• Nie Znaleziono Wyników

Special Cases of Some General Formula for Price Indices

N/A
N/A
Protected

Academic year: 2021

Share "Special Cases of Some General Formula for Price Indices"

Copied!
7
0
0

Pełen tekst

(1)

FOLIA OECONOMICA 269, 2012

[175]

Jacek Biaáek*

SPECIAL CASES OF SOME GENERAL FORMULA

FOR PRICE INDICES

Abstract. In the paper we present a general formula for aggregative price indices that

satisfies most postulates coming from the axiomatic price index theory. We show that a lot of known and useful price indices are particular cases of the discussed formula.

Key words: price indices, Laspeyres index, Paasche index, Fisher index, Marhall-Edgeworth

index, Geary-Khamis index, Walsh index.

I. INTRODUCTION

The history of price indices is quite long – Dutot1 presented his index in 1738, M. W. Drobisch published his formulas in 1871, Laspeyres and Paasche indices have been known since the 19-th century. From a theoretical point of view, a proper index should satisfy a group of postulates (tests) coming from the axiomatic index theory (see Balk (1995)). A system of minimum requirements of an index comes from Marco Martini (1992). According to the mentioned system a price index should satisfy at least three conditions: identity, commensurability and linear homogeneity. German index theoreticians – Eichhorn and Voeller (1976) – introduced a more generally acceptable system (EV) of five, and later also of four axioms: strict monotonicity, price dimensionality, commensurability, identity and (optionally) linear homogeneity (see also Biaáek (2005), von der Lippe (2007)). In the literature we can also meet other systems – for example Bernhard Olt (1996) examined several systems that provide less restrictive requirements than EV-systems.

Let us consider a group of N components observed at times s, t and let us denote2:

* Ph. D., Chair of Statistical Methods, University of àódĨ . 1

„Reflexions politiques sur les finances et le commerce”, The Hague 1738.

(2)

Jacek Biaáek 176 1 2 [ , ,..., ] s s s s N

P p p p c – a vector of components’ prices at time

s

; 1 2

[ , ,..., ]

t t t t N

P p p p c – a vector of components’ prices at time

t

; 1 2

[ , ,..., ]

s s s s N

Q q q q c – a vector of components’ quantities at time

s

; 1 2

[ , ,..., ]

t t t t N

Q q q q c – a vector of components’ quantities at time

t

.

Using the above denotations the Paasche price index can be defined as follows: ( , , ) t t P t s t Pa t s Q P I Q P P Q P D D , (1)

and the Laspeyres price index:

( , , ) s t P s s t L s s Q P I Q P P Q P D D , (2)

where “D” denotes an outer product of two vectors.

As it is known, the indices (1) and (2) are very important from a practical point of view and they do not satisfy some of the axioms. For example, time reversibility for the price index Ip, described by the formula (3)

1 ( , , , ) ( , , , ) P s t s t P t s t s I Q Q P P I Q Q P P , (3)

is not satisfied. But none of the reversal tests (time and factor reversal test) or the circular test is mentioned in the EV-systems. Fisher proposed another definition based on Paasche and Laspeyres formulas (see Fisher (1922)). His formula IFp is a geometric mean of Paasche and Laspeyres indices:

( , , , ) ( , , ) ( , , ).

P s t s t p s s t p t s t

F L Pa

I Q Q P P I Q P P I Q P P (4)

The Fisher’s definition is called an “ideal formula”, because it satisfies the factor reversal test. In the literature we can also meet a general version of the Fisher index (see (5)):

(3)

] 1 , 0 [ , )] , , ( [ )] , , ( [ ) ( ~ ) , , , ( ~ 1 ,  ˜ {  D D D D D t s t P Pa t s s P L P F t s t s P F P P Q I P P Q I I P P Q Q I (5) where ) , , ( ) 0 ( ~ P t s t Pa P F I Q P P I D , (6) ) , , , ( ) 5 , 0 ( ~ P s t s t F P F I Q Q P P I D , (7) ) , , ( ) 1 ( ~ P s s t L P F I Q P P I D . (8)

In this paper we present a more general class of price indices satisfying most of the mentioned tests and some special cases of indices belonging to this class.

II. GENERAL FORMULA FOR PRICE INDICES

Let fj:RNuRN oRN, for j 1, 2,...,m with some fixed

m

, be such functions that, for any X [ ,x x1 2,...,xN]c and Y [ ,y y1 2,...,yN]c, it holds:

( , ) ( , )

j j

f O OX Y Of X Y , (9)

where

O

is an NuN diagonal matrix with elements

O O

1, 2,...,

O

N.

