• Nie Znaleziono Wyników

Lipopolysaccharide (LPS, endotoxin) of Proteus bacteria-chemical structure, serological specificity and the role in pathogenicity

N/A
N/A
Protected

Academic year: 2021

Share "Lipopolysaccharide (LPS, endotoxin) of Proteus bacteria-chemical structure, serological specificity and the role in pathogenicity"

Copied!
19
0
0

Pełen tekst

(1)

a © ß a ш m В w © о5© 0 ß a ß 0 © 0 ® $ s 0 © m © 0 ©

2 0 08 ---Folia Biologica et O ecologica 4: 5 - 2 4

(Acta Univ. Lodz., Folia Biol. et Oecol.)

An t o n i Ró ż a l s k i

D e p ar tm en t o f Im m u n o b io lo g y o f B acteria , Institu te o f M icro b io lo g y and Im m u n o lo g y , U n iv ersity o f Ł ó d ź, 12/16 B an a ch a S tr., 9 0 -2 3 7 Ł ó d ź . P o la n d ; e-m a il: ro za la @ b io l.u n i.lo d z.p l

LIPOPOLYSACCHARIDE (LPS, ENDOTOXIN) OF PROTEUS BACTERIA

- CHEMICAL STRUCTURE, SEROLOGICAL SPECIFICITY

AND THE ROLE IN PATHOGENICITY

A b s tra c t: Lipopolysaccharides (LPS) o f Gram -negative bacteria are com posed o f three regions: О-specific chain (OPS), the core oligosaccharide and lipid A. All three regions of Proteus LPS were studied. T he differences in the structure o f OPS serve as the basis for the serological classification o f P roteus strains. T he serological classification schem e o f these bacteria currently consists o f 76 serogroups. The structural diversity o f the core region is characteristic for Proteus sp. and distinguishes this genus from other bacteria. In this paper the results of structural, imm unochem ical and serological studies o f all three regions o f P roteus LPS, as well as a function o f LPS as endotoxin and its role in the form ation o f urinary stones, swarm ing phenom enon and bacterial growth in biofilm are reported.

Key w ords : bacterial lipopolysaccharide, endotoxin, Proteus.

1. IN T R O D U C T IO N

The genus Proteus was described in 1885 by HAUSER and originally had

two species P. mirabilis and P. vulgaris. It belongs to the Enterobacteriaceae family and currently consists of five species: P. mirabilis, P. vulgaris, P. penneri,

P. hauseri and P. myxofaciens, a well as three unnamed Proteus genomospecies

4, 5 and 6. Proteus myxofaciens is the only Proteus species without any significance in the pathogenicity of humans, it has been isolated form living

and death larvae of the gypsy moth Porthetia dispar ( J a n d a , A b b o t 2 0 06 ).

Proteus rods are widely distributed in the natural environment where they are

involved in the decomposing of the organic matter o f the animal origin, they are also present in the intestines o f humans and animals. They are opportunistic bacterial pathogens which under favorable conditions cause urinary tract infections (UTI), wound infections, meningitis in neonates or infants

(2)

and rheumatoid arthritis (MOHR O ’H a r a et al. 2000; J a n d a , A b b o t 2006). UTI caused by these bacteria usually take place in patients with urinary catheter in place or with structural and/or functional abnormalities in urinary tract, as well as after surgical intervention in the urogenital system. Proteus rods are also associated with nosocomial infections. P. mirabilis causes UTI with the highest frequency among all Proteus species. It causes complicated infections and infections in long catheterized patients. Proteus rods can cause hematogenous infections and ascending infections, however, the latter are more common for

these microorganisms ( W a r r e n 1996).

The most characteristic features of Proteus bacteria is their ability to swarm

on solid surfaces ( B e l a s 1996). Swarming results from the bacterial

transfor-mation of peritrichously flagellated short rods called swimmer cells to elongated, multinucleated nonseptated forms with increased number o f flagella termed as swarmer cells. Swimmer cells grow in liquid media, whereas swarmer cells are formed in solid media. Population of swarmer cells can migrate in coordinated way on the solid media and then disintegrate into short rods. The process of differentiation of swimmer cells to swarmer cells, their migration on solid media and disintegration to short rods, known as swarming phenomenon or

swarming growth, is cyclical ( R a t h e r 2005). Both morphologically and

phy-siologically different cells - swimmer short rods and swarmer elongated cells play an important role in pathogenesis. Highly flagellated swarmer cells are thought to be crucial in ascending UTI infections, whereas short rods containing

fimbriae are responsible for colonization of host mucosal surface ( B e l a s 1992).

