• Nie Znaleziono Wyników

Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys

N/A
N/A
Protected

Academic year: 2021

Share "Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys"

Copied!
10
0
0

Pełen tekst

(1)

Delft University of Technology

Microstructure and dislocation structure evolution during creep life of Ni-based single

crystal superalloys

Yu, Hao; Xu, Wei; van der Zwaag, Sybrand

DOI

10.1016/j.jmst.2019.11.028

Publication date

2020

Document Version

Final published version

Published in

Journal of Materials Science and Technology

Citation (APA)

Yu, H., Xu, W., & van der Zwaag, S. (2020). Microstructure and dislocation structure evolution during creep

life of Ni-based single crystal superalloys. Journal of Materials Science and Technology, 45, 207-214.

https://doi.org/10.1016/j.jmst.2019.11.028

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

JournalofMaterialsScience&Technology45(2020)207–214

ContentslistsavailableatScienceDirect

Journal

of

Materials

Science

&

Technology

jou rn a l h o m e p a g e :w w w . j ms t . o r g

Research

Article

Microstructure

and

dislocation

structure

evolution

during

creep

life

of

Ni-based

single

crystal

superalloys

Hao

Yu

a

,

Wei

Xu

a,b,∗

,

Sybrand

van

der

Zwaag

a

aNovelAerospaceMaterialsGroup,FacultyofAerospaceEngineering,DelftUniversityofTechnology,2629HS,Delft,theNetherlands bStateKeyLaboratoryofRollingandAutomation,NortheasternUniversity,110819,Shenyang,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27September2019

Receivedinrevisedform7November2019 Accepted7November2019

Availableonline17January2020 Keywords:

Nisuperalloys Microstructureevolution Dislocationbehaviour

a

b

s

t

r

a

c

t

ThehighperformanceofNisinglecrystalsuperalloysduringhightemperaturelowstresscreep

ser-vice,isintrinsicallydeterminedbythecombinedeffectsofmicrostructuralevolutionandthedislocation

behaviour.Inthefieldoftheevolutionofdislocationnetwork,twomainrecoverymechanismbased

ondislocationmigrationdominatetheprocess.Oneissuperdislocationsshearinginto␥’raftsthrough

atwo-superpartials-assistedapproach.Anotheristhecompactdislocationsmigratingalong␥/␥

inter-face.Thesetwomechanismsaresimilarlyclimb-rate-controlledprocess.Inthiswork,amodelforthe

minimumcreepratebasedonthermodynamicandkineticcalculationsandusinganexistingdetailed

dislocationdynamicsmodelhasbeenbuiltbytakingthedislocationmigrationbehavioursaswellasthe

raftedmicrostructureintoconsideration,whichcanwellreproducethe([100]tensile)creepproperties

ofexistingNisuperalloygrades,withouttheneedtomakethedislocationparametervaluescomposition

dependent.

©2020PublishedbyElsevierLtdonbehalfofTheeditorialofficeofJournalofMaterialsScience&

Technology.

1. Introduction

Ni-basedsinglecrystalsuperalloyshavebeenwidelyusedfor thebladesand otherloadedstructures ofaero-engines andgas turbinesduetotheirsuperiormechanicalproperties,inparticular theirexcellentcreepresistanceathightemperatures[1].Their out-standingcreepresistance,notonlyoriginsfromtheabsenceofgrain boundariesbutislargelydeterminedbytheunique microstruc-turecharacterisedbythepresenceofahigh-volumefractionofthe long-rangeorderedL12␥phase,whichappearsascubescoherently

embeddedinaface-centeredcubicsolidsolution␥matrix.In gen-eral,thesize,volumefractionandmorphologyof␥precipitates

mainly determine the mechanical properties of Ni-superalloys [2,3]. In theas-produced conditionthecuboidal -precipitates havea sizeof around0.4um sizeandtheyare separatedby ␥-channelswitharound0.1umsize.Thetypicalprecipitatevolume fractionatroomtemperatureis50%orhigher[1].

Whenexposedtotheirtypicaluseconditions,arelativelyhigh temperature(>950◦C) anda modeststress(<250MPa),there is directionalcoarsening of ␥ precipitates during theearly creep

∗ Correspondingauthorat:NovelAerospaceMaterialsGroup,FacultyofAerospace Engineering,DelftUniversityofTechnology,2629HS,Delft,theNetherlands.

E-mailaddress:xuwei@ral.neu.edu.cn(W.Xu).

stage,whichisso-called“rafting”stage[4–7].Duringthistime,the initiallyadjacentcuboidal␥particlescoalesceandformplatelets

thatturnintoplate-likeorrod-likestructures.Thislamellar␥/␥’ raftedmicrostructurewillremainmoreorlessunchangedduring thelongstablecreepstage,untilthe␥’graduallyinterconnectsand becomesthematrixphase surroundingisolated␥phaseislands [8,9].Thisprocessisknownasthe‘topologicalphaseinversion’, whichhasbeenconsideredasthemicrostructuralindicator mark-ingthetransitionfromquasi-stationarycreeptoacceleratedcreep. Thisinvertedmicrostructureismaintainedduringtheaccelerated creepstagebutrapidlylosesitregularity,themorphology evolu-tionofthephasesduringtheentirecreeplifeispresentedinFig.1 [10].

Ontheotherhand,thecreepresponsenotonlydependsonthe microstructureevolutionbutalsoonthechangesinthe dynam-icsandtopologyofthedislocationsanddislocationnetworks[11]. Atthebeginningofcreeploading,thedeformationisgovernedby thedislocationglideanddislocationmultiplicationinthe␥ chan-nels.Soonthereafterthemobiledislocationsstarttoaccumulate andbecomerearrangedatthe␥/␥’interface,whiletheformationof lamellarraftstakesplace,leadingtothewidelyobservedformation ofdislocationnetworksonthe␥/␥’interface[11–15].Analogousto thelamellarmicrostructure,thedislocationnetworkwillremain stableuntiltheendofthestablecreepstage(stageIIcreep)when thenetworkbeginstodegradebyhugeamountsofdislocations cut-https://doi.org/10.1016/j.jmst.2019.11.028

(4)

208 H.Yuetal./JournalofMaterialsScience&Technology45(2020)207–214

Fig.1. SchematicillustrationofthemicrostructureevolutionofNisuperalloysingle crystalsduringhightemperaturelowstresscreeploading.Theblackphaseisthe’ phase,whilethewhitephasemarksthe␥phase.Thestressisappliedinthedirection paralleltothey-axis[10].

tingintotherafted␥throughtheinterface.Ultimatelythischaotic

dislocationmultiplicationprocessleadstorupture.

Summingup,thecreeppropertiesofNisinglecrystal super-alloys are strongly dependent on the combined effect of the microstructureevolutionandthedislocationbehaviour.Therefore, agoodunderstandingandsomequantificationofmicrostructure anddislocationevolutionduringcreepiscrucialtobetter compre-hendthemechanicalpropertiesofNisuperalloys.Inthiswork,the currentworkonthedependenceofmechanicalpropertiesinNi singlecrystalsonthemicrostructuralanddislocationbehaviour during isothermal creep tests is reviewed. The experimental observationsand thecorrespondingmodelsandsimulationsare combinedtoshowtheirmutualinteraction.Asimplemodelhas beenbuiltinwhichthegoverningdislocationdynamicsequation isthermodynamicallycoupledtothechemicalcompositionofsome commercialsuperalloystopredicttheirminimumcreeprateatthe loadingconditions.

