• Nie Znaleziono Wyników

Equations of the shelis with inclusions along one of the parameter lines

N/A
N/A
Protected

Academic year: 2021

Share "Equations of the shelis with inclusions along one of the parameter lines"

Copied!
9
0
0

Pełen tekst

(1)

M ECH AN I KA TEORETYCZNA I STOSOWANA 1/ 2, 22 (1984)

EQUATION S OF TH E SH ELIS WITH  INCLUSIONS ALONG  ON E OF THE PARAMETER LINES IWONA  C I E L E C K A SYLWESTER  K O N I E C Z N Y Politechnika Ł ódzka Instytut Inż ynierii Budowlanej 1. Basic equations of shells I n the paper of Cz. WOŹ N IAK [1], [2] bases of analytical mechanics of material continuum have been given and am on g other things equations of motion and boundary conditions have been formulated for shells as a body with internal constraints. F or static problems, taking the function of m otion defined by the equation ) YeF the equations of m otion have the form [1] i *+ / *=  0, an d the boundary conditions are defined by the following relations [1] 8dk ds The functions tp and d may be dependent on each other and satisfy certain conditions [1]

«

y

(Z,

 *(Z, 0, d(Z, t), v>(Z, t), W(Z, 0) =  0, Zen

pjz,

 MZ,

 t), d(z, t), mz, t), dd(z,

 o) =  o,

 zG

 en.

 u

2. Kinetic contact conditions for shells with inclusions

I n order to take in to account the influence of the inclusion on the motion of the shell, we also handle the inclusion as material continuum [3].

Let us assume th at th e n otion of inclusion from the reference configuration IR to the actual configuration is described by the function x =  %{X, t), X — (Xv

(2)

116 J. CIELECKA, S. KONIECZNY

In accordance with the analytical mechanics of material continuum, the field of external body loads b and the field of external surface loads pR an d the field of internal contact

forces iR s fRnR (TR is the first Piola-

Kirchhoff tensor of stress) should satisfy the prin-ciple of virtual work [2] - X) •  fydvR + f h •  S%daR =  /  fg •  V(6x)dvR, (5) where gR is the mass density of material of the inclusion in the reference configuration We put that the field of external surface loads affecting the boundary of inclusion 8IR or its part is given by the field of internal forces of the shell Pk  -  Tkr nv, (6) where nR = (n)y is a unit normal vector in the place of contact of the shell with the boundary of inclusion. Assuming that the inclusion is closely connected with th e shell, the functions of motion for the shell % an d the inclusion % have the same values on the common surface SR m 8BRndIR. Let the motion of arbitrary particle of inclusion be given in the following form : i(X, t) = <p(Z\  t)+dA(Z\  t)Z A , Z * elf, Z -  (Z2 ,  Z3 ) e  / , (7) where IR =  11 x F is the region occupied by the inclusion in the reference configuration; II is the set of material particles being o n the axis of inclusion, F— the set of particles being in the cross- section of inclusion. Putting that the dimensions of the cross- section of inclusion are h x l(Z2  e ( -  0,5/ ; 0,5/ ), Z3  £ (— 0,5h; 0,5/z) and taking into account the condition (6) we obtain 0,5* 0,5* - 0 . 5 A - 0 , 5 A 0 , 5 * 0,5A

/  f

5

' [

(8) 0,5* ' •  ' - 0 , 5 * 0,5* 0,5*

[ /  Ą l

$l

 [ /

- 0.5A - 0 , 5 * The integrals in the relations (8) denote the jum ps of the internal resultant forces in th e section of the shell oriented by a unit vector nP while crossing the axis of the inclusion.

U sing the principle of virtual work (5) and puttin g the relations (7), (8) an d applying to (5) the du Bois- Reymonda lemma we obtain the equations ot m otion for the inclusion in the following form [Hkt Z2 ]nL =  -  (H  2k \ ,+h2k + f *), f (9)

(3)

SHELLS WITH INCLUSIONS 117 where

H

K1 0,5/ 0,5*

/ / T

kl

dZ

3

dZ

2

,

- 0 , 5 / - 0 , 5 * 0,5/ 0,5*

f f T

kl

Z

A

dZ

3

dZ

2

,

- 6 , 5 / - 0 , 5 * 0,5/ 0,5*

/ ( T

kA

dZ

3

dZ

2

,

- 0 , 5 / - 0 , 5 * 0,5/ 0,5/ 0,5/ - 0 , 5 / (10) The equations (9) are kinetic constant conditions for the shells in the place of the oc-curence of the inclusion and they include its influence on the motion of the shell. We determine the generalized internal forces Hkl, HAkl assuming the appropriate form Of constitutive equations and for the inclusion being a hyperelastic body TkV = pR -^—'

a is the strain energy function.

Equations of motion (2), boundary conditions (3) and kinetic contact conditions (9) describe the boundary value problem being discussed.

3. Cylindrical shells with ring inclusions loaded axially symmetrically

We write the equations formulated above in the cylindrical coordinates R, X1, X2

assuming that the considered values do not depend on variable X1 (fig. 1).