Proteus rods have evolved multiple virulence factors which act in concert

but not individually. These are fimbriae, flagella, enzymes (urease, hydrolyzing

urea to C 02 and NH3; proteases degrading antibodies, tissue matrix proteins

and proteins of complement system; deaminases hydrolyzing amino acids to a-keto-acids, playing a role of siderophores binding iron) and toxins -

hemo-lysins as well as endotoxin - lipopolysaccharide (LPS) (COKER et al. 2000;

M o b l e y 1996; R ó ż a l s k i et al. 1997; R ó ż a l s k i 2002).

2. L PS - G E N E R A L IN FO R M A T IO N

Lipopolysaccharide of Gram-negative bacteria are composed of three gene-tically and structurally distinct regions: О-specific chain (O-antigen, O-specific polysaccharide), the core oligosaccharide and lipid A, which anchors the LPS

molecule to the bacterial outer membrane ( R a e t z , W h i t f i e l d 2002). All three

regions o f Proteus LPS have been studied (RÓŻALSKI 2002). LPS containing all

these three regions is produced by smooth forms of bacteria. Rough strains or rough mutants o f different classes (Ra-Re mutants) synthesize LPS containing

(3)

lipid A and core region or part of the core region (RÓŻALSKI et al. 2002). Lipopolysaccharide participates in the physiological function of outer membrane of bacterial cells and is essential for its growth and survival. It is also a target for interaction with antibacterial drugs and immune mechanisms of the host. LPS, released from the bacterial surface in infected macroorganism induces a spectrum of biological activities important in the pathogenesis, particularly in

septic shock ( L u k a s i e w i c z , Ł u g o w s k i 2003).

T h e d iffe re n ce s in the structure o f O -a ntig ens serv e as the b asis for the ser olog ica l c la ssific a tio n o f Proteus strains. T he se rolog ical cla ssific atio n sc h em e

o f K A U FM A N and P e r c h in clu des 49 d ifferent P. mirabilis and P. vulgaris

O -serogro u ps and 19 se r olo g ica lly d istinct fla gellar H -an tigen s ( K a u f f m a n n

1966). T h e ch e m ica l and sero lo gica l stu die s perform ed in th e Institute o f

M ic ro b io lo g y and Im m u no log y , U niver sity o f L o d z in co lla bo ra tion w ith N. D. Z e l i n s k y Institute o f O rganic C hem istry, R u ssian A ca d em y o f S c ie n c e s in M o s co w , R u ssia, h av e led to esta b lish in g ad dition al O -sero gro u ps, w hich w ere

created to c la s sif y P. penneri and P. hauseri strains, as w ell as P. myxofaciens,

Proteus g e n o m o sp e c ie s and som e P. mirabilis and P. vulgaris strains u nclassified before ( K n i r e l et al. 1993; K n i r e l et al. 1999; R ó ż a l s k i 2004). T h e serological c la s sific a tio n sc h e m e currently c o n sists o f 76 serogro ups ( D r z e w i e c k a et al.,

2004; D r z e w i e c k a , S i d o r c z y k 2005; Z a b ł o t n i , 2006). In this re view I report

on the ch e m ic al structure o f the O -an tig ens o f Proteus b a cilli and their

sero-lo g ic a l s p ec ificity , as w e ll as on the co re and lip id A reg ion o f e n d oto xin and on se lec te d b io lo g ica l ro les o f L PS o f these bacteria.

3. O -S P E C IF IC P A R T O F L PS

Proteus O-antigens are linear or branched polysaccharides built up of

oligosaccharide repeating units. All polysaccharides with one exception of

P. vulgaris 0 5 3 contain am ino sugars either D -glucosam ine (GlcN) or

D-galactosam ine (GalN). Acidic О-specific polysaccharides (OPS) represent the 90% of Proteus O-antigens. OPSs of these bacteria are acidic due the presence of uronic acids - D-glucuronic acid (GlcA), D-galacturonic acid (GalA), L-altruronic acid (L-AltA). Some OPSs are acidic also due to the presence o f (R) or (5) lactic acid or less often malonic (Mai), pyruvic (Pyr) or succinic (Sue) acids, which are linked to the sugar residues. Hexuronic acids GlcA and GalA usually have a free carboxyl group, however, they are very often amidated with a-am ino group of am ino acids - L-alanine (L-Ala), L-lysine (L-Lys), L-serine (L-Ser) and L-threonine (L-Thr). Two OPSs of P. mirabilis 0 1 3 and P. myxofaciens 0 6 0

contain amides of GlcA and GalaA, respectively with /VE- [ ( R ) -1 -carboxyethy] 1-L-

(4)

T a b l e 1 : T h e c h e m i c a l s t r u c t u r e o f t h e О - s p e c i f i c p o l y s a c c h a r i d e s ( O P S s ) o f P r o i e u s s p . сл Cm О

3

s ■C u <

z

.s- э О T

о

о

Q Ф ?

