• Nie Znaleziono Wyników

Analysis of Variance with Time Series Data

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of Variance with Time Series Data"

Copied!
7
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 152, 2000

B r o n isla w C e r a n k a *, K r y s t y n a K a t u ls k a * *

A N A LY SIS O F V A R IA N C E W IT H T IM E S E R IE S DATA

Abstract. Successive observations over time are made on individual subjects classified into different groups. It is assumed that the mean response may vary between groups, that there is a random effect for each individual, and that successive observations on each individual follow a AR model. The likelihood-ratio criteria for testing the hypothesis of equality of the group means is considered.

1. INTRODUCTION

T h e usual analysis o f variance ľ test is considered in th e case when the variance-covariancc m atrix o f errors is o f the from er2I n. In m any practical situations this assum ption is not satisfied, for example, if observations are correlated, bu t we arc interested o f testing the hypothesis o f equ ality o f the g roup m eans. In this p ap er, we assum e, th a t successive o b serv atio n s over tim e are m ade on individual subjects classified in to different groups. T his problem was considered also by Y o n g and C a r t e r (1983). T hey proposed to use the usual analysis o f variance F test for nested designs.

T h e p u rp o se o f this p aper is considered th e likelihood ra tio fo r testing h ypothesis o f equality o f the g roup m eans for co rrelated ob serv atio ns.

2. LIKELIHOOD RATIO TEST

C onsider the experim ent in w hich m y . n experim ental units are divided in m groups each o f n units. Let Yijt be the o b servation a t tim e t o n the j -th individual from g roup i. Suppose th a t Yijt can be m odelled by

* Agricultural University of Poznań, Department of Mathematical and statistical Methods. ** Adam Mickiewicz University, Faculty of Mathematics and Computer Science.

(2)

Y(j{ — Ч- ot i j “f* E[jt i — 1, ..., w, j 1, n, t 1, 2, •••) T, (1)

w here p, are fixed g roup m eans, a y represent individual effects, and e.lJt are the errors. F u rth e r, we assum e th a t F.iJt and arc ind epen dent, are independent n orm al ran d o m variables with m ean zero and variance ct2 and F.ijt are identical statio n ary G au ssian tim e scries for fixed i and j .

W e in tro d u c e th e follow ing n o ta tio n s. Let Yy = (Yy i , ..., YtJT)' be T-dim cnsional vector o f the observations on the y-th individual from g ro up i an d Eij = (е щ, ..., EljTy d en o te the ra n d o m vecto r, such th a t is distrib u ted according to N T(O , c-,2A r ), where o f \ T is the au to co v arian ce m a trix o f a statio n ary G aussian tim e series, where Np (p, <r2V) is a p-variate n o rm al d istrib u tio n w ith m ean vector p and the covariance m atrix <x2V.

T h en , the m odel (1) can be w ritten as

where l p denotes p x 1 vector o f ones. It im plies th a t is distrib u ted acco rd ing to N r ( / ^ l r , o f(y 2J r + AT)), w here J r = l r l'r an d y l = «т2/<т2.

F u rth erm o re , let Y = (Y'n , ..., Y ^ ) ' p = (p'i, ..., ц'т)' e = (e'n. •••. Cn)' and a = (a u , ..., am„)'. T h en (2) is o f the form

w here (g) denotes K ro n eck er p ro d u ct. U nder these n o tatio n s Y is distrib u ted according to N mnT ( р ® 1 nT, oflm n® ( y l J r + A r))* where I p is the p x p iden tity m atrix.

In this p ap e r we assum e th a t A r is the k now n m atrix, while o f and y l are un k n o w n param eters.

T h e p u rp o s e o f th e d a ta analy sis is to te st th e h y p o th e sis H 0: p l = p 2 = ... = pm against the general alternative H^. H 0 is n o t tru e.

Lem m a 1. If Y is given by (3) then the m axim um likelihood estim ates o f p t, y2, er2 can be w ritten as

Yjj = /x,lr + a y l r + ey, i = l , ..., m, y = l , ..., n (

2

)

(3)

(3)

Ô‘ m n (T -where b = l TA j - l l T, cy = Yy \ T 1 J T \ T 1 Yy, d tj = Y ý A j-1 Yy. (b) I f H 0 is true, then m n mnh C m n t m n "4 , < T - t ) ľ ľ c U- - ^ ( I I Y Í A í ‘ l T)‘ l _ Í _J________ U = i j = i ___ J= LL=J_______ J L / ш n m It \ I Z ^ y - I I c u ) \ (=U=1 ł = lj=l / ď.2 =

í.2-P ro o f, (a) I he likelihood function o f the vector Y given in (3) can be w ritten as

-mA ľ . _mn _mn

p(Yy) = (2n) 2 {(] + y2b ) a f T} 2 (det \ T) 2 x

(

J m n 2 \

- 2 а ; 1 - A r 1 J r A f 1)(Yy - f t l r ) J .

