• Nie Znaleziono Wyników

On the calculation of the velocity induced by a vortex-source cone

N/A
N/A
Protected

Academic year: 2021

Share "On the calculation of the velocity induced by a vortex-source cone"

Copied!
7
0
0

Pełen tekst

(1)

M E C H A N I K A TEORETYCZNA 1 STOSOWANA 3, 19 (1981)

ON THE CALCULATION OF THE VELOCITY INDUCED BY A VORTEX-SOURCE CONE

K. V A R S A M O V , K. Y O S I F O V , A. H A I M O V (WARNA)

The present paper describes the transition from numerical quadrature to linearized

expressions for calculation of the velocity induced by unit vortex cone at points near the

vortex sheet. A criterion is obtained by comparing the results with the exact solution for

singularity distribution of constant strength.

I, The method of singularities is often used for solving axisymmetric potential flow

problems in doubly connected regions (ring aerofoils, bodies in ducts, etc.). The

bodies-are represented by a vortex or source-vortex distribution along the so called camber

sur-faces. The strength of the singularities gives the velocity at any point of the flow by

nume-rical quadrature. The numenume-rical integration for the velocity at a control point near a vortex,

sheet becomes inaccurate due to the singularity of the integrand at points on the sheet.

Consider a continuous vortex or source-ring distribution of strength y(s'), q(s'),

res-pectively, along a camber line s (see fig. I) and the control point M located near s. Any

component of the velocity induced by such a sheet may be written as

N

(2)

-456 K. VARSAMOV I IN N I

where A( are the weight coefficients of the quadrature. It was mentioned in [I] that the

increasing error of quadrature formula for small values of b forces a special consideration of the interval A - £ j—fj_i. Eq. (I) can be expressed in the form

i- l N

(2) C

=  £

where

(3 ) c*

The exact solution of the integral (3) can be found by using linearization of the camber line and the vortex strength and setting

J= i

(4)

atfO - ««+/ •  *',

where a, e , / a r e the corresponding derivatives and gń ,, y,„, jfm—- the mean values.

F or the axial and radial velocity components from (I) in [I] and [2] we obtain:

- d

(3)

ON THE CALCULATION 457 where the notation is expedient from fig. b , b2 c = - A ~ c 2. The above equations for the induced velocity have been applied to the numerical solutions [1] [3] of the inverse hydrodynamic problem for propelling complex in partially nonlinear formulation. They have been used not only for calculation of the camber (p = 0) lines, but also for the construction of duct's profile in case of control points si-tuated near the camber line. For the points sufficiently distant from the camber line the contribution of the vortex-source cone containing in its interval the control point is ob-tained from (1). The trapezoidal rule is used in both solutions. It is obvious that the boun-dary value of b, which gives more accurate result using eq. (5-^-8) than the trapezoidal rule must be obtained for the considered interval. The purpose is to obtain a smooth tran-sition in accuracy for both formulas.

3. The solution of the problem in [1] is obtained empirically by numerical tests in quite a narrow interval along the duct profile (~ 0.5) and about 20 points used in the case of large relative thickness. The results of computations [3] show that it is not convenient to use a fixed value of b like a transition criterion from (1) to (5-^8). Obviously, the varia-tion of the number of points with other parametres fixed changes the length of the inter-val A (fig. 1) and the relative position of the control point M towards the influencing cone. That is why the comparison of the accuracy of (5 + 8) and the quadrature formulae will be made for normalized values of b, q = —,-, p = —7-. Only the main components 11*

Qm Qm and v* will be discussed.

4. Consider the influence of vorticity distributon of constant strength placed along a cylindrical surface. Hence, assuming that y = const, q = const, where a = 0, e = 0, / = 0, c = 0, d — b2, from eq. (5) and (8) we obtain the expressions:

do) 5?-—«;

y y v (11) 0* = — v t where P 1

(4)

458 K. VARSAMOV I IN N I It is sufficient to analizę  eq. (10). The simple chosen scheme gives the possibility to calculate the exact values of the velocity, substituting the vorticity distribution by two equivalent source disks (fig. 2). This suggests the solution (12) u* = uDl +uDx, Rys. 2 where (13) »D =

- f^- W

.*)]}.

