• Nie Znaleziono Wyników

Marta Bąk, Krzysztof Bąk, Zbigniew Górny & Beata Stożek

N/A
N/A
Protected

Academic year: 2021

Share "Marta Bąk, Krzysztof Bąk, Zbigniew Górny & Beata Stożek"

Copied!
15
0
0

Pełen tekst

(1)

EV I DENCE OF BACTERIOGENIC IRON AND MAN GA NESE

OXYHYDROXIDES IN ALBIAN–CENOMANIAN MA RINE

SED I MENTS OF THE CARPATHIAN REALM (PO LAND)

Marta B¥K1, Krzysztof B¥K2, Zbigniew GÓRNY1, 3 & Beata STO¯EK3 1

Fac ulty of Ge ol ogy, Geo phys ics and En vi ron men tal Pro tec tion, AGH Uni ver sity of Sci ence and Tech nol ogy, Aleja Adama Mickiewicza 30, 30-059 Kraków, Po land; martabak@agh.edu.pl

2

In sti tute of Ge og ra phy, Ped a gog i cal Uni ver sity of Cra cow, Podchor¹¿ych 2, 30-084 Kraków, Po land; sgbak@cyf-kr.edu.pl

3

In sti tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity, Oleandry 2a, 30-063 Kraków, Po land B¹k, M., B¹k, K., Górny, Z. & Sto¿ek, B., 2015. Ev i dence of bacteriogenic iron and man ga nese oxyhydroxides in Albian–Cenomanian ma rine sed i ments of the Carpathian realm (Po land). Annales Societatis Geologorum Poloniae, 85: 371–385.

Ab stract: The Albian and Cenomanian ma rine sed i ments of the Silesian and Tatric bas ins in the Carpathian realm of the West ern Tethys con tain fer ric and ferro manga nese oxyhydroxides, vis i ble mac ro scop i cally as brown stainings. They coat cal car e ous bioclasts and min eral clasts, fill pore spaces, or lo cally form con tin u ous, par al lel microlayers, tens of mi crom e ters thick. Lightmi cro scope (LM) and scan ningelec tronmi cro scope (SEM) ob ser -va tions show that the coat ings con tain elon gated cap sules, ap prox i mately 3–5 µm across and en riched in iron and man ga nese, which may be rem nants of the orig i nal sheaths of iron-re lated bac te ria (IRB). More over, the fer ric and ferro manga nese stain ing ob served un der LM is sim i lar to bac te rial struc tures, re sem bling the sheaths, fil a ments and rods formed by pres ent-day bac te ria of the Sphaerotilus–Leptothrix group. All of the pos si ble bac te ria-like struc tures are well pre served ow ing to pro cesses of early diagenetic ce men ta tion. If the ob served struc tures are fos sil IRB, these or gan isms could have played an im por tant role in iron and man ga nese ac cu mu la tion on the sea floor dur ing Albian–Cenomanian time. The most plau si ble source of met als for bac te rial con cen tra tion in the Silesian Ba sin might have been sub ma rine low-tem per a ture hy dro ther mal vents, as pre vi ously was hy poth e sized for Cenomanian–Turonian de pos its on the ba sis of geo chem i cal in di ces.

Key words: iron, man ga nese, iron-re lated bac te ria, Albian–Cenomanian, Silesian Nappe, Tatra Mts., Carpathians. Manu script received 6 March 2014, accepted 29 January 2015

IN TRO DUC TION

Iron and man ga nese oc cur widely in var i ous geo log i cal en vi ron ments. Iron- and man ga nese-bear ing min er als can be formed by in or ganic pre cip i ta tion or as a re sult of bac te -rial pro cesses (e.g., Fer ris et al., 1988; Ghiorse and Ehrlich, 1992; Konhauser, 1998; Brown et al., 2000; Kend all et al., 2012). Iron ox i da tion by bac te ria may be as much as 60 times faster than in abiotic re ac tions (Soggard et al., 2000). Fer ric oxyhydroxides formed by bi o log i cal me di a tion are highly in sol u ble, with strong po ten tial for pres er va tion in the geo log i cal re cord (Haese, 2000; Croal et al., 2004; Konhauser and Rid ing, 2012).

Bac te ria that can cat a lyze the ox i da tion of Fe (II) and Mn (II) in mod ern en vi ron ments are called ironre lated bac -te ria (IRB; Noike et al., 1983; Schrenk et al., 1998; Fran cis and Tebo, 1999; Kirby et al., 1999). These bac te ria are able to ac cu mu late the metal ions, ei ther out side their cells or in the sur round ing extracellular poly meric ma tri ces. On the

ba sis of this abil ity, the IRB can be broadly sub di vided into groups, de pend ing on the na ture and site of the ac cu mu lated iron and man ga nese (e.g., Konhauser and Rid ing, 2012).

The fos sil iza tion of bac te ria is most likely to oc cur, if they pre cip i tated extracellular in or ganic coat ings. More re sis tant to later remo bi li za tion are me tal lic bac te rial coat -ings, such as those cre ated by mod ern IRB. Such encrustations are usu ally left as the only rem nants af ter the de com po si tion of bac te rial or ganic mat ter, pro vid ing valu able in -for ma tion on mi cro bial ac tiv ity in an cient en vi ron ments.

Stud ies of IRB be gan in 19th cen tury (sum mary in Cullimore and McCann, 1978). They were first re ported by Ehrenberg (1836), who de scribed Gallionella ferruginea from this group of or gan isms. So far, the ear li est fos sils, morphologically com pa ra ble with mod ern iron bac te ria, are those rec og nized in the Pre cam brian cherts of the Gunflint Iron For ma tion (Schopf et al., 1965; Schelble et al., 2004).

(2)

Bac te rial iron encrustations have been de scribed in many Phanerozoic suc ces sions, es pe cially oc cur ring in con junc -tion with red sed i men tary strata (e.g., Harder, 1919; Schopf and Fairchild, 1973; Karkhanis, 1976; Awramik et al., 1983; Mamet et al., 1997; Préat et al., 1999, 2000, 2006; Boulvain et al., 2001; Yongding et al., 2004; Fortin and Langley, 2005; Mameth and Préat, 2006; Ma son, 2008; Barale et al., 2013).

In the pres ent study, the au thors re port mor pho log i cal and chem i cal data show ing the pres ence of mi crobes, which

may be rem nants of the iron-re lated bac te ria group in the mid-Cre ta ceous (Albian–Cenomanian) ma rine sed i ments of the Carpathians. They have been rec og nized in turbiditic beds of the Silesian Nappe (Outer Carpathians) and in a condensed phos phatic lime stone of the High-Tatric Unit (In ner Carpathians). The pri mary goal of this pa per is to de -ter mine whether the black-brown-or ange stain ing with Fe-Mn oxyhydroxides, which form mi cro scop i cally vis i ble coat ings on microfossils, may be traces of bac te rial com mu -ni ties from the time of sed i ment de po si tion.

372

M. B¥K ET AL.

Fig. 1. Lo ca tion of study ar eas. A. Sim pli fied geo log i cal map of the Carpathians (brown and green col ors) and their fore land. B. Lo ca -tion of study ar eas in the West ern Carpathians on con tour map (map af ter Bryndal, 2014). C. Geo log i cal map of study area on Barnasiówka Ridge (Wieliczka Foot hills, Outer Carpathians; map af ter Burtan, 1964; Burtan and Szymakowska, 1964, B¹k et al., 2001). D. Geo log i cal map of study area in ¯eleŸniak gully (Dol ina Koœcieliska val ley, Tatra Mts., In ner Carpathians; map af ter Guzik, 1959).

(3)

GEO LOG I CAL SET TING

Outer Carpathians – Silesian Nappe

The Silesian Nappe is one of the larg est tectono-fa cies units of the Outer Carpathians (Fig. 1A, B), com posed of Up -per Ju ras sic through Mio cene de pos its, mainly siliciclastic turbidites. These sed i ments were up rooted from their base -ment and thrust from the south dur ing the Mio cene (Osz-czypko, 2004 and ref er ences therein). Dur ing Cre ta ceous– Palaeogene time, the sed i ments of the Silesian Nappe were de pos ited in an in de pend ent sed i men tary realm, the Silesian Ba sin, which was a part of the West ern Tethys do main, lo -cated near the south ern mar gin of the Eu ro pean Plat form (e.g., Ksi¹¿kiewicz, 1956, 1962, 1977; Golonka et al., 2002). Since the Berriasian through the Eocene, de po si tion in the Silesian Ba sin took place be low the cal cium com pen sa tion depth (CCD; Ksi¹¿kiewicz, 1975; S³omka et. al., 2006).