Fig. 1

We put that the shell and the inclusion are made of isotropic material. The equations given below will refer to the case in which the constraints (4) are determined

(4)

118 J. QELECKA, S. KONIECZNY which by the linearization leads to dz = d3 = 1. The constraints assumed so describe the Reissner theory of shells. From the equations of motion given by eq. (2) we obtain four differential equations for cylindrical shells loaded axially symmetrically 0 - D2 2 3 0 _£2222 0 _£2222 0 Z>3 2 3 2 0 - D2222 0 D2222 '0 0 L^2.22 0 . £ 2 2 3 0 Z»322 0 £>322 0 ¥2, 2

I

o ­~

Dl13

°

iv 0 0 D2''

P

= 0, (12)

and

= 0

where A1 is Lagrange multipler which corresponds to eq. (11). In the above system equations the components of function of motion are denoted in the following manner

— o

%pv S ipy — y)y, dy = dy—dy, (13)

where ^ = (0, X2, R), d - (0,0,1). The factors at the unknown components of function

of motion depend on Lame" constants /W, A and thickness h and radius R of the cylindrical shell. ' £ " 3 = ^ _ ' £2 2 3 = RD223 - hX, £3232 _ £322 _ . £22 _ £3232 _

h

2 jr>322 = n2222 _ I - i D

 ~T

2 (14)

The kinetic contact conditions for shell (9) should be reduced to the form including the components of the function of motion of shell ijf and d only. Taking into account the equality of the deformation functions of the shell and of the inclusion on the common surface 5^ we obtain the mentioned below relations between components

Vv = y

~{dP+d

(15)

We determine with sing „ + " the components of the vector of motion for the part of shell which is oriented by the positive unit normal vector nR while crossing the axis of the in-clusion and with sing „—" those for the one oriented by the vector — nR. The kinetic contact conditions by the application of the relations (15) have the form

(5)

SH E LLS WI T H  IN CLU SION S 119 £ , 2222 0 - ~D2222 0 £ 72222 0 0

~L

322 * £ 2222 0 0 i . £2233 — -0 £,3232 0 '_ £,3232 0 £ 73232 £ , 223 £,2222 0 i . JTJT2222 0 £72222 0

-  u

  Ł

'"

4»"4

J_£ 2323 * 1- 2332

- y

L 3 3 3 - Z >2 2 3 *•  r  1 1 3 £ 3 2 2 —

2R

L J_£ > 223_^_£ 322 _ 1L2 3 2 3  _ ^ ^ 7- 2332 - _ £ > 2222 0 0 D3232

0

 - {

_ £ 72222 0 0 £ , 322 0 0 _ £,3232 0 £73232 - .02222 0 - i -  £72222 0 _ £ 72222 0 ^2,2 V3.2 J + , **2» 2 ^2, 2 ^3. 2 - dl 2 0 *•  T3 2 2

T

Ł

__

' 7)322_/  £3232 2 2 1 ł - 3232

~~2

Ł £7322 0 _ £ ) 3 2 2 i/ 0 • )322 * 7 3223 _ ^L2 3 3 2 ^ £ 2 2 2 2 0 0

~vi~

vt

V>2

+

/2 /3 ?22 / "

Z

3 2 f33 =  [0] where 0,5/ 0,5/

[ J

0,5/ 0,5/  0,5/

/» =  [ /  p zwfi, / " -  [ /

05/  05/

[ /

- 0,5/ 0,5/ / - 0, 5/ 0,5/ - 0,5/ (16) (17) - 0,5/

(6)

120 J. CIELECKA, S. KON IECZN Y and

(£)4&r]

L2 2 2 2  =  lh(U2fi), L2233 =  JŁ L3 2 2 =  I hl, £3232 = £2332 = £ 3223 =  / / ^ Ji,X — Lame" constants for material of the inclusion: The first three equations (12) together with kinetic contact conditions (16) and suitable boundary conditions let us calculate the components of the function of m otion of th e shell and the internal resultant forces in th e shell and the inclusion an d also the reaction forces of constraints loading the shell which secure th e deformation consistent with th e assumed constraints. The internal resultant forces may be calculated from relations given in [3] and for the shell being considered they have the following form 12 "2'2 M21  =   — p ^ f2, 2+  — fihyJ3,2. M12  =  M21  =  M31  =  H12  -  H21  =  H31  =  0. The internal forces in the inclusion which are different from zero are determined by th e relations

if

11

 =

(20)

(7)

SHELLS WITH INCLUSIONS 121 The reaction forces of constraints for the shell may be calculated from [1] and for this shell they have the form P = 0 = 0,

T

4. Example Let us consider a cylindrical shell of length L in which two rings have been placed. The Young's modulus for the material of rings is 20% greater than that for the material of the shell but the Poisson's ratios are the same. The shell is loaded a uniform load p along its length (fig. 2) and simple-supported at its ends. It is assumed that the thickness of shell is h = 0,04 m, the radius of the middle surface of shell R = 0,60 m and the width of a ring / = 0,03 m.

run

CM

TTTT

t

1 / A

if~

t t

L 3

t t t

L

y L

t t t

L

t

^1 Fig. 2

Solving this example, the region occupied by shell in the reference configuration has been assumed as the sum of three regions B\, Bxl, flJJ1 (fig. 3).

