites for bone implant materials. Key Engineering Materials 520 (2012) 242–247.

122. Dejak B., Kacprzak M., Suliborski B., Śmielak B. Struktura i niektóre właściwości ceramik dentystycznych stosowanych w uzupełnieniach pełnoceramicznych w świetle literatury.

Protetyka stomatologiczna 6 (2006) 471–477.

123. Vaishali T. Progress in synthesis and applications of zirconia. International Journal of

(10)

153

124. Picconi C., Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 20 (1999) 1–25. 125. Conrad H. J., Seong W. J., Pesun I. J. Current ceramic materials and systems with clinical

recommendations: A systematic review. Journal of Prosthetic Dentistry 98 (2007) 389-404. 126. Rapacz-Kmita A., Ślósarczyk A., Paszkiewicz Z., Paluch D., Evaluation of HAp-ZrO2

composites and monophase HAp bioceramics. In vitro study. Journal of Materials Science 39/18 (2004) 5865–5867.

127. Scarano A., Carlo F.D., Quaranta M., Piattelli A. Bone response to zirconia ceramic implants. An experimental study in rabbits. Journal of Oral Implantology 29 (2003) 8–12.

128. Prem Ananth K., Suganya S., Mangalaraj D., Ferreira J.M.F., Balamurugan A. Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: An in vitro investigation. Materials Science and Engineering C 33 (2013) 4160–4166.

129. Kohal R.J., Wolkewitz M., Hinze M., Han J.S., Bachle M., Butz F. Biomechanical and histological behavior of zirconia implants: an experiment in the rat. Clinical Oral Implants

Reserch 20 (2009) 333–339.

130. Willmann G. Ceramic femoral heads for total hip arthroplasty. Advanced Engineering Materials 2 (2000) 114–122.

131. Heros R., Willmann G. Ceramics in total hip arthroplasty: history, mechanical properties, clinical results andcurrent manufacturing state of the art. Seminars Arthroplasty 9 (1998) 114–122.

132. Freeman C.O., Brook I.M., Johnson A., Hatton P.V., Hill R.G., Stanton K.T. Crystallization modifies osteoconductivity in an apatite-mullite glass-ceramic. Journal of Materials Science:

Materials in Medicine 14 (2003) 985–990.

133. Li-ping H.E., Zhen-jun W.U., Zong-zhang C. In-situ growth of nanometric network calcium phosphatdporous Al203 biocomposite coating on AI-Ti substrate. The Chinese Journal of

Nonferrous Metals 14/3 (2004) 460–464.

134. Moore W.R., Graves S.E., Bain G.I. Synthetic bone graft substitutes. ANZ Journal of Surgery 71 (2001) 354–361.

135. Kitamura S., Ohgushi H., Hirose M., Funaoka H., Takakura Y., Ito H. Osteogenic differentiation of human bone marrow-derived mesenchymal cells cultured on alumina ceramics. Artificial

Organs 28 (2004) 72–82.

136. Valandro L.F., Bona A.D., Bottino M.A., Neisser M.P. The effect of ceramic surface treatment on bonding to densely sintered alumina ceramic. The Journal of Prosthetic Dentistry 93 (2005) 253–259.

137. Tiwari S.K., Mishra T., Gunjan M.K., Bhattacharyya A.S., Singh T.B., Singh R. Development and characterization of sol–gel silica–alumina composite coatings on AISI 316L for implant applications. Surface and Coatings Technology 201 (2007) 7582–7588.

138. Li W., Zhu S., Wang C., Chen M., Shen M., Wang F. SiO2–Al2O3–glass composite coating on

Ti–6Al–4V alloy: Oxidation and interfacial reaction behavior. Corrosion Science 74 (2013) 367–378.

139. Leivo J., Meretoja V., Vippola M., Levänen E., Vallittu P., Maäntyla T.A. Sol–gel derived aluminosilicate coatings on alumina as substrate for osteoblasts. Acta Biomaterialia 2 (2006) 659–668.

140. Kęcki Z. Podstawy spektroskopii molekularnej. Wydawnictwo Naukowe PWN, 2014. 141. www.thetametrisis.com

142. www.measline.com

143. Wieczorkowski W., Cellary A., Chajda J. Przewodnik po pomiarach nierówności powierzchni czyli o chropowatości i nie tylko. Wydawnictwo Politechniki Poznańskiej, 2003.

(11)

154

144. Marycz K., Grzesiak J., Wrzeszcz K., Golonka P. Adipose stem cel combined with plasma-based implant bone tissue differentiation in vitro and in a horse with a phalanx digitalis distalis fracture: A case report. Vet Med (2011) 610–617.