The sed i men tary se quence stud ied here rep re sents deep-wa ter fa cies, com posed of mm- to cm-thick siliciclas-tic to cal car e ous, partly si lici fied, fine-grained turbidites, which rep re sent pre dom i nantly the Tbde in ter vals of the

Bouma se quence, in ter ca lated with hemipelagic, noncal -car e ous claystones (B¹k K. et al., 2001; B¹k M. et al., 2005, 2011). The turbidites in clude quartz grains with vari able amounts of car bon ates, but the most dis tin guish ing fea ture of these de pos its is the high con tent of biogenic par ti cles, in clud ing the spicules of si li ceous sponges. Other nu mer ous biogenic com po nents are plank tonic and cal car e ous ben thic foraminifers, radio lar ians, frag mented echinoid os si cles,

and inoceramid prisms (B¹k M. et al., 2011). The source for the re de pos ited min eral and biogenic ma te rial was the shelves rim ming the north ern edge of the Silesian Ba sin, cor re spond ing to the mar gin of the West ern Tethys. Noncal car e ous claystones, which are interbedded with turbidites, rep -re sent deep-wa ter sed i ments, de pos ited be low the CCD (B¹k M. et al., 2005, 2011).

The turbidites are clas si fied into three lithostratigraphic units (Fig. 2): the Mid dle Lgota Beds (Aptian – Mid dle Ce-nomanian), the Up per Lgota Beds (Mikuszowice Cherts; Mid dle–Up per Cenomanian) and the Barnasiówka Radiola- rian Shale For ma tion (Up per Cenomanian – Lower Turo-nian). Their stra tig ra phy is based on microfossils (foraminifers, radio lar ians), with the biostratigraphic sub di vi sion cor -re lated in part with the car bon iso to pic curve (B¹k K. et al., 2001; B¹k M. et al., 2005; B¹k K., 2007a, c; B¹k M., 2011).

In ner Carpathians – High-Tatric Units

The HighTatric units oc cur ring in the Tatra Mts., be long to the Tatricum, a part of the In ner Carpathians (Cen -tral West ern Carpathians; Plašienka, 2003). They con sist of a paraautochthonous unit, which is a slightly dis placed sed -i men tary cover of the crys tal l-ine core, and the allochtho-nous units, in volved in sev eral re cum bent faults (e.g., Ra-bowski, 1959; Kotañski, 1961; Ksi¹¿kiewicz, 1977; Jure-wicz, 2005, 2012). These units com prise the sed i men tary suc ces sion (mainly cal car e ous de pos its) of the Lower Tri as -sic through mid-Cre ta ceous (e.g., Lefeld, 1968).

Fig. 2. Albian–Coniacian lithostratigraphic scheme and lith o logic log of the Barnasiówka-Jasienica sec tion (Silesian Nappe, Pol ish Outer Carpathians; Koszarski and Œl¹czka, 1973; sup ple mented by B¹k et al., 2001).

(4)

Dur ing Me so zoic times, the Tatra area was sit u ated in the West ern Tethys do main (e.g., Golonka et al., 2000; Ju-rewicz, 2005), in prox im ity to the Eu ro pean plate (Gra-bowski, 1997). It was sep a rated from the Eu ro pean Plat form by the Pieniny (Vahic) Ocean, the Outer Carpathian bas ins and the shelf bas ins (Plašienka, 1999). An open ma rine depo- sitional en vi ron ment with pe lagic and hemipelagic sed i men -ta tion char ac ter ized this area in the mid-Cre -ta ceous.

The Albian–Cenomanian sed i ments have been clas si -fied as the Zabijak For ma tion in the Pol ish part of the Tatra Mts. (Krajewski, 2003). These de pos its were dis posed on the Valanginian–Albian plat form car bon ate rocks or con tact tec toni cally with other sed i men tary units (Passendorfer, 1930; Kotañski, 1959; Lefeld, 1968; Masse and Uchman, 1997). The for ma tion is clearly tri par tite. Its base is rep re -sented by glauconitic lime stone (Wielka Równieñ Bed) with an abun dant in ver te brate fauna and phos phate con cre -tions (Passendorfer, 1930), lo cally with ex otic crys tal line peb bles (Passendorfer, 1930; Marcinowski and Wiedman, 1985, 1990) and lenses of gravelstone (Rabowski, 1959). They are over lain at places by a con densed phos phatic lime -stone em brac ing nu mer ous hardgrounds, stromatolites, oncoids and pisolitic struc tures (Niegodzisz, 1965; Krajewski, 1981a–c). In the synsedimentary tec tonic de pres -sion at Kominiarski Wierch, the lime stone suc ces -sion (¯e-leŸniak Mem ber, Ku Stawku Beds; Krajewski, 2003) at tains 60 m in thick ness. The mid dle part of the Zabijak For ma tion is rep re sented by pe lagic marls, in ter ca lated with hemipela-gites (marly shales) and very thin-bed ded turbiditic

siltsto-nes (up to 130 m thick; Kamienne Mem ber; Krajewski, 2003). This suc ces sion passes up ward into a suc ces sion (Pi- sana Mem ber; Krajewski, 2003) con sist ing of thin, hemipe-lagic, marly shales and nu mer ous thin- to me dium-bed ded turbidites, com posed of the silty and sandy frac tions (up to 120 m thick; Passendorfer, 1930; Rabowski, 1959; Ko-tañski, 1961; Bac-Moszaszwili et al., 1979; Uchman, 1997). These sed i ments (Kamienne and Pisana mem bers) rep re sent the Up per Albian through the Up per Cenomanian (B¹k K. and B¹k M., 2013).

MA TE RIAL AND METH ODS

This pa per is based on data from fiftytwo sam ples col lected from two sec tions. The first of these sec tions is lo -cated in the cen tral part of the Silesian Nappe (Outer Car-pathians), 30 km south of Kraków, near the town of Myœle-nice, where the Albian–Turonian sed i ments, 75 m thick, crop out in the Barnasiówka-Jasienica Quarry (N 49°49'56.8921" and E 19°52'2.319") in the Barnasiówka Ridge, Wieliczka Foot hills (Fig. 1B, C). The sec tion com prises the up per most part of the Mid dle Lgota Beds (MLB; about 20 m thick), the Mikuszowice Cherts (MC; 32 m thick), the Barnasiówka Ra-diolarian Shale For ma tion (BRSF; 14 m thick), and the non-cal car e ous Var ie gated Shale (about 10 m thick; Fig. 2). Fer-ruginous and man ga nese coat ings are fre quent in the en tire Cenomanian part of the sec tion.

The sec ond sec tion is lo cated in the Pol ish part of the Tatra Mts. (In ner Carpathians), where the

Albian–Cenoma-374

M. B¥K ET AL.

Fig. 3. Albian–Cenomanian lithostratigraphic scheme and lith o logic log of the ¯eleŸniak sec tion (Tatra Mts, In ner Carpathians; af ter Krajewski, 2003). WTL Fm – Wielka Turnia Lime stone For ma tion

(5)

nian sed i ments crop out in the ¯eleŸniak gully, a left trib u tary of the Koœcieliska Val ley, about 100 m be low 3mhigh wa -ter fall (N 49°14'37.0915" and E 19°51'24.3577"; Fig. 1B, D). The sec tion com prises the up per most part of the ¯eleŸniak Mem ber (about 1.7 m thick) and the low er most part of the Kamienne Mem ber (about 0.3 m thick). Ferruginous coat ings are fre quent in the Up per Albian part of the sec tion, at the top of the ¯eleŸniak Mem ber.

The Fe-Mn coat ings were ana lysed in thin sec tions from 39 sam ples, col lected in the Silesian Nappe of the Outer Carpathians, and from 13 sam ples col lected in the Tatra Mts. (Fig. 3). Pho to mi cro graphs of microfacies were taken, us ing a HITACHI S4700 scan ning elec tron mi cro scope (Sam ple Bar5, Bar42, Z1g), and a ste reo scopic mi cro scope Nikon SMZ1500 with dig i tal cam era (all the sam ples in ves ti gated). Chem i cal anal y ses of the min eral con stit u ents of the ferruginous and man ga nese coat ings were car -ried out us ing a JEOL T-300 SEM, equipped with an 860500 en ergydispersive spec trom e ter (EDS), un der con -di tions of 20–25 kV ac cel er at ing voltage, 1 ìm spot size of a beam fo cused on car boncoated thin sec tion, and counts ac -quired for 150 s. The data were cor rected us ing the ZAF/PB soft ware.

RE SULTS

In the sed i ments of the Silesian Unit, iron and man ga -nese oc cur as fer ric and ferro manga nese oxyhydroxides. They are vis i ble mac ro scop i cally as brown, ferruginous stain ing, par al lel to lam i na tion. The de tailed struc ture of brown, ferruginous col or ation is vis i ble only in mi cro scopic stud ies of thin sec tions. The brown stain ing is pres ent in dif -fer ent forms: (1) as coat ings of microfossils and de tri tal grains, (2) as fill ings of the pri mary pore spaces be tween grains, and (3) as mi laminae, which are sev eral mi cro-metres thick. Fe-Mn coat ings are pres ent in turbidite lay ers in the Mikuszowice Cherts and Mid dle Lgota Beds, in four types of microfacies as: sublitharenite with microfossils, sublitharenite with sponge spicules, spiculitic sublithare-nite, and biomicrite with foraminifers, radio lar ians and sponge spicules (for a de tailed de scrip tion of the microfa-cies – see M. B¹k, 2011; M. B¹k et al. 2005, 2011).