2. Microstructureevolution

2.1. Initialmicrostructure

The␥ precipitatesinNisuperalloysundergoasuccessionof

morphologychangesfromspherestocubesduringtheheat treat-mentsprecedingtheactualusephase.Attheverybeginning,the ␥’precipitatesnucleateasspherestominimizethesurfacearea [16].Astheparticles grow,themisfit strainenergy inducedby thelatticeandmodulusmismatchbetweenthe␥andthe␥’phase increases,andtheprecipitatesbecomecuboidsasthereductionin strainenergymorethancompensatesfortheincreaseinsurface energy.Ithasbeenproventhatcubemorphologybestminimizes thetotalenergyoftheprecipitateasitprovidesthebestbalance betweentheanisotropicstrainenergyandtheisotropicinterfacial energy[17].

Nathal[18]hasquantitativelyinvestigatedtheoptimalsizeof initial(i.e.asproduced)particleandhisworkshowsthatalloyswith aninitial␥’particlesizebetween0.35and0.5␮mcanpronouncedly outperformtheircounterpartswiththesamelevelofparticle vol-umefractionbutadifferentinitialparticlesize.Hencetheoptimal initialmicrostructureconsistsofalignedcuboidal␥’particleswith asizearound0.4␮m.Thisvalueofsizehasbeenwidelyadopted asthetypicaldimensionofinitial␥’particlesformostofthe com-mercialNisuperalloys.Toexplorethepossible“optimal”volume

fractionof␥’phase,Murakumoetal.startedtheirstudybasedon TMS-75singlecrystalsuperalloy[2].Resultsshowthatthe depen-denceofthecreeprupturelifeontheamountof␥’wasmoreevident insinglecrystalsthaninpolycrystals,whilethe“optimal”amount of␥’phasewhichleadstothelongestcreeplifetimeisnota con-stantandvarieswithdifferentservicetemperature.Insomedesign modelsofNisuperalloys[19,20],theoptimalvolumefractionof ␥’phaseatdifferenttemperatureswasgenerallysetaround50%, whichwasmainlyduetothedependenceoftopologicalinversion onthe␥/␥’volume.

2.2. Raftingstage

Raftingisoneofthemostpronouncedcharacteristicsofhigh temperaturecreepdeformationinnickel-basedsuperalloysingle crystals[5,7,21,22].Duringcreeptestsatahightemperatureanda lowunidirectionalappliedstress,themicrostructureinNi super-alloysgraduallydegradesbyadirectionalcoarseningprocessof␥’ precipitates.Theinitiallyadjacentcuboidal␥’particlescoalesceand formplateletsthatturnintoplate-likeorrod-likestructures.The orientationofdirectionalcoarseningiscloselyrelatedtothe driv-ingforceofrafting,whichisproportionaltotheproductofapplied stressandthelatticemisfit[7,23].For negativemisfittingalloys (wherethelatticeparameterof␥precipitatesissmallerthanthat

of␥matrix),N-typecoalescenceisobserved(i.e.raftsform nor-maltothedirectionoftheappliedstress)duringtensilecreeptest, whereasP-typecoalescenceisobtainedincompressiveloading(i.e. raftsformparalleltothedirectionoftheappliedload).Conversely, foralloyswithpositivelatticemisfit,thetensileloadingleadsto P-typecoalescenceandviceversa.Describingthemorphological changeinmicrostructuredimensionsduringraftingisadirectway tounderstandtheevolutionofmechanicalproperties.

Toquantifythekineticsofraftingprocess,thekey microstruc-turalparameters presentingthemorphologychangeneedtobe extractedandcharacterised.The␥channelwideningisan impor-tantprocessduringthecreepseeninmicrostructuresevolution, since␥channelsaretheconserveddomainswhere dislocations propagateandglideduringprimarycreep.Kamarajetal. inves-tigated the kinetics of the widening of ␥ channels in the ␥/␥’ microstructure,whoseresultsuggeststhat multi-atomdiffusion throughthe␥channelscontrolsthewideningprocess[24].Later workbySerinetal.furtherexploredtheeffectoftheleveland stateofappliedstressonthekineticsof␥channelwidening[25]. Resultsshownthat<100>tensionand(011)<011>shearcreep deformationcanequivalentlyleadtothesamemicrostructure evo-lution,while␥channelwideningratesincrease withincreasing stresslevel.

Thestructuralperiodicity␭inNisuperalloysisanother impor-tantmicrostructuralparameterandthisisdefinedasthesumofthe widthoftheN-channelsandtheextentofthe␥’phaseinthe direc-tionparalleltoappliedstress[26].Thisparametercharacterizes theglobalcoarseningof␥/␥’microstructuresince␥/␥’composite morphologyisalmostperiodicalbothfortheinitialmicrostructure andforthefullyraftedmicrostructure[27].Thisworkindicates thatthemicrostructureperioddoesnotchangeremarkably dur-ingrafting,whichmeansthatraftinginessenceisananisotropic coarseningprocess.Thegrowthof␥’cuboids,characterizedbythe firstincreasein␭,precedesthecoalescenceof␥’cuboidsintorafts takingplacewithoutagreatchangein.

Raftingisgenerallyconsideredasacreephardeningprocess, sincethemorphologicalchangein␥/␥’infactretardstheevolution ofcreepstrain[28–30].Reedetal.attributedthishardeningeffect totheclosureofverticalchannelsduringthemorphologychange [31];themovementofdislocationscontributingtothedeformation creepishinderedbythelamellarstructurewiththeorientation

(5)

H.Yuetal./JournalofMaterialsScience&Technology45(2020)207–214 209

normaltotheappliedstress,leadingtodislocationaccumulation andrearrangementonthe␥/␥’interface[12,13].

2.3. Stablepost-raftingstageandtopologicalinversion

Generally,therafting process is terminatedat orbeforethe stablecreepstage.Thefullyrafted lamellar␥/␥’microstructure can hereafter maintain their morphology for a relatively long time, withonlyminor coarseningbehaviourof ␥’plates taking place[27,32].Thisstablepost-raftingcontrolsthemicrostructural dynamicrecoveryprocess,leadingtoaveryslowaccumulationof creepdeformation.

Attheendofcreepstablestagewithasufficienttimeforthe rearrangementofthelamellarmorphology,the␥’phasegradually interconnectsandisnolongerconfinedbythe␥channels.This evo-lutionleadstoaneffectcalled“topologicalinversion”:the␥’phase nowsurroundsthe␥phaseandtopologicallybecomesthematrix [8,33–36].Themomentoftopologicalinversionhasbeenprovento bestronglydependentontheinitialvolumefractionof␥’phases [37].Thereasonfortheformationofinversedmicrostructurehas beenstudiedindetail bymanyresearchers[8,9,37].Itis gener-allyacceptedthataftertheraftingstage,themisfitstresseson␥/␥’ interfacearereleasedbythedislocationnetwork,andthenthe␥’ precipitatesizeandmorphologywillevolvesuchastominimize thetotalinterfacialenergy.Thisevolutionisobtainedbya reduc-tionin␥/␥’interfaceareadrivenbydiffusion-controlledcoarsening ofthe␥particles.ForthemodernNisinglecrystalsuperalloyswith atypical␥’fractiongreaterthan50%atservicetemperature,the topologicalinversionofthe␥/␥’microstructureisduetothe min-imizationofthe total ␥/␥’interfaceareawiththeminor phase embeddedinthemajorone.Theoccurrenceoftopological inver-sionisgenerallyseenastheindicatorofonsetofacceleratedcreep [8,36].