Certainly the set of functions satisfying (9) is not empty – for example we could assume fj( , )X Y c Xj( Y) for j 1, 2,...,m and some cjR. In the paper of Biaáek (2010a) we present the following, general formula for price indices: 1 1 ( , ) ( , , , ) [ ] . ( , ) s t t m j P s t s t m s t s j j f Q Q P I Q Q P P f Q Q P

–

DD (10)

Let us notice that if we assume ( , , , ) ( , )

( , ) s t t j P s t s t j s t s j f Q Q P I Q Q P P f Q Q P D D for 1, 2,...,

j m then the formula

I

P can be written as a geometric mean3 of indices

I

Pj . It is easy to prove (see Biaáek (2010b)) the theorem 1:

3

Thus the formula (6) is much more general than the generalized Fisher index:

1

( , , , ) ( ( , , )) ( ( , , ))

P s t s t p s s t p t s t

GF L Pa

(4)

Jacek Biaáek

178

Theorem 1

Let IP be the aggregative price index with the structure described by (10) with an additional condition (9). Then, the IP index satisfies tests coming from the EV-system (strict monotonicity, price dimensionality, commensurability, identity and linear homogeneity).

Moreover, if we additionally assume that for any X Y Z, , RN it holds 1 ( , ) ln 0 ( , ) m j j j f X Y Z f Y Z Z

¦

DD , (11) or equivalently 1 ( , ) 1 ( , ) m j j j f X Y Z f Y X Z

–

DD , (12)

then we have time reversibility (3) satisfied:

In fact, if the condition (12) holds then we have: ˜

–

–

m m j t s t j s s t j m j m s t s j t t s j s t s t P t s t s P P Q Q f P Q Q f P Q Q f P Q Q f P P Q Q I P P Q Q I 1 1 1 1 ] ) , ( ) , ( [ ] ) , ( ) , ( [ ) , , , ( ) , , , ( D D D D = } 1 1. ) , ( ) , ( ) , ( ) , ( { 1 1 1 1

–

–

m m m j s t s j s s t j m j t s t j t t s j P Q Q f P Q Q f P Q Q f P Q Q f D D D D

However, time reversibility seems to be too restrictive and relatively unimportant. Firstly, it rules out many reasonable and useful index functions like Laspeyres or Paasche. Secondly, the history takes one direction only. And finally, from an economical point of view, there is no need for “symmetry” described by (12) and time reversibility. Thus, in the next part of the paper, we assume only the condition (9).

III. SPECIAL CASES OF THE GENERAL FORMULA

Firstly, let us notice that each of unweighted indices (like the index of Dutot (1738)) is out of the considered class because the assumption (9) is too restrictive for this kind of indices. Let us consider the case of m and define 2

(5)

f X Y1( , ) X, (13)

2( , ) ,

f X Y Y (14)

whereX ( ,x x1 2,..,xN) ,c Y (y y1, 2,..,yN) .c Certainly both functions f1 and 2

f satisfy the assumption (9) and moreover for any ZRN we have: 2 1 2 1 2 1 ( , ) ( , ) ( , ) 1. ( , ) ( , ) ( , ) j j j f X Y Z f X Y Z f X Y Z X Z Y Z f Y X Z f Y X Z˜ f Y X Z Y Z ˜X Z

–

DD DD DD DD DD (15)

Using the formula (10) for m 2, f1 and f2 (where f Q Q1( s, t) Qsand 2( , )

s t t

f Q Q Q ) we get the following structure of a price index: 1 2 2 1 ( , ) ( , , , ) [ ] ( , ) s t t s t t t j P s t s t s t s s s t s j j f Q Q P Q P Q P I Q Q P P f Q Q P Q P ˜Q P

–

DD DD DD ( , , ) ( , , ) ( , , , ) p s s t p t s t p s t s t L Pa F I Q P P I Q P P I Q Q P P . (16)

Thus, the Fisher index is a special case of the general class defined in (10) and it satisfies tests from the EV-system and even time reversibility. Taking

1

m and functions from (13)–(14) we get Laspeyres nad Paasche formulas. Let us also notice that if we assumed m and 1 1( , ) 1( ),

2

f X Y XY where 1 2

( , ,.., N)

X x x x c and Y ( , ,..,y y1 2 y cN), we would have the condition (9) satisfied and from (10) we would get

1 1 1 ( ) ( , ) 2 ( , , , ) . 1 ( , ) ( ) 2 s t t s t t P s t s t s t s s t s Q Q P f Q Q P I Q Q P P f Q Q P Q Q P   D D D D (17)

The formula (17) is a definition of the Marhall-Edgeworth index (see von der Lippe (2007)) which is presented in the literature of the subject as

(6)

Jacek Biaáek 180 1 1 2 ( , , , ) 2 N s t t i i i P s t s t i ME N s t s i i i i q q p I Q Q P P q q p  

¦

¦

. (18)

Thus, from (18) we have the additional conclusion: the Marhall-Edgeworth index is a special case of the general formula defined in (10). Morover, if we defined the following functions (m ): 1

1( s, t) f Q Q Q , f Q Qˆ1( s, t) , Qˆ (19) where , s t i i i Q q ˜q ˆ , s t i i i s t i i q q Q q q ˜  , for i 1,2,...,N, (20) we would get 1 1 ( , , , ) N t s t i i i P s t s t i N s s t i i i i p q q I Q Q P P p q q ˜ ˜

¦

¦

(in case of

f

1), (21) and 1 1 ( , , , ) N s t t i i i s t P s t s t i i i N s t s i i i s t i i i q q p q q I Q Q P P q q p q q ˜  ˜ 

¦

¦

(in case of ˆf ). 1 (22)

Hence, we get the Walsh index (formula (21)) and the Geary-Khamis index (formula (22)).