In the Tatric sed i ments, only fer ric oxyhydroxides are pres ent. They are vis i ble mac ro scop i cally as brown staini-ngs in a phosphorite peb ble lag with phos phatic stromatolites, which cover a com pos ite hardground. The de tailed mi -cro scopic ex am i na tion of thin sec tions showed that ferruginous ma te rial with its char ac ter is tic col or ation forms con -tin u ous, par al lel microlayers, sev eral micrometres thick, within stromatolites, infill ru di men tary pore spaces in the sediment or re places echinoderm plates.

Fe-Mn coat ings and in fill ings

Silesian Nappe sed i ments. Fe and Fe-Mn coat ings have

been ob served on each type of cal car e ous and si li ceous bioclasts. Foraminiferal tests at dif fer ent stages in the de vel -op ment of re place ment and/or coat ing struc tures (Figs 4A, B, G, H, 5A–C) are pres ent in all microfacies types. The

Fe-Mn coat ings also oc cur on cal ci fied sponge spicules, the sur faces of which were cov ered by microlaminated brown encrustations (Fig. 4D, E). Sim i lar encrustations were ob served in side cal ci fied spicules still pos sess ing void rem -nants of the in ner ca nal (Fig. 4B). Ferruginous coat ings and in fill ings are pres ent on radiolarian tests (Fig. 4G) and in side echinoderm os si cles, which were orig i nally mi cropo -rous (Fig. 4F). The brown pig ment high lights their po -rous struc ture. It was also noted in the inter-gran u lar pore space (Fig. 4B) that was filled by blocky or isopachous bladed cal -cite ce ment (Fig. 4B, G, H). The cal car e ous skel e tons are partly or com pletely re placed by Fe and Fe-Mn oxyhydro-xides (see Figs 4, 5). Coat ings are ac com pa nied by sin gle microcrystals or ag gre gates of opaque min er als (Figs 4C, 5A–C). Some of the grains, es pe cially cal ci fied si li ceous spicules of sponges are cov ered with thin coat ings, some -times with cracks (Fig. 7A, B).

The sur faces of clasts in very finegrained, pe lagic ma -te rial are cov ered by Fe-Mn mi cro-lam i na-ted encrustations, tens of micrometres thick. They are as so ci ated with thin lay ers of or ganic mat ter (Fig. 4G, H). Such mats sur round de -tri tal grains and microfossils and fill skel e tal grains (Fig. 4G, H).

Tatra Mts. sed i ments. Iron cov ers, coat ings and fill ings

are pres ent in sed i ments of the ¯eleŸniak Mem ber, where frag mented echinoderm skel e tons, in clud ing com mon holo- thurid plates (Fig. 6B) are cov ered with or re placed by Fe oxyhydroxides. Fer ric coat ings are ac com pa nied iso lated Fe-bear ing microcrystals or ag gre gates of them (Fig. 6D). They usu ally form sep a rate lay ers in side stromatolitic struc -tures (Fig. 6A–D). These crys tals are up to 5 µm in size. They are densely packed in ag gre gates that usu ally are less than 30 µm across (Fig. 6D).

Ultrastructure of brown stain ing

The ex am i na tion of thin sec tions of microfacies from the Mid dle Lgota Beds at ×1,000 mag ni fi ca tions shows that the brown stain ing as grain coat ings (Fig. 7A, B) con sists of densely packed, elon gated cap sules, ap prox i mately 5 µm across (Figs 7I, 8A, B). The walls of the in di vid ual cap sules are 0.1 µm thick. EDS anal y ses showed that the cap sules are strongly en riched in iron and man ga nese (Fig. 8C, D). Other ultra struc tures of brown stain ing, found in sam ples from the Mid dle Lgota Beds show a dough nut-like shape, 5–10 µm in di am e ter. They form brown rims on the sur faces of bi o tite flakes (Fig. 7G).

Fur ther Fe or Fe-Mn stain ing and coat ings, ob served in the Mikuszowice Cherts are fluffy, brown to black, disk-like stains of pig ment, about 3–10 µm across (Figs 5A–C, 7C–E, H). In turn, the men tioned Tatric sed i ments con tain rounded and dark Fe stain ing, ar ranged in the form of iso -lated clus ters (Fig. 6C, D).

Grains with punc tured sur face

The sur faces of nu mer ous cal car e ous grains, found in the Mikuszowice Cherts and the Tatric sed i ments bear tra-ces of oval-shaped mi cro-de pres sions (Fig. 9A–D). These struc tures are wide and shal low, or small and deep, av er ag

(6)

-376

M. B¥K ET AL.

Fig. 4. Pho to mi cro graphs (plane po lar ized light) of fer ric and ferro manga nese oxyhydroxies stain ing, pres ent in sublitharenite and biomicrites of Cenomanian turbidites from Silesian Nappe, Pol ish Outer Carpathians. A. Tests of ben thic cal car e ous foraminifers (f), partly or com pletely re placed by ferruginous coat ings within si lici fied biomicrite. B. Thin layer of bac te rial biofilmlike struc ture (bb) in -side and out -side the ca nal of sponge spicules (s) and foraminiferal tests (f), and in inter-gran u lar pore space (ig). C. Fe-Mn min er al iza tion in side ben thic foraminiferal test. Closely packed crys tals tightly fill the in te rior of the cham bers. D, E. Car bon ate grain sur face (cal ci fied sponge spicule) show ing FeMn bac te rialike coat ings. F. Crosssec tion of mi cropo rous echinoderm os si cles filled with ferruginous coat -ings. G, H. Par al lel-lam i nated brown mat binds radiolarian skel e tons (r), ben thic (bf) and plank tonic (pf) foraminiferal tests and de tri tal grains (gr) sur rounded by some opaque flocks, most prob a bly or ganic mat ter (om). A, B, D–F – sam ple Bar-42; C – sam ple Bar-57, G, H – sam ple Bar-64.

(7)

ing a few mi crons across. They usu ally in clude brown thin coat ings in side the cav i ties.

DIS CUS SION

Bac te rial na ture of the Fe-Mn coat ings

In gen eral, the mor phol ogy it self is not con sid ered as a con clu sive in di ca tor of the bac te rial or i gin of ultra struc -tures. How ever, some unique shapes, e.g. the sheath-like ultra struc tures and fil a ments, are usu ally con sid ered to be of mi cro bial or i gin, and in rare cases could be as cribed to par -tic u lar groups of mi cro or gan isms (e.g., Van Veen et al., 1978; Mulder and Deinema, 1992).

Densely packed, elon gated cap sules, ap prox i mately five micrometres in crosssec tion (Fig. 7I), are here in ter preted as fos sil ized ironre lated bac te ria (IRB). SEM ob ser -va tions re vealed bac te ria-size cap sules with hol low cores and oval outer shapes (Fig. 8). Very thin walls (0.1 µm thick) of the in di vid ual cap sules (Fig. 8A, B) may be rem -nants of the metal bac te rial sheath, oc cur ring out side the cell mem brane. The EDS anal y ses showed that the cap sules are strongly en riched in iron and man ga nese (Fig. 8). This is why they re sem ble most prob a bly fos sil ized bac te ria of the

Leptothrix group, be cause un like other sheathed bac te ria,

they are able to ox i dize both iron and man ga nese (Nel son et

al., 1999).

An other sign of a pos si ble bac te rial or i gin are dough nutshaped forms, 5–10 µm across. They oc cur as brown, dough -nut-like rims on the sur faces of bi o tite flakes (Fig. 7E, F). These struc tures re sem ble col o nies of IRB from the

Siderocapsa group, on the ba sis of the sim i lar i ties in shape and di

-men sions with re spect to mod ern Siderocapsa col o nies, which form col lar slime, im preg nated with iron oxyhydroxies (e.g., Hardman and Henrici, 1939, fig. 1; Dubinina and Zhda- now, 1975, figs 8–11; Hanert, 2006).

Fe or Fe-Mn fluffy, brown to black, disk-like stains of pig ment, about 3–10 µm across (see en large ments on Fig. 7C, E), are also pos si ble ev i dence of bac te rial or i gin. These struc tures in shape re sem ble as sem bled hold fasts of the

Sphaerotilus–Leptothrix group, re cov ered from mod ern en

-vi ron ments (Spring, 2006). The sim i lar i ties are based on chem i cal com po si tion, be cause these black to brown flecks con tain Fe (Fig. 8). More over, there is a sim i lar ity to the mor pho log i cal fea tures of flecks and fluffy struc tures by comparison with lab o ra tory iso lated pure IRB from

Spha-erotilus–Leptothrix cul tures (Van Veen et al., 1978, figs 14,

18). The shape, di men sions and or ga ni za tion of these struc -tures (Fig. 7C–E, H) re sem ble those in col o nies of pres ent-day spe cies, such as Leptothrix lopholea, L. cholodnii and

Sphaerotilus natans (figs 6a, 7b, c in Spring, 2006, af ter

Rouf and Stokes, 1964, and Mulder and Deinema, 1992). In these bac te rial col o nies, hold fasts are rounded, im preg nated with Fe and FeMn ox ides, and sur rounded by thin, fil a men -tous branch ing.