2.4. Break-upstage

Aftertheinversionofthe␥/␥’microstructure,thecreep resis-tance degrades, rapidly which finally leads to the failure of superalloys.Mughrabiascribesthisdeteriorationtoarapidincrease in deformation induced by internal stresses, which cannot be releasedanylongerbytheinterfacedislocationsoncethe␥phase isbeingsplitintodiscreteislands[38]. Otherstudies[33,39,40] haveindicatedthatintheinversedmicrostructuretheshapeof␥/␥’ interfaceschangesfromsmoothintozigzag,leadingtothe forma-tionofnewdislocationglideplanesin␥’,whichcorrespondingly promotetheformationofdislocationpile-upsand consequently cuttingofthe␥’phase.

2.5. Modellingofmicrostructureevolution

To interpret and further predict the directional coarsening behaviourofNisuperalloys,alargenumberofmodelshavebeen proposed[32,41–56].Emphasis hasbeenputonexplainingthe orientationofraftingbasedondrivingforceofmorphology varia-tion.Andreexplainsthebehaviourinanelasticframework,where theelasticenergyiscalculatedasafunctionoftheparticleshape, theapplied stress and theratio between theYoung’s modulus oftheprecipitatesandthatofthematrix [41]. Theinfluenceof plastic strainswasadded byconsideringthe effectofunevenly distributedinterfacialdislocations.Meanwhiletheanisotropyin releasingthecoherencystresseshavebeenalsosimulated[42–44]. Theoriginallocalstressesinducedbythelatticeandmodules mis-matchdistributedevenlyin␥matrix.Whentheexternalstresses were appliedonthe materials,the local stateof stress in ␥/␥’ microstructurehasbeenmodified,whichleadtoanisotropic coars-eningbehaviours. Theorientation dependenceof elasticenergy

fordifferentmorphologieswasthenquantifiedforthe combina-tionsoftransformationstrainandmatrixplasticstrain[45].These abovementionedmodelshavepointedoutthatdrivingforceson raftingareinessencethelatticemisfit,theexternalloading,and thedifferenceinelasticconstantsbetweenthetwophases.

Besides,otherstudiesfocusedonquantitativelydescribingthe kinetics of the morphology changes during rafting. Svodoba’s model takesinto accounttheinteractions betweendislocations and channelsofmatrix [46].Through modellingthe coarsen-ingbehaviourof␥’particles,theintricatecreepbehaviourcanbe wellcaptured.Fedelichandco-workersmadesystematicstudies toquantify themicrostructuralparameters of commercialalloy CMSX-4duringraftingprocess[32,47,48].Thedirectionwidening behaviourof␥channelwidthisperfectlyfittedasafunctionof time,stressandtemperature,andthemorphologydescriptionwas furtherappliedtobuildtheconstitutivemodelbyconnectingwith creepproperties[49].

Recently,thephasefieldmethodhasemergedasapowerfulway tocapturethemorphologychangeinNisuperalloys.Earlyphase fieldmodelswerebasedonaelasticityframeworkonly[50,51], while thecontributionsfromplastic strainswereintroducedin latermodels[52–54].Theprincipalcriteriainallabovementioned modelsremainthelatticemisfit,theelasticinhomogeneityandthe appliedloadasthedrivingforceforthedirectionalcoarsening.The effectsofdiffusiononthekineticsofraftinghavebeenstudiedby couplingthephase fieldcalculations witha CALPHADapproach [55,56].ResultselucidatethatReadditionretardsthekineticsof raftingbyslowingdownthemobilityof␥/␥’interface.

3. Evolutionofdislocationstructures

3.1. Dislocationsininitialmicrostructure

ForthecommercialNisinglecrystalsuperalloyswiththe typi-calmicrostructureofalignedcubic␥’embeddedin␥matrix,the well-organized ␥/␥’ coherent initial microstructure is obtained by a multi-step solution and aging treatment followed by a slow air-cooling process. The density of dislocations in the initial microstructure will be at a sufficiently low level after thehigh-temperatureheattreatmentand theas-processed␥/␥

microstructurecanbeapproximatelyconsideredasa dislocation-depletedstate.

Whenthestressisappliedduringtheearlystagesofcreep,the dislocationsareprimarilyemittedfromthelow-angleboundaries andpercolateintothenarrow␥channels.Ascreepdeformation proceeds,themobileindividualdislocationsbecomesequentially active and start togenerate short avalanches of creep disloca-tionsinboundary-freeregions.Upontheiractivation,thedensity ofcreepdislocationsinboundary-freeregionsrisesbytwoorders ofmagnitude.Experimentalobservationatthisstageshowsthat the␥/␥interfacesparalleltotheappliedstressarenearlydevoid

ofdislocation,whiledislocationsarefrequentlyobservedonthe␥ channelsnormaltothestressaxis[13].Theanisotropicdistribution ofdislocationsindifferent␥channelsisascribedtotheeffectof uni-directionalappliedstress,whichreleasesthemisfitstraininparallel channelswhileintroducinghigherstrainsinthetransverse chan-nels [14,57].The deformationmechanismduring primarycreep hasbeengenerallyinterpretedastherapidgrowthindislocation densityandthefillingof␥channelswithdislocations[33,58,59]. 3.2. Formationofinterfacialdislocationnetwork

As the microstructure turns into rafts, the dislocations will accumulateatthe␥/␥interfacesandformplanardislocation

(6)

210 H.Yuetal./JournalofMaterialsScience&Technology45(2020)207–214

Fig.2. 2Dsketchforthesuperdislocationscuttinginto␥’rafts[70].

oftwo dislocations withsame Burgers vectortorearrange and generatenewdislocations[14,60–62],whileEggerlerandDlouhy alsoobservedtheformationofnewdislocationson␥/␥’interface contributedbytheinteractionoftwodislocationswithdifferent Burgersvector[63].Theformationofinterfacialdislocationsis usu-allybelievedtobedrivenbythereleaseoflatticemismatchstrain betweenthe␥’precipitateand␥matrix[12,13].Themagnitude oflatticemisfit is thereforeof vitalimportance in thesenseof determiningtheformationofthedislocationnetwork.Zhangetal.’s experimentalresults[64]providedirectevidenceforthe disloca-tionnetworksevolutionduetolatticemisfit.Inalloyswithalarge negativelatticemisfit,thedislocationsrearrangeinthe␥channels andformmorecompleteandcondenseddislocationnetworksand atahigherspeedthaninalloyswithasmallmisfitHaradaand co-workers[65]haveisolatedaquantitativecorrelationbetweenthe dislocationdensityoftheequilibriumnetworkandtheircreep per-formanceinsinglecrystal,withthedislocationspacingbeingfound tobeproportionaltothelogarithmoftheminimumcreeprate.The positivecorrelationbetweencreepstrengthandinterfacial disloca-tiondensitywasalsoprovenbyZhangetal.’swork[66].Basically, theformationofinterfacialdislocationnetwork helpstorelease the␥/␥’misfitstrain,meanwhilecontributestothestrengthening mechanismof␥/␥’lamellarstructurebyhinderingthecuttingthe mobiledislocationsinthematrix.