145. Marycz K., Śmieszek A., Grzesiak J., Donesz-Sikorska A., Krzak-Roś J. Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid. Biomedical Materials 8/6 (2013) 1-12. 146. http://www.doubling-time.com/compute.php

147. www.labsoft.pl

148. Lawrowski Z. Tribologia. Politechnika Wrocławska, 1985.

149. Kowalewski P., W. Wieleba, Patent. Polska, nr 214201. Urządzenie do badania tarcia w złożonym ruchu toczno-ślizgowym.

150. Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, 2004.

151. Aguiar H., Serra J., Gonzalez P., Leon B. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids 355 (2009) 475-480.

152. Capeletti LB., Baibich I.M., Butler I.S., dos Santos J.H.Z. Infrared and Raman spectroscopic characterization of some organic substituted hybrid silicas. Spectrochimica Acta Part A:

Molecular and Biomolecular Spectroscopy 133 (2014) 619-625.

153. http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/bands.pdf

154. Bistričić L., Volovšek V., Dananić V. Conformational and vibrational analysis of gamma-aminopropyltriethoxysilane. Journal of Molecular Structure 834/836 (2007) 355-363.

155. Kim Y.J. Characterization of the oxide film formed on type 316 stainless steel in 288˚C in cyclic normal and hydrogen water chemistry. Corrosion 51 (1995) 849-860.

156. Sudesh T.L,. Wijesinghe L., Blackwood D.J. Electrochemical & optical characterisation of passive films on stainless steels. Journal of Physics: Conference Series 28 (2006) 74–78. 157. Nałęcz M. Biocybernetyka i inżynieria biomedyczna, Polska Akademia Nauk, Warszawa, 2003. 158. Dudek. A Kształtowanie własności użytkowych biomateriałów metalicznych i ceramicznyh,

Wydawnictwo Politechniki Częstochowskiej, 2010.

159. Anselme K., Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomaterialia 1 (2005) 211–222.

160. Anselme K., Bigerelle M.,. Noel B., Dufresne E., Judas D., Iost A., Hardouin P. Qualitative and quantitative study of human osteoblasts adhesion on materials with various surface roughnesses.

Journal of Biomedical Materials Research 49 (2000) 155–166.

161. Lawrowski Z. Tribologia. Politechnika Wrocławska, Wrocław 1985.

162. Rymuza Z. Trybologia polimerów ślizgowych. Wydawnictwa Naukowo-Techniczne, 1986. 163. Chapman-Sheath P., Cain S., Bruce W., Chung W., Walsh W. Surface roughness of the proximal

and distal bearing surface of mobile bearing total knee prostheses. The Journal of Arthroplasty 17/6 (2002) 713–717.

164. Saha R., Nix W.D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia 50 (2002) 23–38.

165. Zhang X., Hu L., Sun D. Nanoindentation and nanoscratch profiles of hybrid films based on (γ-methacrylpropyl)trimethoxysilane and tetraethoxysilane. Acta Materialia 54 (2006) 5469– 5475.

166. Paterson M.J., Paterson P.J.K., Ben-Nissan B. The Dependence of structural and mechanical properties on film thickness in sol-gel zirconia films. Journal of Materials Research 13 (1998) 388–395.

167. Huang HB, Spaepen F. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Materialia 48/12 (2000) 3261–3269.

168. Read DT, Cheng YW, Keller RR, McColskey JD. Tensile properties of free-standing aluminum thin films. Scripta Materialia 45/5 (2001) 583–589.

(12)

155

169. Marsal A., Ansart F., Turq V., Bonino J.P., Sobrino J.M., Chen Y.M., Garcia J. Mechanical properties and tribological behavior of a silica or/and alumina coating prepared by sol-gel route on stainless steel. Surface and Coatings Technology 237 (2013) 234–240.

170. Zhang W., Liu W. , Wang C. Effects of solvents on the tribological behaviour of sol–gel Al2O3

films. Ceramics International 29 (2003) 427–434.

171. Ohsaka T., Izumi F., Fujiki Y. Raman spectrum of anatase, TiO2. Journal of Raman

Spectroscopy 7 (1978) 321–324.

172. Nilchi A., Janitabar-Darzi S., Rasouli-Garmarodi S. Sol–gel preparation of nanoscale TiO2/SiO2

composite for eliminating of Con Red Azo Dye. Materials Sciences and Applications 2 (2011) 476–480.

173. Ehrhart G., Capoen B., Robbe O., Boy Ph., Turrell S., Bouazaoui M. Structural and optical properties of n-propoxide sol–gel derived ZrO2 thin films. Thin Solid Films 496 (2006)

227–233.