An other sign of pos si ble bac te rial ac tiv ity in the sed i ments stud ied are ovalshaped mi crode pres sions of bac te -rial size, which punc ture the sur faces of cal car e ous grains and bioclasts. Such struc tures can be in ter preted as the pit ting cor ro sion, left af ter bac te rial ac tiv ity. Bac te rial punc

-tur ing is com monly known from dif fer ent, mod ern, aquatic en vi ron ments (e.g., Thorseth, et al., 1995, figs 1–7, 11; Ullman et al., 1996, fig. 1; Lüttge and Conrad, 2004, figs 3–6; Brehm et al., 2005, figs 1–3; Da vis et al., 2007, figs 1–14).

Fig. 5. A–C. SEM BSE im ages and EDS anal y sis of biomicrite in Cenomanian turbidites from Silesian Nappe, Pol ish Outer Carpathians. A. Foraminiferal (F) test wall re placed by iron. De struc -tion of the wall started both from out side and in side of the test. (Ca) in di cates the area of high con tent of cal cium car bon ate. (Fe) in di cates the area of el e vated iron con tent in places where brown pig ment oc curs. (R) – Radiolaria, (Rs) – radiolarian spicule. B. Close-up of ben thic cal car e ous foraminiferal test, partly re placed by rem nants af ter bac te ria-like fil a ments and hold fasts. Iron ox ide crys tals could arise as a re sult of recrystallization of bac te ri ally pre cip i tated iron oxyhydroxides. C. EDS spec trum of the iron ox -ide crys tal (C) anal y sis in the spot marked on Fig ure B. A–D – sam ple Bar-5.

(8)

Fe and Fe-Mn oxyhydroxides, vis i ble as coat ings on ben thic foraminiferal tests, are pres ent at var i ous stages of ad vance ment of this pro cess. An ini tial stage is rep re sented by microboring fronts that show ir reg u lar Fe-Mn in fill ing zones, ex tend ing from the ex ter nal sur faces of the test walls in ward (Fig. 4A–B). An ad vanced stage is rep re sented by

tests com pletely re placed and fringed by dense lay ers of brown to black coat ings, which make the rem nants of the walls much thicker than the orig i nals (Fig. 4A).

Some clasts and bioclasts in very fine-grained pe lagic ma te rial, as so ci ated with thin lay ers of or ganic mat ter, are cov ered by Fe and Fe-Mn mi cro-lam i nated encrustations.

378

M. B¥K ET AL.

Fig. 6. Pho to mi cro graphs (plane po lar ized light) of Fe-bear ing mi cro-laminas form ing seams in Late Albian stromatolite struc tures from Tatra Moun tains. A. Par al lel-lam i nated stromatolite de vel oped on a rug ged sub strate. B. Pho to mi cro graph of stromatolite and the sur round ing marl with bioclasts. One of them is holothurid plate (hp), re placed by Fe oxyhydroxides. C. Closeup of Fig ure A show ing de -tails of lam i na tion in stromatolite. Dark layer con sists of densely packed Fe-bear ing crys tals. D. Close-up of dark seam with Fe-bear ing crys tals (Fe-crys tals). They grew in brown pig ment, re sem bling rem nants af ter bac te rial hold fasts (h). A–D – sam ple Z-1g.

Fig. 7. Pho to mi cro graphs (plane po lar ized light) of fer ric and ferro manga nese oxyhydroxies stain ing re sem bling bac te rialike ultra -struc tures in Cenomanian turbidites from Silesian Nappe, Pol ish Outer Carpathians. A. In ner ca nal of sponge spicule (ar row) filled by biofilm-like struc ture. B. Close-up of Fig. A show ing cracks in biofilm-like struc ture (ar rows). C. Brown amor phous iron ox ide/oxyhy-droxide form ing fluffy, disk-like stains of pig ment, 3–10 µm across, re sem bling bac te rial hold fasts (h). They are sur rounded by or attached to area re sem bling bac te rialike fil a ments (fl). D. Disklike stains of pig ment, re sem bling bac te rial hold fasts (h). Mu tual ar range -ments of grains and ce ment in re la tion to stains of pig ment. E. De tails of disk-like stains of pig ment re sem bling bac te ria-like hold fasts (h) sur rounded by flocculent area (fl) re sem bling con glom er a tion of bac te rial fil a ment (f). F. Fe-Mn-bear ing min er als ar ranged in chain as long and wide as bac te ria-like fil a ment. G. Brown cir cu lar stain ing on bi o tite sur face are of dough nut-like shapes (s), re sem bling bac te rial col ony from Siderocapsa group. H. Disk-like stains of pig ment, re sem bling bac te ria-like hold fasts (h) and bac te ria-like fil a ments (fl). These struc tures are spread in the inter gra nu lar pore space, filled by sub se quent blocky cal cite ce ment. I. Coat ing sur round ing foraminiferal test with nu mer ous el lip ti cal forms, re sem bling bac te ria-size cap sules (c). Pit ting (p) on the cal cite crys tals de vel oped in empty space in side cham ber of a foraminiferal test. Or ganic mat ter (om). A–E – sam ple Bar-5, F – sam ple Bar-57, G, I – sam ple Bar-64, H – sam ple Bar-42.

(9)
(10)

Such encrustations are tens of micrometres thick, form ing a pad ding in side the cham bers of microfossil tests and also the in ner ca nals of sponge spicules (Fig. 4C). Such a cover might rep re sent fos sil ized biofilms, left af ter bac te rial ac tiv ity and metal pre cip i tates (Fig. 5A–C). Lo cally, such biofilm-like struc ture pos sesses a net work of cracks (Fig. 7A, B).

Con di tions of growth of iron-re lated bac te ria Liv ing con di tions of mod ern iron-re lated bac te ria

Mod ern spe cies of IRB can live and pre cip i tate iron and/or man ga nese oxyhydroxides un der spe cific con di tions. On the ba sis of the con straints on the growth of mod ern IRB, it is pos si ble to in ter pret the con di tions that dom i nated in the bot tom en vi ron ments of the Silesian Ba sin and the Tatric Ba sin dur ing sed i men ta tion of the sed i ments stud ied. Mod ern Leptothrix spe cies are widely dis trib uted in aquatic en vi ron ments, char ac ter ized by a pH range of 6.5–7.5, a low ox y gen gra di ent, tem per a tures be tween 10–35°C, and a sup ply of iron and man ga nese ions (Alt, 1988; Em er son and Moyer, 2002; Spring, 2002). Such hab i tats may oc cur

worldwide to day, both on land and in ma rine en vi ron ments. The most typ i cal are nat u ral iron seeps in fresh wa ter wet -land ar eas, for est ponds and iron springs (Ghiorse and Ehrlich, 1992). In fresh wa ter and brack ish en vi ron ments, there is ev i dence of a re la tion ship be tween IRB and the for -ma tion of ferro -manga nese nod ules (Huckriede and Meisch-ner, 1996; Trokowicz, 1998; Stein et al., 2001). How ever, the most prob a ble an a logue for IRB oc cur rences in the Silesian and Tatric bas ins can be found in oce anic set tings. In such en vi ron ments, the IRB are known to be as so ci ated with vol ca nic springs (Hanert, 2002) or hy dro ther mal vent -ing ar eas (Dymond et al., 1989; Sibuet and Olu, 1998; Sun

et al., 2011), where they form abun dant com mu ni ties com

-posed of nu mer ous taxa (e.g., Van Do ver, 2002). Bi o log i cal data pub lished so far pres ent ap prox i mately 55 deep-wa ter and 62 shal low-wa ter hy dro ther mal vent eco sys tems in mod ern oceans (Tarasov et al., 2005; Dando, 2010). Dis -cov er ies of Leptothrix ochracea have been re ported from the Loihi shield vol cano, lo cated on the Ha wai ian ar chi pel -ago (Em er son and Moyer, 2002), and also in the vi cin ity of ther mal vents on the Juan de Fuca Ridge in the NE Pa cific

380

M. B¥K ET AL.

Fig. 8. SEM im ages of forms in ter preted herein as bac te rial cap sules. A, B. Cap sules stuck in inter gra nu lar pore space of sublitharenite layer in sam ple Bar-42 in Cenomanian turbidites from Silesian Nappe, Pol ish Outer Carpathians. C, D. Re sults of the EDS anal y ses of the cap sule walls.