3.3. Sustenanceofthestabledislocationnetwork

Experimentalobservationshaveshownthatthenetworkscan maintaintheirmorphologyanddensityduringthesecondarycreep stage[62,67,68].Asmentionedabove,theinterfacialdislocation networkcanactasdislocationsinkstoabsorb/accommodatethe matrixdislocations,therebyeffectivelypreventingmatrix disloca-tionsfrompilingupattheinterface[69].Moreover,thedislocation networksalsoprovidedislocationpinstopreventthematrix dis-locationsfromcuttingintothe␥precipitate[11].Thestabilityof

dislocationnetworkhelpstocorrespondinglystabilizethe lamel-lar␥/␥’structureduringthestablecreepstage.Soclearlythereis mutualstabilisation.

The stable stage for ␥/␥’ interfacial dislocation network corresponds to the creep stable stage, which presents the

microstructural dynamic recovery process with a very slow accumulation ofcreep deformation.Srinivasan investigatedthe recoverybehaviourofmobiledislocations,focusingonthe mech-anismof ␥’ rafts cutting[70]. Experimental observations show thattwodislocationswithdifferentBurgers’vectorsin␥channel jointlyshearthe␥’phasebyforminganon-compacted superdis-locationduring[001]tensile creep.Thetwosuperpartialsmove into the ␥’ phase by a combined process of glide and climb, which isequivalenttothemigration ofsinglesuperdislocation. The2Dschematicillustration isshownin Fig.2.Similarresults wereprovedbyexperimentsfrommanyotherresearches[71–74], whilethesuperdislocation-cutting-␥’mechanismhasbeenwidely acceptedasthedominaterecoverymechanismduringcreepstable stage.Accordingtothisclimb-plus-glidecuttingprocess,the rate-controllingstepincreepisessentiallytheclimbrateofdislocations in␥’.

Inaddition,EpishinandLinkproposedanothermechanismfor dislocationmovementduringstablecreep[33].Heredislocations inthechannelssegregateon␥/␥’interfaceduringprimarycreep, thenmovetransverselytotheappliedstressbyacombinationof glideandclimb,whiletheglidingdislocationsfirstgetpinnedby␥’ rafts.Butwiththehelpofosmoticforcesproducedbytemperature andstress,trappeddislocationscanclimbsawayfromitsoriginal slipplane.Thentheclimbingdislocationcanglideinanewslip planeagainonceitsclimbdistanceislargeenoughtoaffordanew glidestepbeforeitisblockedagainby␥’rafts.The2Dsketchof dis-locationmovementisshowninFig.3.Asaresult,thedislocationsin thematrixchannelscanmovealongthe␥/␥’interfaceinazig–zag mannerasshowninthefigure.Unlikethecollectiveshearingof␥’ rafts,dislocationsinthismechanismarecompact,andmigrating onlyin␥matrix.Asimilardescriptionofthedislocationmigration on␥/␥’interfacescanalsobefoundinRefs.[75,76].

3.4. Break-upofinterfacialdislocationstructure

The␥/␥’microstructurebecomesinversedwhencreepenters the tertiary stage. A large part of the dislocation network is still present onthe ␥/␥’ interfaces, but some are locally dam-agedinalater periodofcreep.Thedamaged networkslosethe co-ordinating role of maintaining the dynamic equilibrium, so

(7)

H.Yuetal./JournalofMaterialsScience&Technology45(2020)207–214 211

Fig.3.2Dsketchforthemotionofadislocationon␥/␥’interface[75].

thatalargenumberofdislocationsarepiledupatsomeregions wherethenetworkshavebeendamaged,givingrisetothelocal stressconcentration[14].Experimentalresultshaveshownthat the{111}-typedistortedinterfaceformsasaconsequenceofthe inversed microstructure [73,74,77]. The zigzag interface forms throughdislocationswhichcutintothe␥’raftvia{111}planesof interface[40].Theacceleratedcreepratecanthenbeattributedas theincreaseddislocationactivitywiththebreak-downof disloca-tionnetworksandtheformationofnewglidingplanes.

3.5. Modellingthedislocationevolution

Based on a constitutive model for precipitate-strengthened alloysfromDyson[78],Zhuetal.hasdevelopedamodelby simulat-ingtheinteractionbetweenthedislocationandthe␥’particleswith acuboidmorphology[76]. Therate-controllingstepis assumed tobeclimbofdislocationsatthematrix/particleinterface,hereby thecreepratecanbemodelledasa functionofmicrostructural parameteraswellasintrinsicdislocationdiffusivity.

Atthemesoscopicscale,themaincomputationaltooltostudy thedynamiccollectiveevolutionofdislocationsunderthe exter-nalloadingisdiscretedislocationdynamics(DDD)simulation.The applicationofDDDinNisuperalloyswasprimarilyconcernedwith superdislocations in the␥’ phase, focusing onthe role of cube sizeandshape,phasevolumefraction,temperatureandanti-phase boundary energy [79–81]. Attention hasbeen paid tothe raft-ingdomaintotackledislocationplasticityin␥channelsof␥/␥’ microstructures,whichmakesdislocationclimbandvacancy dif-fusionbecomeunavoidablekeyissues.InHafezHaghighatetal.’s work,themovementofdislocationsalongthe␥/␥interfaceclose

tothe␥’cubewasinterpretedasacombinationofdislocationglide andclimb,whilethenetdislocationmotionisclimbcontrolled[82]. WorkdonebyGaoetal.explicitlytakesintoaccountthe vacancy-diffusion-coupleddislocationclimb,whichshowsthatdislocation climbcanrearrangethedislocationconfigurationtorelaxthe hard-eningduetodislocationfilling␥channels[83].Yangetal.’swork alsoputsemphasis onsimulatingthediffusion-induced disloca-tionclimbtostudytheprimarycreepandearlyplasticbehaviour [75]. The influencesof microscale vacancysupersaturation and mesoscalephasemorphologyweredescribedindetail.UsingaDDD model,theeffectofinterfacialdiffusiononthecreepbehaviourhas beeninvestigatedbyShishvanetal.[84].Resultsshowthat interfa-cialdiffusionhelpstorearrangethedislocationdistribution,aswell astorelaxtheback-stressesinducedbydislocationspile-up.The DDDmodelhasalsobeencombinedwithfiniteelementmethodby Songtoinvestigatetheinfluenceofinterfacialdislocationnetworks andlatticemismatchonthedynamicsofdislocationevolutionin thematrixchannels[85].

Fig.4.TheminimumcreeprateofcommercialNisinglecrystalsuperalloysasa functionofinterfacialdislocationspacingduring1100◦C,137MPacreep[11,57,65].