(8)

122 J. QELECKA, S. KON IECZN Y Fig. 3 Q LO OLO u i u i U>LO 0 0.13L 0,17L0,27L

8

N Fig. 4

After calculations vertical displacements of the poin ts of t h e m iddle surface of th e cylindrical shell with two rin g inclusions and the change of ben din g couple M22

 along the length of the shell have been shown on fig. 4 as and example.

Reference

1. Cz. WOŹ N IAK, W stę p do mechaniki analitycznej kontinuum materialnego, Cz. I ., Kontinua z wię zami geometrycznymi, IPPT P AN  W- wa 1975.

2. Cz. WOŹ N IAK, Constrained Continuous Media, I , II, III, Buli. Acad. Polon. Sd. Ser. Sci. Techn. 21.1973. 3. I . CIELECKA, S. KONIECZNY, Równania powł ok o skokowej niejednorodnoici, Zeszyty N aukowe P Ł.,

(9)

SHELLS WITH INCLUSIONS 123

P e 3 IO M e

yP ABH E H H E OE OJI O^E K C H H K J H 03I M M H  BtfOJIb OflH OrO CEM Efł CTBA n AP AM E T P H ^ E C K H X JIH H H K

H cxoflH H3 ypaBHeHHH TeopHH cnjionnibix cpefl c CBH3«MH ccpopMyjiHpOBaHHOJi1

- !. BO3BHSKOM [1, 2] npeflJiaraeM MaieMaTiwecKyio iwoflenL o6oJio*ieK H3 M aiepnana o cKain<oo6pa3Hi>ix CBOHCTBax. OSnacro 3aBMTtie MaTepHanoM o cBoiicTBax paan bix OT CBOHCTB OCHOBHOBO MaTepaajia Ha3Bain>i HHKJHO3HHMH. P eiueH ae npo6jieMŁi c CKa- qKoo6pa3in>iMH HeoflHopoAHOcTaMM CBefleHO K peineH mo npo6.neMM pjw iwaTepaajia c HeKOToptiMH CBS3HMH HJIH COCTOHHHH HaHpjDKeHiw. n ojiyieH bi ypaBHeHHH npHMeHHTŁ fljia BtniHCJieHHH o6ojioyei< c THSKHMH HHIUIK)3HHMH Bppsib oAiioro ceMeficTBa n

a-Ha cpeflHHHoii noBepxiiocTH  o6oJioqKH.

Streszczenie

RÓWN AN IE POWŁOK Z IN KLU Z JAM I WZD ŁU Ż JED N EJ ROD ZIN Y LIN II PARAM ETRYCZN YCH

Korzystają c z równań teorii oś rodków cią gł ych z wię zami sformuł owanej przez Cz. Woź niaka [1, 2], skonstruowano matematyczny model powł ok ze skokowymi niecią gł oś ciami wł asnoś ci materiał owych. Obszary zaję te przez materiał  mają cy róż ne wł asnoś ci od materiał u podstawowego nazwano inkluzjami. W sformuł owanym modelu rozwią zanie problemu ze skokowymi niejednorodnoś ciami sprowadzone został o do rozwią zania problemu jak dla materiał u jednorodnego, lecz z pewnymi wię zami dla stanu naprę -ż enia.

Otrzymane równania mogą  być zastosowane do obliczenia powł ok z wiotkimi inkluzjami wzdłuż jednej rodziny Unii parametrycznych n a ś rodkowej powierzchni powł oki.

Cytaty

Powiązane dokumenty

Teksty odwołują się do mistyki męki, polegającej na łączności z cierpiącym Jezusem, szczególnie powstałej w kręgu zakonnym: Mechtyldy z Magdeburga, kon- templującej

To obtain these improvements we use, among other things, some recent improvements of Waldschmidt [26] and Kunrui Yu [27] concerning linear forms in logarithms, some recent estimates

Diagnostics of material damages and their description are of importance for the development of the methods for improving the reliability, prediction of the

Drugą analizę doktryny stylistycznej Praskiego Koła, analizę o innym rozkładzie akcen­ tów, dała w tejże książce M.. Zajm uje się ona przede w szystk im

Estuaries are generally ' sunken' valleys in which marine and river sand and mud have deposited. In these deposits the rivers and tides have scoured channels and

gram ochrony zdrowia psychicznego&#34; (przy- jęty do realizacji wraz z harmonogramem w lutym 1995 r.) przewiduje, iż model psy- chiatrii środowiskowej jest głównym celem

Write a program which implements a bounded stack (a Last-In-First-Out structure using sequential memory storage), aimed at storing real numbers, and a set of methods operating on

Calculate the heat flux density vector q and temperature at point A(1.0,1.5) of the configu- ration discretized using 1 finite element.. The following panel is discretized with