(11)

Ocean (Ken nedy et al., 2003). In each case, the Leptothrix spe cies can live in the vi cin ity of lowtem per a ture hy dro -ther mal vents.

Bac te ria-like struc tures in re la tion to sea-floor con di tions

The re la tion ship of the pos si ble bac te riabear ing coat -ings to min eral grains and ce ment in the microfacies stud ied in di cates that the encrustations grew in soft, un con sol i dated sed i ment. This can be dem on strated by the ex clu sive oc cur rence of the rem nants of bac te rialike struc tures in the orig i -nal pore spaces or on the sur faces of terrigenous and biogenic clasts. The sub se quent car bon ate and sil ica ce men ta tion en vel oped the FeMn stain ing of pos si ble bac te rial or i gin and filled up the pore spaces. All these del i cate struc -tures were pre served, ow ing to rapid ce men ta tion. Cal cite ce ment oc curs in the two ar eas stud ied, while sil ica is char -ac ter is tic mainly for the Mid dle Lgota Beds and Mikuszo-wice Cherts of the Silesian Nappe.

Most mod ern IRB re quire slowly run ning wa ters for ef -fec tive growth (Spring, 2002). The bot tom en vi ron ments of the Silesian and Tatric bas ins could have cre ated such hab i -tats for bac te ria dur ing the Albian and Cenomanian. The succession stud ied of the Silesian Nappe com prises sed i -ments, de pos ited by low-den sity tur bid ity cur rents with long-last ing pe ri ods of non-de po si tion, ev i denced by the low ac cu mu la tion rate, not ex ceed ing 7 mm/kyr and nu mer -ous hi a tuses (B¹k K., 2007b; B¹k M., 2011). Con se quently, these sed i ments could have in cluded both the in tact bac te -ria-like mats, grow ing un der calm depositional con di tions, and Fe-Mn lay ers en com pass ing cha ot i cally re dis trib uted

and dis in te grated bioclasts, re lated to ep i sodes with di luted tur bid ity flows.

In the Tatric Ba sin, lay ers con tain ing small Fe-bear ing crys tals also grew un der con di tions of very low sed i men ta -tion rates (Krajewski, 1981b). These crys tals, which were probably formed on IRB rem nants, are pres ent in phospha-tic-si li ceous-fer ric or fer ric-si li ceous laminae in side stroma- tolites. The or i gin of these laminas pre vi ously was in ter -preted as an ef fect of early ce men ta tion and re place ment pro cesses, which took place in the pri mary cal car e ous ma te -rial of stromatolites (Krajewski, 1981b). It is pos si ble that the IRB used the iron pre cip i tated in these pro cesses for the con struc tion of their sheaths.

Source of fer rous and man ga nese ions for IRB ac tiv ity

Ac cord ing to Bennet et al. (2008), mod ern sub ma rine vents could pro vide even 12–22% of the global deep-ocean dis solved Fe. An ex am ple of or ganic in ter ac tion with hy -dro ther mal Fe came from a study of the ox i da tion rates of dis solved Fe(II) in hy dro ther mal plumes over the Cen tral In dian Ridge (Statham et al., 2005). The IRB are typ i cal mi cro or gan isms which could live in ar eas of ac tive hy dro ther mal vent ing pro vide so lu tions con tain ing Fe ions. They in -clude mainly the Sphaerotilus–Leptothrix group, en crusted with fer ric hy drox ide (Sphaerotilus) or ferro manga nese ox -ides (Leptothrix) (Mulder and Van Veen, 1963; Spring, 2002). In such en vi ron ments, the IRB build tu bu lar sheaths, pre cip i tated out side the sin gu lar cells, or/and ar range cells in long fil a ments shielded by me tal lic cover.

Fig. 9. Pho to mi cro graphs (plane po lar ized light) of fer ric and ferro manga nese oxyhydroxies stain ing re sem bling bac te riapit ted cor ro sion on car bon ate grains in Cenomanian turbidites from Silesian Nappe, Pol ish Outer Carpathians. A–C. Ex am ples of cor ro sion pits (ar -rows) on grain sur face. Traces of cor ro sion vis i ble as mi crom e ter-size pit cav i ties (ar -rows). Pits are cov ered with mem brane of fer rous coat ings. D. Close-up view of sur face of cal ci fied sponge spicule with pit ted cor ro sion. A–D – sam ple Bar-5.

(12)

The spe cific bac te ria-like ultra struc tures, such as sheaths, fil a ments and rods from the sed i ments stud ied, which re sem ble the morphotypes of pres ent-day Leptothrix liv ing around low- tem per a ture hy dro ther mal vents, may in di cate the oc cur -rence of such vents on the deep sea floor of the Silesian and Tatric bas ins dur ing the Albian and Cenomanian. The oc -cur rence of hy dro ther mal vents dur ing Late Cenomanian– Early Turonian times, as the source for man ga nese, iron and other met als has been sug gested for the Outer Carpathian bas ins. Pre vi ously as signed geo chem i cal in di ces (B¹k K., 2006, 2007a–c) for an as so ci a tion of Fe, Mn and mi croel e -ments in two ferro manga nese lay ers in di cate that they might have been de rived from hy dro ther mal flu ids.

The or i gin of fer ric oxyhydroxides in Late Albian stromatolites of the Tatric Ba sin is not the sub ject of de tailed in -ter pre ta tion be cause of the lack of geo chem i cal data from these sed i ments.

CON CLU SIONS

The Cenomanian ma rine sed i ments of the Outer and In -ner Carpathians con tain Fe- and Fe-Mn oxyhydroxides that are vis i ble mac ro scop i cally as brown stain ing. The SEM ob -ser va tions show that most of them con sist of densely packed, elon gated cap sules, ap prox i mately 5 µm across, in -ter preted as fos sil ized iron-re lated bac te ria (IRB). The walls of the in di vid ual cap sules, 0.1 µm thick, may be rem nants of the orig i nal me tal lic bac te rial sheath oc cur ring out side the cell mem brane. The cap sules show el e vated iron and man -ga nese con tent; that is why they re sem ble most prob a bly fos sil ized bac te ria from the Sphaerotilus–Leptothrix group. The Fe-Mn coat ings, left af ter pos si ble the IRB ac tiv ity were formed on cal car e ous clasts and bioclasts. They also fill the pore spaces be tween min eral clasts and bioclasts and lo cally form con tin u ous mi cro-lami na tions. All bac te rialike struc tures were well pre served, ow ing to rapid ce men -ta tion by cal cite and sil ica.

The re la tion ship be tween the bac te ria-bear ing coat ings, the min eral grains, and the ce ment sug gests that the pos si ble IRB grew in a surficial layer of soft sed i ments.

The bac te ria-like struc tures de scribed here pos sess forms very sim i lar to that of pres ent-day bac te rial sheaths, fil a ments and rods from the Sphaerotilus–Leptothrix group. This sim i lar ity leads the au thors to fur ther in ter pre ta tion of the pos si ble en vi ron men tal con di tions pre vail ing at the bot -tom, if bac te ria from this group could ex ist there and formed the incrustations. Be cause pres ent-day bac te ria from the

Leptothrix group can live around lowtem per a ture hy dro

ther mal vents, the au thors sug gest pos si ble sim i lar con di -tions on the deep-sea floor of the Silesian and Tatric bas ins. This may fur ther in di cate that bac te ria could have played an im por tant role in iron and man ga nese ac cu mu la tion in the bas ins. The oc cur rence of hy dro ther mal vents dur ing Ceno-manian–Turonian times was sug gested pre vi ously, us ing geochem i cal in di ces for the sed i ments in the Outer Carpa-thian bas ins.

Ac knowl edge ments

The au thors are grate ful to Krzysztof P. Krajewski (In sti tute of Geo log i cal Sci ences, Pol ish Acad emy of Sci ences, Warszawa) and two anon y mous re view ers for their help ful re marks and im -prove ment of the Eng lish ver sion of the text. Spe cial thanks are to A. Uchman, F. Simpson and B. Budzyñ for their ed i to rial work.

The study was funded by the Min is try of Sci ence and Higher Ed u ca tion un der Pro ject DS-AGH Uni ver sity of Sci ence and Technology, WGGiOŒ-KGOiG No. 11.11.140.173 (to M. B¹k) and by the Na tional Sci ence Cen tre, Po land un der Pro ject 2011/ 01/B/ST10/07405 (to K. B¹k).

REF ER ENCES

Alt, J. C., 1988. Hy dro ther mal ox ides and nontronite de pos its on seamounts in the east ern Pa cific. Ma rine Ge ol ogy, 81: 227– 239.

Awramik, S. M. Schopf, J. W. & Wal ter, M. R., 1983. Fil a men tous fos sil bac te ria from the Archean of West ern Aus tra lia. Pre -cam brian Re search, 20: 357–374.