4. Discussion

4.1. Thedependenceofminimumcreeprateoninterfacial dislocationdensity

As shown in Fig.4, theminimum creeprate of commercial Nisinglecrystalgradesincreaseslinearlywiththespacingofthe interfacialdislocations[11,57,65].Thisphenomenological relation-shipcangiveanintuitivefirst-orderconnectionbetweenthecreep propertiesandthedislocationproperties.However,theparameter dislocationspacingishighlydependentontheaccuracyof experi-mentalobservation.Moreover,theapplicationofthisrelationship toquantifythecreepbehaviourofexistingsuperalloysorfurther predictthepropertiesofnovelsuperalloys,islargelyinfeasible.To buildaconstitutiverelationshipwithphysicalmeaningsinstead offittingequations,moredetaileddescriptioninthedependence ofdislocationbehaviourneedstobemade,whilethe dislocation-behaviour-baseddeformationmechanismneedstobetakeninto consideration.

4.2. Simulationofdislocationbehaviour

Formal statementshave shown that the layeredfully-rafted structure coupled with␥/␥ interfacial dislocationnetwork can

remainstableandkeepalmostunchangedforarelativelylongtime untilrupture.Therefore,theinvestigationofcreeppropertiesas thedependenceofdislocationbehaviourshouldbefocusedonthe post-raftingstageasthemostlong-lastingstage.Asstatedbefore, Srinivasanetal.’sresearchhasshownthatthe␥’raftscanbecut bythesuperdislocationthroughacombinedprocessofglideand climb,wheretheclimbingvelocityofsuperpartialsarethe control-lingfactorsofcreeprate[70].Thefollowingdiscussionaboutcreep isbydefaultreferredtothe[001]tensilecreep.Basedonthisresults, theclassicdislocationclimbmodelfromAndersonetal.[86]was employedasafirstorderapproximationtoestimatethedislocation mobility,wheretheclimbingrateofdislocationsin␥’phase

v

chas

beenpresentedasfollows:

v

c=

2Ds’(e xxVa’

kT −1)

bln(R/b) (1)

whereDs isthediffusivityof␥,xx istheappliedstress,Va is

theatomicvolumeof␥,bistheBurger’svector,Ristheaverage

dislocationspacingin␥andR’



1



’ and␥isthedislocation densityin␥phase.

(8)

212 H.Yuetal./JournalofMaterialsScience&Technology45(2020)207–214

Forthedislocationzig-zagmovementalongthe␥/␥interface

proposedbyEpishinandLink[33],thecreepratecontrolling fac-torofthismechanismissimilarlythedislocationclimbrate.Here thecompactdislocationsmovealong␥/␥interfacewithout

super-partials,andthe␥matrixisthedomainofdislocationmigration. Andersonetal.’stheorywasagainemployed[86],andtheclimbing rateofdislocationon␥/␥interfacewasshownasfollows: vc= 2Ds(e

xxVa

kT1)

bln(R/b) (2)

whereDsisthediffusivityof␥,Vaistheatomicvolumeofg,Rstands

fortheaveragedistanceofdislocationsonthe␥/␥’interface.The interfacialdislocationdensityofNisuperalloyshasbeenreported bymanyresearchersasafunctionoflatticemisfit[68],wherethe spacingofdislocationnetworkR=



b





ı



.Hereıisthelatticemisfit presentingbyı= a’−a

a .a␥anda␥arethelatticeparameterof␥’

and␥phase,respectively.Sotheequationwasrepresentedinthe followingway:

v

c= 2Ds(e xxVa kT −1) −bln



ı



(3)

In this work,the lattice misfit is obtained, from the lattice parametersof␥/␥phasescalculatedthroughtheirmolarvolumes

a= 3



4Vm

NA .Forthecalculationofdiffusioncoefficientinthe

multi-elementalloysystem,aharmonicmeanofcalculationisselected basedonZhuetal.’swork[76],i.e.,Ds= 1



mxDmm

0

.

Bynowthecreeprate-controllingbehavioursofdislocationsin ␥and␥ phase havebeenpresentedrespectively.Afterfiguring

outtheunderlyingdeformationmechanismoriginatingfrom dis-locationbehaviour,thecreepbehaviourofsuperalloyscanbethen interpretedasthecombinationofthesetwomechanisms. 4.3. Simulationofminimumcreeprate

For the fully rafted ␥/␥ lamellar microstructure, the creep

behaviourcanbeapproximatelyequaltothecompositesreinforced bythecontinuouslamellae,whichareorientedperpendicularto theappliedstress.Assuminganiso-stresscondition[87],thestrain rateofalloycanbepresentedbythefollowingequation:

˙ε= ˙˙εV+ ˙εV (4)

whereVandVarethevolumefractionof␥and␥phase

respec-tively.AccordingtotheOrowanlaw,thestrainrateingandg’phase canbewrittenas:

˙

εε˙=Mbvc (5)

where␥ stands for thedislocationdensityin ␥; and M isthe Schmidfactor.

However,the abovementioned equation describesthecreep propertiesofalloyswitha lamellarmicrostructurewithout tak-ingintoconsiderationthedistributionoflamellaespacing,andthe effectofinter-spacingoflamellaeneedtobefurtherinterpreted. WhitelyproposedamodelbasedontheBailey-Nortoncreep equa-tionto describeAl-CuAl2 eutectic alloywith lamellar structure

[88],where dislocation-motion related microstructural parame-ter,inter-lamellarspacingL,wasadded,asshownbythefollowing equation

˙εLn (6)

wherenisthelamellarspacingexponent.Theoreticallynshould beequalto1foraperfectlyalignedandcontinuousfiber(orplate)

Table1

Microstructuralparametersandphysicalconstantsusedinequation[70,76].

Parameter Value

Lamellarspacingexponent,n 1.5

Schmidfactor,M 1/√6

Burger’sfactor,b 2.5×10−10m

Dislocationdensityin␥’phase,␥’ 109m−2

Dislocationdensityin␥phase,␥ 1011m−2

Initialsizeof␥’particles,␻0 4×10−7m

reinforcedcomposite,butitwillbeashighas3iffiber(orplate) rup-tureoccurs.Theapplicationofequationcanalsobefound[89,90] withsimilarwell-alignedlamellarstructure.Inthisworkthe lamel-larinter-spacingcanbedefinedasthechannelwidthof␥phaseto

presenttheperiodicalmicrostructure.Accordingtothegeometrical relationship,Lcanbeexpressedinthefollowingway:

L= V’ 1−V’1/3

ω0 (7)

whereω0istheinitialsizeof␥particles.

Combiningall,thecreepratecanbeexpressedbythefollowing equation: ˙ε=Ln( 2MVDs’



exxVa’kT −1



ln



Rb



− 2MVDs(e xxVa kT −1) ln



ı



)(8) ThecreeppropertiesofNisuperalloyscanbepresentedby dis-locationbehaviourthroughbuildingtheclimb-assistedequation withtheconsiderationoflamellarmicrostructure.Inequation,the parameterssuchasphasevolumefractionVandV’,diffusivity DsandDs,andlatticemisfitıarethermodynamicfactorsthatare

stronglyrelatedtochemicalcomposition.Themechanical prop-ertiesofsuperalloyscanbethenconnectedwiththecomposition whenthesethermodynamicparameterscanbeproperlyobtained asaconsequenceofcomposition.WhilethemodelasgivenbyEq. (8)isprobablyconceptuallycorrect, thelargenumberof physi-calparameterswhichvalues cannotbeobtainedindependently, impliesthatthemodelcannoteasilybeusedforthecompositional optimisationofexistingalloys,northedesignofnewsuperalloys.