F ro m the definition o f the m axim um likelihood estim ates o f ц„ у 2, o f and the properties o f the function p(Yy) it follows th a t ß h у*, a 2 are the solu tio n o f the system

» W . o í 1 ~ d f j^ ~ ~ , = 1’ -> w ’ 3y.2 " ’ W n do 2

(b) I f Я 0 is tru e then the likelihood function is

(4)

mnT

p \ Yy) = (2 л )- * {(1 + y2b)a2T}~ 2 (det A T)~ 2 x

x exp( — 2 er“ 2 Ž Ž ^ y ^ r X Í A r 1 - j - ^ 2^ А г * J j - A r ^ Y y - z í l , . ) ].

T h e fu rth e r p art o f the p ro o f is analogou s to the p ro o f o f (a).

T h e p u rp o se o f th e d a ta an aly sis is to test th e h y p o th e sis H 0: ц = fi2 = " , — iim against the general alternative H t : H 0 is n o t true. T h e likelihood - ra tio principle ( S c h e f f e , 1959, p. 33) m ay be used to derive the statistical test.

T h e lik elih ood-ratio test consists in rejecting H 0 if A < A0, w here the c o n s ta n t X0 is ch osen to give th e desired sign ifican ce level a i.e. R = {Y: X < A0}, where P(X < A0) = a and

X =P* (fi,fl, ° 2) Pifii, fa, <íf) m n mr Yj X (^U АД тУ^т 1J т^т l ( Yi j ~ £ Д г)\ 2 i = u = 1 Yj X O^y — Д1гУА г '(У ц ~ P ^t) \ i = U = i Since ! m n mn . I ( Yj Yj (Уи ~ А г ^ г а г Ч ^ ,7 — £,1Г)\ 2 H U l L Ż Yj (Уц ~ l (YlJ ~ M^t) \ \ i = U = i < A0 / = P j nb2 £ ß f — mnbzfi i=i Г.2 > A0 mn - 1 Z E Y Ú A r 1 J r A r 1 Y.j - nfc2 I P-f \i=U=i (= i

th e n a = P(A < A0) = P(X* > AJ) and

A* = nb2 £ flf — mnb2ß i= i /7 2 X Z ^ 0 Аг 1^ г А г 1 Yy — nb2 YjP? i=l7=l i=l (4)

(5)

T heorem 1. I f Y is d is trib u te d a c c o rd in g to N mnT(n ® 1пГ, ® ( y ? J r + A r )) then ľ given in (4) has a n o n ce n tral F d istrib u tio n w ith m - I , m ( n - 1) degrees o f freedom and n o n cen trality p a ram eter

nb "

(5) *,2(1 + by2) A '

m i = 1

Proof. T h e statistic Л* can be w ritten as the ra tio o f tw o q u a d ra tic form s д* _ _CY (wl m ® ® A r 1 Jj-Aj- 1 — Jmn ® A ]■1 Jj-Aj' *)Y

" cY '(m n ® l mn ® A f1 J rA f П Г mlm ® J n ® A f1 J j A f 1 )Y ’

w here с = ( т т г е2(1 -f Ьу*)Ь)~1. F ro m T h eo rem 1 ( R a o , M i t r a , 1971, p. 171) we conclude th a t if Y is distrib u ted accordin g to ® 1bT, °V2Imn ® (ľ2J r + A r )) then the statistic Y 'B Y has the %2(k, Ö) d istrib u tio n if an d on ly if B ( a f lm„ ® (y2J r - A r ) is id e m p o te n t, in w hich case к = tr(B(<rt2Imn ® (ľ 2J r + A r )) and ö = I nT)' В {р. ® l„ r ).