Bac-Moszaszwili, M., GaŸdzicki, A. & Krajewski, K., 1979. Do-lina Lejowa – Sto³y – ¯leb ¯eleŸniak – Hala Pisana – Kiry; Trasa B5. In: Lefeld, J. (ed.), Przewodnik LI Zjazdu Polskiego Towarzystwa Geologicznego; Zakopane, 13-15.09.1979. Wy- dawnictwa Geologiczne, Warszawa, pp. 190–197. [In Pol ish.] Barale, L., D’atri, A. & Martire, L., 2013. The role of mi cro bial ac tiv ity in the gen er a tion of Lower Cre ta ceous mixed Feox -ide–phos phate ooids from the Provençal Do main, French Ma- ritime Alps. Jour nal of Sed i men tary Re search, 83: 196– 206. B¹k, K., 2006. Sedimentological, geo chem i cal and microfaunal re sponses to en vi ron men tal changes around the Cenomanian– Turonian bound ary in the Outer Carpathian Ba sin; a re cord from the Subsilesian Nappe, Po land. Palaeo ge ogra phy, Pala- eoclimatology, Palaeo ec ol ogy, 23: 335–358.

B¹k, K., 2007a. Deep-wa ter fa cies suc ces sion around the Cenoma- nian–Turonian bound ary in the Outer Carpathian Ba sin: Sed i -men tary, bi otic and chem i cal re cords in the Silesian Nappe, Po land. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol -ogy, 248: 255–290.

B¹k, K., 2007b. En vi ron men tal changes dur ing the Cenomanian– Turonian bound ary event in the Outer Carpathian bas ins: a syn the sis of data from var i ous tec tonic-fa cies units. Annales Societatis Geologorum Poloniae, 77: 171–191.

B¹k, K., 2007c. Or ganicrich and man ga nese sed i men ta tion dur -ing the Cenomanian–Turonian bound ary event in the Outer Carpathian Ba sin, a new re cord from the Skole Nappe, Po -land. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 256: 21–46.

B¹k, K. & B¹k, M., 2013. Late Albian through Cenomanian fora-miniferal as sem blage from the youn gest de pos its of Tatra Moun tains, Cen tral West ern Carpathians; biostratigraphical and palaeo eco logi cal as pects. Acta Geologica Polonica, 63: 223–237.

B¹k, K., B¹k, M. & Paul, Z., 2001. Barnasiówka Radiolarian Shale For ma tion – a new lithostratigraphic unit in the Up per Ceno-manian–low er most Turonian of the Pol ish Outer Carpathians. Annales Societatis Geologorum Poloniae, 71: 75–103. B¹k, M., 2011. Tethyan radio lar ians at the Cenomanian–Turonian

Anoxic Event from the Apennines (Umbria-Marche) and the Outer Carpathians: Palaeo eco logi cal and Palaeoenvironmen-tal im pli ca tions. Studia Geologica Polonica, 134: 7–279. B¹k, M., B¹k, K. & Ciurej, A., 2005. Mid-Cre ta ceous spicule-rich

flysch de pos its in the Silesian Nappe of the Pol ish Outer

(13)

Carpathians; radiolarian and foraminiferal biostratigraphy. Geolog i cal Quar terly, 49: 275–290.

B¹k, M., B¹k, K. & Ciurej, A., 2011. Palaeoenvironmental sig nal from the microfossils re cord in the Mikuszowice Cherts of the Silesian Nappe, Pol ish Outer Carpathians. In: B¹k, M., Ka-minski, M. A. & Waœkowska, A. et al. (eds), In te grat ing Microfossil Re cords from the Oceans and Epicontinental Seas. Grzybowski Foun da tion Spe cial Pub li ca tion, 17, pp. 15–25.

Bennett, S. A., Achterberg, E. P., Connelly, D. P., Statham, P. J., Fones, G. R. & Ger man, C. R., 2008. The dis tri bu tion and sta -bili sa tion of dis solved Fe in deep-sea hy dro ther mal plumes. Earth and Plan e tary Sci ence Let ters, 270: 157–167. Boulvain, F., De Rid der, Ch., Mamet, B., Préat, A. & Gillan, D.,

2001. Iron mi cro bial com mu ni ties in Bel gian Frasnian car -bon ate mounds. Fa cies, 44: 47– 60.

Brehm, U., Gorbushina, A. & Mottershead, D., 2005. The role of mi cro or gan isms and biofilms in the break down and dis so lu -tion of quartz and glass. Palaeo ge ogra phy, Palaeoclimato-logy, Palaeo ec ol ogy, 219: 117–129.

Brown, C. J., Schoonen, M. A. A. & Can dela, J. L., 2000. Geo -chem i cal mod el ing of iron, sul fur, ox y gen and car bon in a coastal plain aqui fer. Jour nal of Hy drol ogy, 237: 147–168. Bryndal, T., 2014. Iden ti fi ca tion of small catch ments prone to

flash flood gen er a tion in the Pol ish Carpathians. Prace Mono- graficzne Uniwersytetu Pedagogicznego, Wydawnictwo Naukowe Uniwersytetu Pedagogicznego w Krakowie, 690: 3–180. [In Pol ish, Eng lish sum mary.]

Burtan, J. (ed.), 1964. Szczegó³owa Mapa Geologiczna Polski w skali 1:50,000 (bez czwartorzêdu): arkusz Myœlenice Wydaw- nictwa Geologiczne, Warszawa.

Burtan, J. & Szymakowska, F. (eds), 1964. Szczegó³owa Mapa Geologiczna Polski w skali 1:50,000 (bez czwartorzêdu); arkusz Osielec sheet. Wydawnictwa Geologiczne, Warszawa. Croal, L. R., John son, C. M., Beard, B. L. & Newman, D. K., 2004. Iron iso tope frac tion ation by Fe(II)-ox i diz ing photo-autotrophic bac te ria. Geochimica et Cosmochimica Acta, 68: 1227–1242.

Cullimore, D. R & McCann, A. E., 1978. The iden ti fi ca tion, cul ti va tion and con trol of iron bac te ria in ground wa ter. In: Skin -ner, F. A. & Shevan, J. M. (eds), Aquatic Mi cro bi ol ogy, Ac a demic Press, Lon don, pp. 219–261.

Dando, P. R., 2010. Bi o log i cal com mu ni ties at ma rine shal low-wa ter vent and seep sites. In: Kiel, S. (ed.), The vent and seep biota – from mi crobes to eco sys tems. Top ics in Geomicrobi ol -ogy, 33, pp. 333–378.

Da vis, K. J., Nealson, K. H. & Lüttge, A., 2007. Cal cite and do lo mite dis so lu tion rates in the con text of mi crobe–min eral sur -face in ter ac tions. Geobiology, 5: 191–205.

Dubinina, G. & Zhdanov, V. A., 1975. Rec og ni tion of the iron bac te ria “Siderocapsa” as arthrobacters and de scrip tion of Arthrobacter siderocapsulatus sp. nov. In ter na tional Jour nal of Sys tem atic Bac te ri ol ogy, 25: 340–350.

Dymond, J., Col lier, R. W. & Watwood, M. E., 1989. Bac te rial mats from Crater Lake, Or e gon, and their re la tion ship to pos -si ble deep-lake hy dro ther mal vent ing. Na ture, 342: 673–675. Ehrenberg, C. G., 1836. Vorläufige Mitteilungen über das wirk-liche Yorkommen fossiler Infusorien und ihre grosse Verbrei- tung. Poggendorf’s Annalen, 38: 213–227.

Em er son, D. & Moyer, C. L., 2002. Neutrophilic Fe-ox i diz ing bac te ria are abun dant at the Loihi Seamount hy dro ther mal vents and play a ma jor role in Fe ox ide de po si tion. Ap pli ca -tion of En vi ron men tal Mi cro bi ol ogy, 68: 3085–3093. Fer ris, F. G., Fyfe, W. S. & Bever idge, T. J., 1988. Me tal lic bind

-ing by Ba cil lus subtilis: Im pli ca tions for the fos sil iza tion of

mi cro or gan isms. Ge ol ogy, 16: 149–152.

Fortin, D. & Langley, T. S., 2005. For ma tion and oc cur rence of biogenic iron-rich min er als. Earth-Sci ence Re views, 72: 1–19. Fran cis, C. A. & Tebo, B. M., 1999. Ma rine Ba cil lus spores as cat -a lysts for the ox i d-a tive pre cip i t-a tion -and sorp tion of met -als. Jour nal of Mo lec u lar Mi cro bi ol ogy and Bio tech nol ogy, 1: 71–78.

Ghiorse, W. C. & Ehrlich, H. L., 1992. Mi cro bial biomineralization of iron and man ga nese. In: Skin ner, H. C. W. & Fitzpat -rick, R. W. (eds), Biomineralization, Pro cesses of Iron and Man ga nese, Mod ern and An cient En vi ron ments. Catena (supplement), 21: 75–99.