Inthefield ofsuperalloys, theimplementationof CALPHAD-basedthermodynamicmodelsisnowanemergingapproach,where equilibriummicrostructuralfeaturesofcomplexmulti-component alloys,suchasphasefraction,elementpartitionanddiffusivity,can bewellcapturedbyusingGibbsfreeenergydatabases.Valuesfor theparameterssuchasVf,Vm,xm,Dswerecalculatedvia

Thermo-CalcusingTCNI9andMOB2database.Sincetheminimumcreep rateisalsoafunctionofthe(a-prioriunknown)dislocationdensity in␥and␥’phaseinthefollowingsimulationsitwaspre-setasa constant.Thisisaslightsimplificationbuthelpsustoillustratethe effectofcomposition-relatedfactors.Themicrostructural param-etersandphysicalconstantsusedinequationarelistedinTable1 [70,76].

4.4. ValidationofminimumcreeprateinexistingNicommercials Toillustratethemodel’scapability inreproducing thecreep propertiesof superalloys,existing commercialgradesofNi sin-glecrystalshavebeenemployedwiththeirchemicalcompositions showninTable2.Basedonthecomposition,thevolumefractionas wellasthediffusivityof␥and␥phaseinexistingalloysat1100C

arecalculatedandshowninFig.5.

InFig.5(a),thesquaredotswithblackandgreycolourindicate thecalculateddiffusioncoefficientinandphasesrespectively. Forallalloys,almostnodifferencecanbefoundinthediffusivity of␥phase,duetotherelativelysmallsolubilityofalloying

(9)

ele-H.Yuetal./JournalofMaterialsScience&Technology45(2020)207–214 213 Table2

ChemicalcompositionsofcommercialNisinglecrystalsuperalloys(wt%)[65,77,91–94].

Sample Al Co Cr Hf Mo Re Ru Ta Ti W Ni TMS-75 6 12 3 0,1 2 5 – 6 – 6 Bal. CMSX-4 5,6 9 6,5 0,1 0,6 3 – 6,5 1 6 ERBO/39 4,4 8,92 5,11 – 0,97 – – 6,7 3 9 ERBO/38 5,54 8,71 5,12 – 0,95 – – 6,54 0,79 9,05 ERBO/37 6 8,74 5,14 – 0,95 – – 6,56 – 9,09 ERBO/36 5,65 8,89 5,23 – 0,96 – – 6,67 – 6,19 ASTRA100 6,13 8,92 5,25 – 0,97 – – 6,7 – 6,19 CMSX-10K 5,7 3 2 0,03 0,4 6 – 8 0,2 5 TMS-138 5,9 5,9 2,9 0,1 2,9 4,9 2 5,6 – 5,9 TMS-162 5,8 5,8 2,9 0,1 3,9 4,9 6 5,6 – 5,8 LSC-15 4 6 7 0,1 1,5 – – 5,5 – 10 SX-0Ru 6 – 4 – 1 4 0 5 0,5 5 SX-2Ru 6 – 4 – 1 4 2 5 0,5 5 SX-4Ru 6 – 4 – 1 4 4 5 0,5 5

Fig.5.Calculateddiffusivityandvolumefractionof␥and␥’phase,aswellasthelatticemisfitofexistingNisinglecrystalgradesat1100◦C(a)andtheexperimentalminimum creepratesofalloysat1100◦C,137MPa[65,91,92](b).Thelinesconnectingtheindividualdatapointshavenophysicalmeaningandareonlyaddedtoguidetheeye.The orderofthesuperalloysalongthex-axisisbasedonthegenerationofNicommercialsinglecrystalsuperalloys.

mentsintheNi3Alintermetallic.Incomparison,thediffusivityin

TMS-138andTMS-162alloysissignificantlysmallerthanthatin theotheralloys,whichisunderstandableduetothemoreheavily alloyingbyrefractoryelements(suchasReandMo)inTMSseries. Also,thecalculatedresultsdemonstratethatdifferenceof diffusiv-ityin␥issmallbutthatinisbig,whichimpliesthediffusion

behaviourin␥phaseisthedominatemechanismindeformation whichleadstothedifferenceincreepbehaviourforNicommercial grades.Therounddotspresentthephasevolumefractionsof list-ingalloys,whereASTRA100,ERBO/36,ERBO/37andERBO/38alloys havearelativelylowvaluesof␥volumefractionaround35%.The

redtriangledotsshowthecalculatedlatticemisfitsofallalloys.The TMSalloysgenerallypossesslargenegativemisfits,whilethelattice mismatchofotheralloysfluctuatesaroundzerowithsmall differ-ence.Fig.5(b) showstheexperimentalminimumcreepratesof thesealloysat1100◦Cand137MPa.TMS-162alloypronouncedly outperformsotheralloyswhileERBO/36hastheworstperformance increep.Theinfluencefactorscorrespondingtothe composition-relatedparametershavebeenanalysed.

Fig.6showsthecomparisonbetweentheexperimental min-imum creep rates of existing Ni grades, and the calculated minimumcreepratesobtainedfromthermodynamicsimulations. Theselectedexperimentaldataareobtainedfromdifferent temper-atureandstressranges[65,77,91–94].Resultsshowthatcompared totheexperimentalresults, thecreeprates aregenerally over-estimatedbythesimulations,asindicatedbythereddashline. Butitisworthpointingoutthismodelbasedonthesimulationof dislocationmovementcanwellreproducethecreeppropertiesof existingNisuperalloysatdifferenttemperatureandstressranges. Hence,throughthermodynamicandkineticcalculations,the

chem-Fig.6.SimulatedminimumcreeprateofexistingNicommercialgradescompared withtheexperimentalresultsobtainedfromtheliterature[65,77,91–94].

icalcompositionsofNisuperalloyscanbesuccessfullycoupledto theircreepperformancebythismodelwithoutmakingthe dislo-cationspecificationsthemselvescompositiondependent.

5. Conclusions

(1)ThehighperformanceofNisinglecrystalsuperalloysduring hightemperaturelow stresscreepservice, isprimarily con-trolledbythecombinedeffectsofmicrostructuralevolution, namelytheformationofraftinglamellae,andthedislocation

(10)

214 H.Yuetal./JournalofMaterialsScience&Technology45(2020)207–214

behaviour,i.e.,thewell-arrangeddislocationnetworklocated onthe␥/␥interface.

(2)Duringthesecondarycreepstagewhichtakeslongesttimeof creeplife,two main recoverymechanism basedon disloca-tionmigrationdominatetheprocess.Oneissuperdislocations shearing into ␥’ rafts through a two-superpartials-assisted approach.Anotheristhecompactdislocationsmigratingalong ␥/␥interface.Thesetwomechanismsaresimilarly

climb-rate-controlledprocess.