174. Naumenko A., Gnatiuk Iu., Smirnova N., Eremenko A. Characterization of sol–gel derived TiO2/ZrO2 films and powders by Raman spectroscopy. Thin Solid Films 520 (2012) 4541–4546.

175. Lee S.W., Condrate R.A. The infrared and Raman spectra of ZrO2-SiO2 glasses prepared by

a sol-gel process. Journal of Materials Science 23 (1988) 2951–2959.

176. Doss C. J., Zallen R. Raman studies of sol-gel alumina: Finite-size effects in nanocrystalline AlO(OH). Physical Review B 48/21 (1993) 15626–15632.

177. Daniel I., Gillet P., Poe BT., McMillan PF. In-situ High-Temperature Raman Spectroscopic Studies of Aluminosilicate Liquids. Physics and Chemistry of Minerals 22 (1995) 74–86. 178. Panicker CY., Varghese HT., Philip D. FT-IR, FT-Raman and SERS spectra of vitamin

C. Spectrochimica Acta Part A 665 (2000) 802–814.

179. Yadav R.A., Rani P., Kumar M., Singh R., Singh P., N.P. Singh. Experimental IR and Raman spectra and quantum chemical studies of molecular structures, conformers and vibrational characteristics of l-ascorbic acid and its anion and cation. Spectrochimica Acta Part A 84 (2011) 6–21.

180. Shimada H, Nibu Y, Shimada R. Pressure effects on inter- and intramolecular vibrations in hydrogen-bonded L-ascorbic acid crystal. Journal of Raman Spectroscopy 39 (2008) 32–39. 181. Karabacak M., Kose E, Kurt M. FT-Raman, FT-IR spectra and DFT calculations on monomeric

and dimeric structures of 5-fluoro- and 5-chloro-salicylic acid. Journal of Raman Spectroscopy 41 (2010) 1085–1097

182. F. R. Dollish, W. G. Fateley, F. F. Bentley. Characteristic Raman Frequencies of Organic Compounds.Wiley: New York, 1974.

183. McGlashen M.L., Davis K.L., Morris M.D. Surface-Enhanced Raman Scattering of Dopamine at Polymer-Coated Silver Electrodes. Analytical Chemistry 62 (1990) 846–884.

184. http://biol-chem.uwb.edu.pl

185. López T., Bata-García JL., Esquivel D., Ortiz-Islas E., Gonzalez R., Ascencio J., Quintana P., Oskam G., Alvarez-Cervera F.J., Heredia-López F.J., Góngora-Alfaro J.L. Treatment of Parkinson's disease: nanostructured sol-gel silica-dopamine reservoirs for controlled drug release in the central nervous system. International Journal of Nanomedicine 1/6 (2011) 19–31. 186. Pouskouleli G., Butler IS. Laser Raman spectra of some representative hormonal steroids.

Journal of Molecular Structure 102/1-2 (1983) 93–101.

187. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 21 (2000) 667–681.

188. Peter S.J., Liang C.R., Kim D.J., Widmer M.S., Mikos A.G., Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, β-glycerolphosphate, and L-ascorbic acid. Journal of Cellular Biochemistry 71 (1998) 55–62.

Cytaty

Powiązane dokumenty

In this study, a porous oxide layer was formed on the surface of 316L stainless steel by combining Ti magnetron sputtering and plasma electrolytic oxidation (PEO) process with the

This indicates that the flame straightening process was carried out at a temperature above 500°C, which led to the phenomenon of dechromination of areas adjacent to the

In the first step of the experimental procedure, the copper pipe was prepared. The pipe was weighed, its surface was degreased with acetone and then covered with glue and adsorbent

Spotkanie sprzyjało wymianie doświadczeń oraz dyskusji, jak również stało się platformą do prezentacji potencjału Na- rodowego Centrum Badań Jądrowych O/Świerk oraz fi rmy

pochodzi z czerwca 1930 — substrat tem atyczny utw oru wykracza w cza­ sie poza przew rót majowy Piłsudskiego. Poeta sięgał do wzniosłych i tragicznych trad y cji

Performed electrochemical tests showed that chemical passivation has a significant impact on improvement of corrosion resistance of AISI 316L steel. It also has

Abstract Spherical silica particles doped with iron oxide have been synthesized via base-catalyzed one-pot sol–gel process using tetraethoxysilane (TEOS) and iron(III) eth- oxide

Pore size distribution in sol-gel material prepared in the way of base (A) and acid- hydrolysis (B) with the molar ratio R=32 and with alcohol as a solvent.. The samples prepared on