Golonka, J., Krobicki, M., Oszczypko, N., Œl¹czka, A. & S³omka, T., 2002. Geodynamic evo lu tion and palaeo ge ogra phy of the Pol ish Carpathians and ad ja cent ar eas dur ing Neo-Cim mer ian and pre ced ing events (lat est Tri as sic–ear li est Cre ta ceous). In: McCann, T. & Saintot, A. (eds), Trac ing tec tonic de for ma tion us ing the sed i men tary re cord. Geo log i cal So ci ety Lon don, Spe cial Pub li ca tions, 208, pp. 138–158.

Grabowski, J., 1997. Paleomagnetic re sults from the Cover (High Tatric) unit and Num mu lit ic Eocene in the Tatra Mts (Cen tral West Carpathians, Po land) and their tec tonic im pli ca -tions. Annales Societatis Geologorum Poloniae, 67: 13–23. Guzik, K., 1959. Mapa geologiczna, arkusz B2, Kominy Tylkowe.

In: Guzik, K. & Soko³owski S. (eds), Mapa Geologiczna Tatr w skali 1: 10.000. Wydawnictwa Geologiczne, Warszawa. Haese, R. R., 2000. The re ac tiv ity of iron. In: Schulz, H. D. &

Zabel, M. (eds), Ma rine Geo chem is try. Springer, Berlin, pp. 233–261.

Hanert, H. H., 2002. Bac te rial and chem i cal iron ox ide de po si tion in a shal low bay on Palaea Kameni, Santorini, Greece: mi -cros copy, elec tron probe microanalysis, and pho tom e try of in situ ex per i ments. Geomicrobiology Jour nal, 19: 317–342. Hanert, H. H., 2006. The Ge nus Siderocapsa (and other iron or

man ga nese-ox i diz ing eubacteria). In: Starr, M. P. et al. (eds), The Prokaryotes. Springer, New York, pp. 1049–1060. Harder, E. C., 1919. Iron de pos it ing bac te ria and their geo logic re

la tions. Pro fes sional Pa pers, Wash ing ton Print ing Gov ern -ment Of fice, 113: 1–89.

Hardman, Y. & Henrici, A. T., 1939. Stud ies of freshwa ter bac te -ria. V. The dis tri bu tion of Siderocapsa treubii in some lakes and streams. Jour nal of Bac te ri ol ogy, 30: 61–93.

Huckriede, H. & Meischner, D., 1996. Or i gin and en vi ron ment of man ga nese-rich sed i ments within black-shale bas ins. Geochi- mica et Cosmochimica Acta, 60: 1399–1413.

Jurewicz, E., 2005. Geodynamic evo lu tion of the Tatra Mts. and the Pieniny Klippen Belt (West ern Carpathians): prob lems and com ments. Acta Geologica Polonica, 55: 295–338. Jurewicz, E., 2012. Nappe-thrust ing pro cesses in the Tatra Mts.

Przegl¹d Geologiczny, 60: 432–441. [In Pol ish, with English sum mary.]

Karkhanis, S. N., 1976. Fos sil iron bac te ria may be pre served in Pre cam brian ferroan car bon ate. Na ture, 261: 406–407. Kend all, B., Konhauser, K. O., Kappler, A. & Anbar, A., 2012.

The Fe cy cle. In: Knoll, A. H. et al. (eds), Fun da men tals in Geobiology. Wiley-Blackwell, Ox ford, pp. 65–92.

Ken nedy, C. B., Mar ti nez, R. E., Scott, S. & Fer ris, F. G., 2003. Sur face chem is try and re ac tiv ity of bacteriogenic iron ox ides from ax ial vol cano, Juan de Fuca Ridge, North-East Pacific Ocean. Geobiology, 1: 59–69.

Kirby, C. S., Thomas, H. M., Southam, G. & Don ald, R., 1999. Rel a tive con tri bu tions of abiotic and bi o log i cal fac tors in Fe(II) ox i da tion in mine drain age. Ap plied Geo chem is try, 14: 511–530.

(14)

Earth-Sci ence Re views, 43: 91–121.

Konhauser, K. O. & Rid ing, R., 2012. Bac te rial biomineralization. In: Knoll, A. H. et al. (eds), Fun da men tals in Geobiology. Wiley-Blackwell, Ox ford, pp. 105–130.

Koszarski, L. & Œl¹czka, A., 1973. Outer (flysch) Carpathians. Lower Cre ta ceous. In: Po¿aryski W. (ed.), Ge ol ogy of Po -land. Instytut Geologiczny, Warszawa, pp. 492–495. Kotañski, Z., 1959. Z zagadnieñ transgresji albu wierchowego w

Tatrach. Przegl¹d Geologiczny, 8: 357– 358. [In Pol ish.] Kotañski, Z., 1961. Tectogénèse et re con sti tu tion de la

paléogéo-graphie de la zone haut-tatrique dans les tatras. Acta Geologica Polonica, 11: 187–412. [In Pol ish, with French sum -mary.]

Krajewski, K., 1981a. Phos phate microstromatolites in the High-Tatric Albian lime stone in the Pol ish Tatra Mts. Bul le tin de l’Académie Po lo naise des Sci ences, Série des Sci ences de la Terre, 29: 175–183.

Krajewski, K., 1981b. Pe lagic stromatolites from the High-Tatric Albian lime stones in the Tatra Mts. Kwartalnik Geologiczny, 25: 731–759. [In Pol ish, Eng lish sum mary.]

Krajewski, K., 1981c. Phos phate pizolite struc tures from con -densed lime stones of the High-Tatric Albian (Tatra Mts). Annales Societatis Geologorum Poloniae, 51: 339–352. Krajewski, K. P., 2003. Fa cies de vel op ment and lithostratigraphy

of the Hightatric mid-Cre ta ceous (Zabijak For ma tion) in the Pol ish Tatra Moun tains. Studia Geologica Polonica, 121: 81–158.

Ksi¹¿kiewicz, M., 1956. Ge ol ogy of the North ern Carpathians. Geologische Rundschau, 45: 396–411.

Ksi¹¿kiewicz, M. (ed.), 1962. Geo log i cal At las of Po land; Strati -graphic and Fa cial Prob lems, vol. 13. Cre ta ceous and Older Paleogene in the Pol ish Outer Carpathians. Instytut Geolo-giczny. Wydawnictwa Geologiczne, Warszawa [20 maps, 20 pp. ex plan a tory notes.]

Ksi¹¿kiewicz, M., 1975. Bathymetry of the Carpathian Flysch Ba -sin. Acta Geologica Polonica, 25: 309–367.

Ksi¹¿kiewicz, M., 1977. Hy poth e sis of plate tec ton ics and the or i -gin of the Carpathians. Annales Societatis Geologorum Polo-niae, 47: 329–353.

Lefeld, J., 1968. Stra tig ra phy and paleogeography of the High-Tatric Lower Cre ta ceous in the Tatra Moun tains. Studia Geo-logica Polonica, 24: 1–115.

Lüttge, A. & Conrad, P. G., 2004. Di rect ob ser va tion of mi cro bial in hi bi tion of cal cite dis so lu tion. Ap plied and En vi ron men tal Mi cro bi ol ogy, 70: 1627–1632.

Mamet, B. & Préat, A., 2006. Iron-bac te rial me di a tion in Phane-rozoic red lime stones; state of the art. Sed i men tary Ge ol ogy, 185: 147–157.

Mamet, B., Préat, A. & De Rid der, C., 1997. Bac te rial or i gin of the red pig men ta tion in the De vo nian Slivenec Lime stone, Czech Re pub lic. Fa cies, 36: 173–188.

Marcinowski, R. & Wiedman, J., 1985. The Albian ammonite fauna of Po land and its paleogeographical sig nif i cance. Acta Geologica Polonica, 35: 199–219.

Marcinowski, R. & Wiedman, J., 1990. The Albian ammonites of Po land. Palaeontologia Polonica, 50: 1–94.

Ma son, G. M., 2008. Eocene age fos sil ized fil a men tous bac te ria: new ev i dence sug gest ing a bac te rial gen e sis of sid er ite in the Green River For ma tion, Wy o ming. In: 28th Oil Shale Sym po -sium 13–15 Oc to ber 2008. The Col o rado School of Mines, The Col o rado En ergy Re search In sti tute, Golden, Col o rado, pp. 1–7.

Masse, J.-P. & Uchman, A. 1997. New biostratigraphic data on the Early Cre ta ceous plat form car bon ates of the Tatra Moun tains, West ern Carpathians, Po land. Cre ta ceous Re search, 18: 713–

729.

Mulder, E. G. & Deinema, M. H., 1992. The sheathed bac te ria. In: Balows, A., Troper, H. G., Dworkin, M., Tno, W. H. & Scheifer, K.-H. (eds), The Prokaryotes, A Hand book on the Bi ol ogy of Bac te ria: Ecophysiology, Iso la tion, Iden ti fi ca tion, Ap pli ca tions, Sec ond Edi tion. Springer, New York, pp. 2612– 2623.