IV. REMARKS AND CONCLUSIONS

The presented, general formula for aggregative price indices satisfies all the postulates coming from the EV-system. Thus, we have a practical conclusion: it

(7)

is easier to prove that a given index belongs to the considered class than verify that the axioms in question are satisfied. It is shown that the Laspeyres, Paasche, Fisher, Marhall-Edgeworth and some other indices are particular cases of the proposed formula. Moreover, using the general formula we can easily define new indices, which also satisfy the given postulates. For example taking m , 4

1

1

( , ) ( ),

2

f X Y XY f X Y2( , ) f X Y1( , ), f X Y3( , ) X and f X Y4( , ) Y we get the following structure of a price index (the assumption (9) is certainly satisfied): 1 4 4 1 ( , ) ( , , , ) [ ] ( , ) s t t j P s t s t N ew s t s j j f Q Q P I Q Q P P f Q Q P

–

DD 4 0.5( ) 0.5( ) 0.5( ) 0.5( ) s t t s t t s t t t s t s s t s s s t s Q Q P Q Q P Q P Q P Q Q P Q Q P Q P Q P  ˜  ˜ ˜   D D D D D D D D 2 2 4( p ) ( p) p p ME F ME F I I I I . (23) REFERENCES

Balk M. (1995), Axiomatic Price Index Theory: A Survey, International Statistical Review 63, p. 69–95.

Biaáek J. (2005), Indeks Törnqvista jako alternatywa dla idealnego indeksu Fishera, WiadomoĞci Statystyczne, GUS, Warszawa, p. 9–21.

Biaáek J. (2010a), The Generalized Formula for Aggregative Price Indexes, Statistics in Transiotion – new series, vol. 11, Wydawnictwo GUS, Warszawa, p. 145–154.

Biaáek J. (2010b), Proposition of the General Formula for Price Indices, Communications in Statistics: Theory and Methods (in press).

Fisher I. (1922), The Making of Index Numbers, Boston: Houghton Mifflin.

Martini M. (1992), A General Function of Axiomatic Index Numbers, Journal of the Italian Statistics Society, 1 (3), p. 359–376.

Olt B. (1996), Axiom und Struktur in der statistischen Preisindextheorie, Frankfurt, Peter Lang. von der Lippe P. (2007), Index Theory and Price Statistics, Peter Lang, Frankfurt, Germany.

Jacek Biaáek

SZCZEGÓLNE PRZYPADKI PEWNEJ OGÓLNEJ FORMUàY INDEKSÓW CEN

W pracy prezentujemy ogólną formuáą dla agregatowych indeksów cen, która speánia wiĊkszoĞü postulatów wywodzących siĊ z aksjomatycznej teorii indeksów. Pokazano, Īe wiele powszechnie znanych i uĪytecznych indeksów statystycznych stanowi szczególny przypadek omawianej formuáy.

Cytaty

Powiązane dokumenty

Pinch [P] which, though based on the theory of linear forms in logarithms of algebraic num- bers, does not require high precision computations with algebraic numbers and

Weighted Sobolev spaces play an important role in the study of elliptic boundary value problems in non-smooth domains (see e.g.. This is the model case for domains with

Indices are calculated on the basis of spot transactions, but are often used as a reference price in term contracts concluded both on physical and financial markets

In this paper we give sharp estimates of the second and the third Hankel determinant over the class U and study its relation with the class of α-convex and starlike functions.. In

Smutno mi Boże, źe ledwo nad głową Szczęście mi zorzą błysło purpurową, Już zgasło, znikło — przepadło na zawsze, A dni nastały chmurniejsze i

[4] Blachowski J., Górniak-Zimroz J., Jurdziak L., Kawalec W., Pactwa K., 2009, Pilotowy system geoinformacji dla wybranych rejonów eksploatacji surowców skalnych w

Przedmiotem badaĔ była gospodarka w stanie nierównowagi, charakteryzują- ca siĊ niepełnym wykorzystaniem czynników wytwórczych (pracy i kapitału), przejawiająca cechy

Kontekst historyczny strajku, nastroje wśród studentów całej Polski jesienią 1980 L, problemy z rejestracją NZS, konflikty na uczelniach i wreszcie wystąpienia młodzieży