(3)Amodelfortheminimumcreepratebasedonthermodynamic andkineticcalculationsandusinganexistingdetailed disloca-tiondynamicsmodelhasbeenbuiltbytakingthedislocation migrationbehavioursaswellastheraftedmicrostructureinto consideration,whichcanwellreproducethecreepproperties ofexistingNisuperalloygrades.

Acknowledgements

ThisworkwasfinanciallysupportedbytheNationalNatural Sci-enceFoundationofChina(No.51722101)andtheKeyResearchand DevelopmentProject(No.2017YFB0703001).

References

[1]R.C.Reed,TheSuperalloys:FundamentalsandApplications,Cambridge UniversityPress,Cambridge,2008.

[2]T.Murakumo,T.Kobayashi,Y.Koizumi,H.Harada,ActaMater.52(2004) 3737–3744.

[3]L.Shui,T.Jin,S.Tian,Z.Hu,Mater.Sci.Eng.A454–455(2007)461–466.

[4]R.A.Ricks,A.J.Porter,R.C.Ecob,ActaMetall.31(1983)43–53.

[5]W.Johnson,M.Berkenpas,D.Laughlin,ActaMetall.36(1988)3149–3162.

[6]S.Socrate,D.M.Parks.ActaMetall.Mater.41(1993)2185–2209.

[7]F.R.Nabarro,Metall.Mater.Trans.A27(1996)513–530.

[8]A.Epishin,T.Link,U.Brückner,P.Portella,ActaMater.49(2001)4017–4023.

[9]J.V.Goerler,I.Lopez-Galilea,L.R.Mujica,O.Shchyglo,W.Theisen,I.Steinbach, ActaMater.124(2017)151–158.

[10]X.Tan,J.Liu,T.Jin,Z.Hu,H.Hong,B.G.Choi,I.S.Kim,C.Y.Jo,Mater.Sci.Eng.A 528(2011)8381–8388.

[11]J.Zhang,T.Murakumo,Y.Koizumi,T.Kobayashi,H.Harada,S.Masaki,Metall. Mater.Trans.A33(2002)3741–3746.

[12]A.Lasalmonie,J.Strudel,Philos.Mag.32(1975)937–949.

[13]T.Gabb,S.Draper,D.Hull,R.MacKay,M.Nathal,Mater.Sci.Eng.A118(1989) 59–69.

[14]S.Tian,J.Zhang,H.Zhou,H.Yang,Y.Xu,Z.Hu,Mater.Sci.Eng.A279(2000) 160–165.

[15]J.Zhang,H.Harada,Y.Koizumi,T.Kobayashi,J.Mater.Sci.45(2010)523–532.

[16]R.Ricks,A.Porter,R.Ecob,ActaMetall.31(1983)43–53.

[17]A.Baldan,J.Mater.Sci.37(2002)2379–2405.

[18]M.Nathal,Metall.Trans.A18(1987)1961–1970.

[19]Z.Zhu,L.Höglund,H.Larsson,R.C.Reed,ActaMater.90(2015)330–343.

[20]R.Rettig,N.C.Ritter,H.E.Helmer,S.Neumeier,R.F.Singer,Model.Simul. Mater.Sci.23(2015)1–24.

[21]M.Kamaraj,Sadhana28(2003)115–128.

[22]W.C.Johnson,Metall.Trans.A18(1987)233–247.

[23]M.Ignat,J.Buffiere,J.Chaix,ActaMetall.Mater.41(1993)855–862.

[24]M.Kamaraj,K.Serin,M.Kolbe,G.Eggeler,Mater.Sci.Eng.A319(2001) 796–799.

[25]K.Serin,G.Göbenli,G.Eggeler,Mater.Sci.Eng.A387(2004)133–137.

[26]A.Epishin,T.Link,P.Portella,U.Brückner,ActaMater.48(2000)4169–4177.

[27]A.Epishin,T.Link,H.Klingelhöffer,B.Fedelich,U.Brückner,P.D.Portella, Mater.Sci.Eng.A510(2009)262–265.

[28]H.Mughrabi,U.Tetzlaff,Adv.Eng.Mater.2(2000)319–326.

[29]R.C.Reed,D.C.Cox,C.Rae,Mater.Sci.Technol.23(2007)893–902.

[30]C.Rae,R.Reed,ActaMater.55(2007)1067–1081.

[31]R.Reed,N.Matan,D.Cox,M.Rist,C.Rae,ActaMater.47(1999)3367–3381.

[32]B.Fedelich,G.Künecke,A.Epishin,T.Link,P.Portella,Mater.Sci.Eng.A 510–511(2009)273–277.

[33]A.Epishin,T.Link,Philos.Mag.84(2004)1979–2000.

[34]P.Caron,M.Benyoucef,A.Coujou,J.Crestou,N.Clement,ONERA,TPno 2000-230,2000.

[35]A.Fredholm,J.L.Strudel,HighTemperatureCreepMechanismsinSingle CrystalsofSomeHighPerformanceNickelBaseSuperalloys,High TemperatureAlloys,Springer,1987.

[36]W.Walston,K.O’hara,E.Ross,T.Pollock,W.Murphy,ReneN6:third generationsinglecrystalsuperalloy,in:Superalloy,1996,pp.27–34, Warrendale.

[37]P.Caron,C.Ramusat,F.Diologent,Superalloys,2008,pp.159–167.

[38]H.Mughrabi,␥/␥’Raftinganditseffectonthecreepandfatiguebehaviourof monocrystallinesuperalloys,TheJohannesWeertmanSymposium(1996).

[39]T.M.Pollock,A.S.Argon,ActaMetall.Mater.40(1992)1–30.

[40]Y.Ru,S.Li,J.Zhou,Y.Pei,H.Wang,S.Gong,H.Xu,Sci.Rep.6(2016)1–9.

[41]A.Pineau,ActaMetall.24(1976)559–564.

[42]D.Arrell,J.Vallés,Scr.Metall.Mater.30(1994)149–153.

[43]J.Y.Buffiere,M.Ignat,ActaMetall.Mater.43(1995)1791–1797.

[44]N.Matan,D.Cox,C.Rae,R.Reed,ActaMater.47(1999)2031–2045.

[45]N.Ratel,G.Bruno,P.Bastie,T.Mori,ActaMater.54(2006)5087–5093.

[46]J.Svoboda,P.Lukáˇs,ActaMater.46(1998)3421–3431.

[47]B.Fedelich,A.Epishin,T.Link,H.Klingelhöffer,G.Künecke,P.D.Portella, Comput.Mater.Sci.64(2012)2–6.

[48]B.Fedelich,A.Epishin,T.Link,H.Klingelhöffer,G.Künecke,P.D.Portella, Raftingduringhightemperaturedeformationinasinglecrystalsuperalloy: experimentsandmodeling,in:Superalloys,2012,pp.491–500.

[49]T.Tinga,W.Brekelmans,M.Geers,Comput.Mater.Sci.47(2009)471–481.

[50]M.Gururajan,T.Abinandanan,ActaMater.55(2007)5015–5026.

[51]D.Li,L.Chen,ActaMater.47(1998)247–257.

[52]G.Boussinot,Y.LeBouar,A.Finel,ActaMater.58(2010)4170–4181.