C o n sid er the q u a d ra tic form

cY '(m Im ® J„ ® A f M j-A f1 - J m„ ® A f ‘ J ^ A f J)Y = Y 'B Y (6) Since В(ст,21тл ® (y2J T -f A r )) = (m n b ) ~ l ( m lm ® J„ - J m„) ® A f xJ r it is easy to verify th a t this m atrix is idem po ten t. H ence th e q u a d ra tic form (6) h a s th e x 2(fc<5) d is trib u tio n , in w h ich case к = (mnb) - *tr{mlm ® J„ ® A f 1J T - J mn ® A f 1 J r } = m - 1,

<5 = ® 1ят) (c(mlm ® J„ ® A t 1J TAT1 — J m„ ® Ar 1 J-fAj- 1))(ji ® l„j-) =

- е т

( t * -

M И

=е т = Ь

-F u rth e r, we investigate the d istrib u tio n o f the q u a d ra tic form

cY'(rnnlmn ® A f 1 J r A f 1 - m lm ® J„ ® A f xJ r A f X)Y = Y'BY (7) Since B(ff2I mn ® (ľ2J r + A r )) = (n b )“ 1 (n lm„ - l m® J n ® A f xJ r , it can be easily seen th a t this m a trix is idem potent. T herefo re, th e q u a d ra tic form (7) has th e x 2(k, S) d istrib u tio n , in which case

к = (nb)~ Нг(и1тл ® A f 1 J r - lm ® J„ ® A f 4J r = m(n - 1),

(6)

It im plies, th a t the q u a d ra tic form (7) has the central x 2 d istrib u tio n on m ( n — 1) degrees o f freedom .

M oreover, c(mlm ® J„ ® Лг IJ TA f 1 — J m„ ® \ Ť XJ r A r 'YpHm* ® (ľ* J r + A r) ) x c(m nlm„ ® A f ‘J j - A f 1 — m lm ® ® A f 1 J r A f *) = 0.

It im plies (T heorem 9.4.1, R a o , M i t r a , 1971, p. 178) th a t the q u a d ra tic form s are independently d istrib u ted . T h e p ro o f is com plete.

Corollary 1. If H 0 is true then the statistic X* has the central F distribution w ith m — 1, m(n — 1) degrees o f freedom .

F ro m T heorem 1 it follows th a t the optim al test is to rcject H 0 a t the a level o f significance if

In app licatio n s o f the statistic X* for testing H 0: щ = ... = Pm ag ain st altern ativ e Я х: H 0 is no t

3. STATISTIC X* IN THE CASE AR(p)

P PT - l P PГ - 3 ( G o l d b e r g e r , 1972, p. 203). H ence ( G o l d b e r g e r , 1972, p. 305) A - 1 = _______ ' ЛТ 1 - p 2 ... 0 0 0 1 - p о ... 1 - p l + p 2 - p . . . о 0 о 0 - p and 1 1 — p . . . 1 — p 1 1 - p (1 - p f . . . (1 - p ) 2 1 - p

(7)

I f r-ij is th e p o rd e r a u to re g re ssiv e p ro c e ss A R (p ), i.e. flofyi + a i eif i- i + ... + apľ‘ijt- p = z„ where z, is a w hite noise, th en to calculate A f 1 the recu rrin g algorithm given by S i d d i q u i (1958) ca n be used.

T h e testing o f hypothesis o f equality o f the g ro u p m ean s considered in this p ap e r can be used for econom ical records, which o ften c o n ta in repeated m easurem ents o f one o r m ore variables over tim e. In these situ atio n s, we have correlated observations.

REFERENCES

G o l d b e r g e r A. S. (1972), Teoria ekonometrii, PWE, Warszawa.

R a o C. R, M i t r a S. K. (1971), Generalized Inverse o f Matrices and its Applications, John Wiley and Sons, New York.

S c h e f f e H. (1959), The Analysis o f Variance, Wiley, New York.

S i d d i q u i M. M. (1958), On the Inversion o f the Sample Covariance Matrix in a Stationary

Autoregressive Process, Ann. Math. Stat., 29, 585-588.

Y a n g M. C. K., C a r t e r R. L. (1983), One Way Analysis o f Variance with Time Series

Cytaty

Powiązane dokumenty

When is it

Notice that for any family ∆ of functionals having a positive Weyl chamber we can define a set of simple roots in the way that (2.18) holds. For that we take the set ˜ ∆ of

(ii) Given that the student selected is female, calculate the probability that the student does not play football.. Calculate the probability that neither

(i) Copy the tree diagram and add the four missing probability values on the branches that refer to playing with a stick.. During a trip to the park, one of the dogs is chosen

(b) Find the probability that a randomly selected student from this class is studying both Biology and

Let us now recall the notion of α-proper forcing for a countable ordinal α saying that, given an ∈-chain of length α of countable elementary sum- bodels of some large enough structure

Following the spectacular result of Drury (“the union of two Sidon sets is a Sidon set”), a lot of improvements were achieved in the 70’s about such sets Λ.. Rider, in

Assume that all quasitilted algebras with less than n isomorphism classes of simple modules have a preprojective component, and let Λ be a quasitilted algebra with n ≥ 2