Mulder, E. G. & Veen, W. L., van, 1963. In ves ti ga tions on the Sphaerotilus – Leptothrix group. Antonie van Leeuwenhoek. Jour nal of Mi cro bi ol ogy and Se rol ogy, 29: 121–153. Nel son, Y. M., Lion, L. W., Ghiorse, W. C., & Shuler, M. L.,

1999. Pro duc tion of biogenic Mn ox ides by Leptothrix discophora SS1 in a chem i cally de fined growth me dium and eval u a tion of their Pb ab sorp tion char ac ter is tics. Ap plied and En -vi ron men tal Mi cro bi ol ogy, 65: 175–180.

Niegodzisz, J., 1965. Stromatolites from the High-Tatric Albian of the Tatra Moun tains. Acta Geologica Polonica, 15: 529–549. [In Pol ish, with Eng lish sum mary.]

Noike, T. N., Nakamura, K. & Matsumoto, J., 1983. Ox i da tion of fer rous iron by acidophilic iron-ox i diz ing bac te ria from a stream re ceiv ing acid mine drain age. Wa ter Re sources, 17: 21–27.

Oszczypko, N., 2004. The struc tural po si tion and tectonosedimen-tary evo lu tion of the Pol ish Outer Carpathians. Przegl¹d Geo- logiczny, 52: 780–791. [In Pol ish, with Eng lish sum mary.] Passendorfer, E., 1930. Étude stratigraphique et paléointologique

du Cretacé de la série hauttatrique darns les Tatras. Prace Pañstwowego Instytutu Geologicznego, 2: 351–676. [In Pol -ish, with French sum mary.]

Plašienka, D., 1999. Tectonochronology and paleotectonic evo lu -tion of the Cen tral West ern Carpathians dur ing the Ju ras sic and Cre ta ceous). Veda, Bratislava, 127 pp. [In Slo vak, with Eng lish sum mary.]

Plašienka, D., 2003. De vel op ment of base ment-in volved fold and thrust struc tures ex em pli fied by the Tatric–Fatric–Veporic nappe sys tem of the West ern Carpathians (Slovakia). Geodi-namica Acta, 16: 21–38.

Préat, A., Loreau, J. P., Durlet, C. & Mamet, B., 2000. Pe trog ra -phy and biosedimentology of the Rosso Ammonitico Vero-nese (Mid dle–Up per Ju ras sic, North east ern It aly). Fa cies, 52: 265–278.

Préat, A., Mamet, B., Ber nard, A. & Gillan, D., 1999. Bac te rial me di a tion, red ma tri ces diagenesis, De vo nian, Montagne Noire (south ern France). Sed i men tary Ge ol ogy, 126: 223– 242.

Préat, A., Mamet, B., De Ridderb, C., Boulvain, F. & Gillanb, D., 2006. Iron bac te rial and fun gal mats, Bajocian stratotype (MidJu ras sic, north ern Nor mandy, France). Sed i men tary Ge -ol ogy, 137: 107–126.

Rabowski, F., 1959. High-Tatric se ries in West ern Tatra. Prace Instytutu Geologicznego, 27: 5–178. [In Pol ish, Eng lish sum -mary.]

Rouf, M. A. & Stokes, J. L., 1964. Mor phol ogy, nu tri tion, and phys i ol ogy of Sphaerotilus discophorus. Ar chives of Mi cro bi -ol ogy, 49: 132–149.

Schelble, R. T., Wes tall, F. & Allen, C. C., 2004. 1.8 Ga ironmin er al ized microbiota from the Gunflint Iron For ma tion, On -tario, Can ada: im pli ca tions for Mars. Ad vances in Space Re-search, 33: 1268–1273.

Schopf, J. W., Barghoorn, E. S., Ma ser, M. D. & Gordon, R. O., 1965. Elec tron mi cros copy of fos sil bac te ria two bil lion years old. Sci ence, 149 (3690): 1365–1367.

Schopf, J. W. & Fairchild, T. R., 1973. Late Pre cam brian mi cro-fos sils: a new stromatolitic biota from Boorthanna, south Aus tra lia. Na ture, 242: 537–538.

(15)

Schrenk, M. O., Ed wards, K. J., Good man, R. M., Hamers, R. J. & Banfield, J. F., 1998. Dis tri bu tion of Thiobacillus ferrooxidans and Leptospirillum ferrooxiferrooxidans: im pli ca tions for gen er -a tion of -acid mine dr-ain -age. Sci ence, 279: 1519–1522. Sibuet, M. & Olu, K., 1998. Biogeography, biodiversity and fluid

de pend ence of deep-sea cold-seep com mu ni ties at ac tive and pas sive mar gins. Deep-Sea Re search, 45: 517–567.

S³omka, T., Malata, T., Leœniak, T., Oszczypko, N. & Poprawa, P., 2006. Evo lu tion of the Silesian and Subsilesian bas ins. In: Oszczypko et al. (eds), Palaeotectonic evo lu tion of the Outer Carpathian and Pieniny Klippen Belt Bas ins. Instytut Nauk Geologicznych, Uniwersytet Jagielloñski, Kraków, pp. 111– 126.

Soggard, E. G., Medenwaldt, R. & Abra ham-Peskir, J. V., 2000. Con di tions and rates of bi otic and abiotic iron pre cip i ta tion in se lected Dan ish fresh wa ter plants and mi cro scopic anal y sis of pre cip i tate mor phol ogy. Wa ter Re sources, 34: 2675–2682. Spring, S., 2002. The gen era Leptothrix and Sphaerotilus. In:

Dworkin, M. et al. (eds), The Prokaryotes. An Evolv ing Elec -tronic Re source for the Mi cro bi o log i cal Com mu nity, third edi tion. Springer, New York, www.prokaryotes.com. Spring, S., 2006. The gen era Leptothrix and Sphaerotilus. In:

Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. & Stackebrandt, E. (eds), The Prokaryotes. A Hand book on the Bi ol ogy of Bac te ria: Ecophysiology and Bio chem is try. Third Edi tion. Vol ume 5. Springer, New York, pp. 758–777. Statham, P. J., Ger man, C. R. & Connelly, D. P. 2005. Iron(II) dis

-tri bu tion and ox i da tion ki net ics in hy dro ther mal plumes at the Kairei and Edmond vent sites, In dian Ocean. Earth Plan e tary Sci ence Let ters, 236: 588–596.

Stein, L. Y., La Duc, M. T., Grundi, T. J. & Nealson, K. H., 2001. Bac te rial and archaeal pop u la tions as so ci ated with fresh wa ter ferromanganous micronodules and sed i ments. En vi ron men tal

Mi cro bi ol ogy, 3: 10–18.

Sun, Z. L., Zhou, H. Y., Yang, Q. H., Sun, Z. X., Bao, S. X. & Yao, H. Q., 2011. Hy dro ther mal Fe-Si-Mn ox ide de pos its from the Cen tral and South Valu Fa Ridge, Lau Ba sin. Ap -plied Geo chem is try, 26: 1192–1204.

Tarasov, V. G., Gebruk, A. V., Mirononov, A. N. & Moskalev, L. L., 2005. Deep-sea and shal low-wa ter hy dro ther mal vent communities: two dif fer ent phe nom ena? Chem i cal Ge ol ogy, 224: 5–39.

Thorseth, I. H., Furness, H. & Tumyr, A., 1995. Tex tural and chem i cal ef fects of bac te rial ac tiv ity on ba saltic glass: an ex -per i men tal ap proach. Chem i cal Ge ol ogy, 119: 139–160. Trokowicz, D., 1998. Gen e sis of ferro manga nese nod ules from the

Bal tic Sea. Pro ceed ings of the Pol ish Geo log i cal In sti tute, War saw, 163: 1–62.

Uchman, A., 1997. Paleoenvironment of the Cre ta ceous marlstones in the Pol ish Tatra Mts. in the light of ichnological re -searches. Przegl¹d Geologiczny, 45: 1018–1023. [In Pol ish, Eng lish sum mary.]

Ullman, W. J., Kirchman, D. L. Welch, S. A. & Vandevivere, P., 1996. Lab o ra tory ev i dence for microbially me di ated sil i cate min eral dis so lu tion in na ture. Chem i cal Ge ol ogy, 132: 11–17. Van Do ver, C. L., Ger man, C. R., Speer, K. G., Par son, L. M. & Vrijenhoek, R. C., 2002. Ma rine bi ol ogy – evo lu tion and biogeography of deepsea vent and seep in ver te brates. Sci -ence, 295: 1253–1257.

Van Veen, W. L., Mulder, E. G. & Deinema, M. H., 1978. The Sphaerotilus – Leptothrix group of bac te ria. Mi cro bi ol ogy Re views, 42: 329–356.

Yongding, D., Haiming, S. & Jiying, S., 2004. Fos sil bac te ria in Xuanlong iron ore de pos its of Hebei Prov ince. Sci ence China Earth Sci ence, 47: 347–356.

Cytaty

Powiązane dokumenty