[53]N.Zhou,C.Shen,M.Mills,Y.Wang,ActaMater.55(2007)5369–5381.

[54]N.Zhou,D.Lv,H.Zhang,D.McAllister,F.Zhang,M.Mills,Y.Wang,ActaMater. 65(2014)270–286.

[55]L.T.Mushongera,M.Fleck,J.Kundin,Y.Wang,H.Emmerich,ActaMater.93 (2015)60–72.

[56]Y.H.Wen,J.V.Lill,S.L.Chen,J.P.Simmons,ActaMater.58(2010)875–885.

[57]J.Zhang,T.Murakumo,H.Harada,Y.Koizumi,Scr.Mater.48(2003)287–293.

[58]T.Link,A.Epishin,U.Brückner,P.Portella,ActaMater.48(2000)1981–1994.

[59]W.Schneider,H.Mughrabi,CreepandFractureofEngineeringMaterialsand Structures,1993,pp.209–220.

[60]R.R.Keller,H.J.Maier,H.Mughrabi,Scr.Metall.Mater.28(1993)23–28.

[61]H.Gabrisch,D.Mukherji,R.Wahi,Philos.Mag.A74(1996)229–249.

[62]H.Gabrisch,D.Mukherji,ActaMater.48(2000)3157–3167.

[63]G.Eggeler,A.Dlouhy,ActaMater.45(1997)4251–4262.

[64]J.Zhang,J.Wang,H.Harada,Y.Koizumi,ActaMater.53(2005)4623–4633.

[65]Y.Koizumi,T.Kobayashi,T.Yokokawa,J.Zhang,M.Osawa,H.Harada,Y.Aoki, M.Arai,Superalloys,2004,pp.35–43.

[66]J.Zhang,T.Murakumo,H.Harada,Y.Koizumi,Scr.Mater.48(2003)287–293.

[67]T.Zhu,C.Y.Wang,Phys.Rev.B72(2005)1–6.

[68]L.Carroll,Q.Feng,T.Pollock,Metall.Mater.Trans.A39(2008)1290–1307.

[69]Z.Luo,Z.Wu,D.J.Miller,Mater.Sci.Eng.A354(2003)358–368.

[70]R.Srinivasan,G.F.Eggeler,M.J.Mills,ActaMater.48(2000)4867–4878.

[71]A.Kostka,G.Mälzer,G.Eggeler,A.Dlouhy,S.Reese,T.Mack,J.Mater.Sci.42 (2007)3951–3957.

[72]J.B.leGraverend,J.Cormier,F.Gallerneau,P.Villechaise,S.Kruch,J.Mendez, Int.J.Plasticity59(2014)55–83.

[73]L.A.Jácome,P.Nörtershäuser,J.K.Heyer,A.Lahni,J.Frenzel,A.Dlouhy,C. Somsen,G.Eggeler,ActaMater.61(2013)2926–2943.

[74]L.A.Jácome,P.Nörtershäuser,C.Somsen,A.Dlouh ´y,G.Eggeler,ActaMater.69 (2014)246–264.

[75]H.Yang,M.Huang,Z.Li,Comput.Mater.Sci.99(2015)348–360.

[76]Z.Zhu,H.Basoalto,N.Warnken,R.Reed,ActaMater.60(2012)4888–4900.

[77]X.Tan,J.Liu,T.Jin,Z.Hu,H.Hong,B.G.Choi,I.S.Kim,C.Y.Jo,D.Mangelinck, Mater.Sci.Eng.A580(2013)21–35.

[78]B.Dyson,Mater.Sci.Technol.25(2009)213–220.

[79]K.Yashiro,F.Kurose,Y.Nakashima,K.Kubo,Y.Tomita,H.M.Zbib,Int.J. Plasticity22(2006)713–723.

[80]S.I.Rao,T.A.Parthasarathy,D.M.Dimiduk,P.M.Hazzledine,Philos.Mag.84 (2004)3195–3215.

[81]A.Vattré,B.Devincre,A.Roos,Intermetallics17(2009)988–994.

[82]S.M.HafezHaghighat,G.Eggeler,D.Raabe,ActaMater.61(2013)3709–3723.

[83]S.Gao,M.Fivel,A.Ma,A.Hartmaier,J.Mech.Phys.Solids102(2017)209–223.

[84]S.S.Shishvan,R.M.McMeeking,T.M.Pollock,V.S.Deshpande,ActaMater.135 (2017)188–200.

[85]S.Huang,M.Huang,Z.Li,Int.J.Plasticity110(2018)1–18.

[86]P.M.Anderson,J.P.Hirth,J.Lothe,TheoryofDislocations,Cambridge UniversityPress,Cambridge,2017.

[87]M.F.Bartholomeusz,J.A.Wert,Metall.Mater.Trans.A25(1994)2161–2171.

[88]R.D.Schmidt-Whitley,Z.Metallkd.64(1973)552–560.

[89]D.Mason,D.VanAken,ActaMetall.Mater.43(1995)1201–1210.

[90]K.Hagihara,H.Araki,T.Ikenishi,T.Nakano,ActaMater.107(2016)196–212.

[91]Y.Kondo,N.Miura,T.Matsuo,Mater.Sci.Forum539(2007)3100–3105.

[92]M.Pröbstle,S.Neumeier,P.Feldner,R.Rettig,H.Helmer,R.Singer,M.Göken, Mater.Sci.Eng.A676(2016)411–420.

[93]P.Wollgramm,H.Buck,K.Neuking,A.B.Parsa,S.Schuwalow,J.Rogal,R. Drautz,G.Eggeler,Mater.Sci.Eng.A628(2015)382–395.

[94]J.Y.Guédou,N.Tsuno,S.Takahashi,J.Choné,MATECWebofConf.14(2014) 1–4.

Cytaty

Powiązane dokumenty

Cătălin Mamali, Mircea Kivu, Jan Kutnik • Conflicting representations on Armenian genocide: exploring the relational future through self-inquiring technique 168.

A rozszerzając to nieco: im treści znaczeniowe znajdują się dalej od po­ wierzchni tekstu, od tem atu jawnego, tym są głęb­ sze, tym bardziej właściwe

Ludwika Cichowicza i Henryka Konica wyraziła następujące zapatrywania: w sprawie zaprowdzenia jednolitego prawa cywilnego w całej Pol­ sce (na wniosek prof. 2) Nowy kodeks

Sprawozdanie z działalności Koła Naukowego Historyków Kościoła przy ATK w roku 1995.. Saeculum Christianum : pismo historyczno-społeczne

In dit rapport wordt het haventerminalsysteem voor stortgoed gedefinieerd en beschreven, met als doel te komen tot een simulatiemodel dat gemakkelijk hanteerbaar is. Dit model

wadzały na stanowiska na Śląsku Cieszyńskim osoby narodowości czeskiej z innych regionów, część Polaków i Niemców oraz kolejarzy podejrzewanych o poglądy

Celem pracy jest analiza struktury i dynamiki obciążeń treningowych zrealizowanych przez biegaczy na orientację kadry narodowej w latach 2002-2003 podczas

Tak więc początki udziału Fuggerów w małopolskim górnictwie kruszcowym można przesunąć, w świetle listu Hegla, na pięć lat wstecz, a poza tym okazało się, że poza