K(k), E(k),ll(m2 , k) are the complete elliptic integrals of first, second and third kind with

- V-  "

argen t s K ,  »" -Fig. 3, 4, 5 and 6 show certain results of calculations obtained by the use of the three methods (eq. (1), (10) and (12) for which computer programs were written. The results linearized method — — trapezoidal rule o exact values - 0.025 - 0.050 - 0.075 - 0.100 Rys. 3

(5)

trapezoidal rule o exact values 0.025 0.050 Rys. 4 0.075 0.100 linearized method — — trapezoidal rule o exact values -0.1 -0.2 -0.3 -0.4 -05 q Rys. 5 [459] -0.6 -0.7 -0.8

(6)

460 K. VARSAMOV I INNI -1 1 1 f 9>9m linearized method trapezoidal rule o exact values 0.1 0.2 Rys. 6 1 I -1 -1 - • 1 p \ \ B i i V

X

i i i A 0.5 0./. 0.3 0.2 0.1 o - P -—-cr i i i o exact values — — approx.-polynomial

y^ B

\ ^ i i i i i / /o -1 0.6 0.5 0.i 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 q Rys. 7

of (10) and (12) are in good agreement, specially for small values of \q\, where the error

of the quadrature formula increases rapidly. Increasing the value of q we obtain that, the

accuracy of both methods becomes equal and next the results from (1) are better.

The behaviour of the solution permits to obtain the curve p = f(q) plotted in fig. 7

which, gives the same accuracy in using both formulae. In the interval — 0,6 < q < 0,6

the function is approximated by the polynomial

(14)

p = - 0 , 5 3 9 3 • q

4

-0,0852 - g

3

+ 1 , 4 9 4 - q

2

- 0 , 4 4 5 - 1 0 ~

3

g + 0 , 3 8 6 • 1 0 '

(7)

O N  THE CALCULATION  461

The resulting formula defines two regions A and B which correspond to the sufficiently accurate use of eq. (10) and (I), respectively.

As a concluding remark it should be mentioned that eq. (14) permits the automatic transition from numerical quadrature to linearized expressions in calculating the velocity,, induced by a vortex- source come in points of its neighbourhood.

References

1. M. POPOV, K. VARSAMOV, Ducted Propeller Design Method, Theor. and Appl. Mechanics, N r. 2, 1 1970-(in Bulgarian).

2. K. YOSIFOV, K. VARSAMOV, G . G EN TCHEV, On the Ducted Propeller Design, R eports of the F irst N a

-tional Conference on F luid Mechanics and Fluid Machinery, Varna. 1975 (in Bulgarian).

3. N . LUDSKANOV, L. PANOV, Potential Flow of Incompressible Fluid around Arbitrary Profile, Annual Journal Appl. Mechanics, N r. 2, vol. I ll, 1967 (in Bulgarian).

P e 3 w M e

B t r a H C J I E H H E C KOP OC TH  IIOP O)KJl,EH H Oń BH P OBŁ IM KOH YC OM

B pa6oTe paccMaTpjraaeicH

 nepexofl OT BbraHCHHTenbuoft KBaflpaiypti flo jmHeapH30BaH£ix 4>°P-CKOpOCTb n opOWfleH yK ) eflHHIWHBIM BH pOBblM KOHyCOM B TOIKaX B OKpeCTHOCTH  BH XpeBOrO CJIOH . H 3 cpaBH eH H H  p e 3yn bT a T 0B c TO^JHbiM pein eH H eiw n o ji y^ e H  KpH TepH H  fljia  c H H r yji a p H o r o  p a c n p e

-Buxpa o n ocT om m oH  H H TCH CH BH OCTH .

Streszczenie

WYZN ACZAN IE P RĘ D KOŚ CI PRZEPŁ YWU  WYWOŁ AN EJ WIROWYM STOŻ KIEM W pracy przedyskutowaliś my przejś cie od kwadrtury numerycznej do zlinearyzowanych wzorów obliczeniowych, z których wyznaczona został a prę dkość przepł ywu wywoł ana jednostkowym stoż kiem wirowym w punktach w pobliżu warstwy wirowej. Przez porównanie wyników z rozwią zaniem ś cisł ym otrzymano kryterium n a rozkł ad osobliwoś ci o stał ej wydajnoś ci.

Cytaty

Powiązane dokumenty

[r]

Część II książki, zawierająca aż osiem rozdziałów, została zatytułowana: „Przekroczcie Jego bramy z hymnami dziękczynienia”. Wszystkie te rozdziały odnoszą się

In order to investigate the effect of the thickness-to-width ratio, shape of the edge, perforation ratio and hole size on the hydrodynamics of the heave plate, the forced tests

The continuity equation is discretised using a finite volume scheme so the integral of the divergence of the velocity over a cell is guaranteed to be zero.. A feature of

Wartość granicy płynię- cia dla omawianej kompozycji wyliczona z modelu Casso- na wynosi 543,4 Pa i jest niższa o 13% od wartości granicy płynięcia określonej z użyciem

Autor nie skupia się przy tym na statystycznym wyliczaniu kiedy, ile i czego przybyło, ale stara się w przystępnej formie przekazać czytelnikowi informacje o

Świat po części przeyzrzany znajdują się elementy sa­ kralne, które dotychczas nie były badane przez naukowców jako ważny aspekt twórczości Daniela Bratkowskiego..

Although this paper discussed cooling systems in which the ram intake was utilised to give a source of high pressure air, much of the work wouid be applicable to systems using a high