T

о < Z s. 3 O' a, 9 О ci < Z „о. ed ф О т Q V Ф < ? Z Î 8-

о

à ci. X О

с

a 00 à ch . < Z g. э О u < Z 8-

о

à Ö r- O'

g

8- 3 Ö 2 т Î I 9 3 ° 2 < s 8 -î 5 <s О га X О <

z

jö. «

о

Q cà <

S-

a à сф. î < Z 3 . rt О à >4 J < 3 . M О Q Ö X О •S3 Ü 5

s

a; < 8- О ci. 3. ra О Q Ö 3 M О X è l a w ë Z t * 3 9 О 9 q 9 ; cb . m à T

T

V

о и С

S

а < Z & О Q а <

z

Q. ü " l j Ö a

•a о

Q Ö ■ч - r < & ü û . о

°

i

•й о С 8 1 « Q ■SP 3 s З Г 0 a . a . < t О Q eà. < Z & tÜI _) Ó < ?

I

T

Z V 3-ft & о Q a о 9 T «ф -S -— V I 40 Q , T -7 О o О è en

1

ï

0 à cà.

1

1

о

Û Ö sO

T

CQ en S t

z

T

e n С CX V о o з < ° f z Q Q . Г 'O c i .ü / А О a 5 w г ' CN O < СЧ < Z S 3 O' Q Ö Q CQ. < & О û cô. T

î

T

. <N ж T I U <

z

&

о

es <N О •ü O s Q \ ■a 0> 2

5

z > Ш <

z

% < Z 8- 9 Q

ts

< j 8 < 3. <4 01 Q ss о < 8- 5 à .

2

T

о

Q ci £ a Xu.В co J v5 S. пз О I û ö Â* ГЗ

о

û Ö

T

J à 3 < w Z o û . < 8 * Л i 0 9 9 ^ Ö Г Л

Ф

T

t V 8 < 3. 03 9 Û сф. Я- T es T ï -G OS -J Ö T Ą

.

z

t l <5 о 9 ° û . » p î T T s <

z

ja. ed 9 Û сб. < Z 3 . aj 9 Q Öi

T

г

*

z

i 3 , ż 9 C i. û 9 ± 1 T ОЭ 00

z

b 3

о

Q Ö J Ó ?ï

T

01 a Öi I4/ à- j= os л t V V < < z 3 8 - 't « я

o

9

l i ? 2 à ù 4 9 Û cà . X~ N î < Z 9 Q ci. Со

T

<

z

t

r* ï 1 • S - w O '-É Q Z i я

о

t -4 >4 J <

é

VO < a. и О Q ci.I /— ■s T f

T

0

1

8- 9 Q flà I 6 < : ^

z

O 9 à 9 c à \ û è î î ? D ci < 8- о à ci.

T

9 û ci T

4.

4t я 9 ■à ’û Ö < Z a. ts 0 ■Ü s 1 E

o,-CM o (S en тг

O

O

•r 2 .« 2 a Q >3 ? 3

3

>

a.*

o O S al o o с v> o 0 Q i o чО O VO O o:

(5)

T a b le 1 : (c d .) S tr a in /S e ro g ro u p C h e m ic a l s tr u c tu re o f O P S L it e ra tu re P . p e n n e ri 0 6 6 ß -L -R h a p N A c 3 N A c -( l— i 3 — > 4 )-a -D -G lc p -( 1 — » 3 )-a -L -6 d T a lp 2 A c -( 1 — > 3 )-ß -D -G lc p N A c -( 1 -» D r z e w ie c k a , S id o r c z y k 2 0 0 5 P ro te u s g e n o m o - -s p e c ie s 6 (0 6 9 ) o -D -G lc p A 3 /4 A c -( 1 -i 4 — > 6 )-ß -D -G lc p N (L -A la )3 A c -( l-> 4 )-ß -D -G lc p A -( l-» 3 )-ß -D - -G lc p N A c ó A c -( 1 — » Z y c h e t a l. 2 0 0 5 P . p e n n e ri 0 7 3 E tn /’ -i 6 -» 4 ) -R ib -o l-5 -/4 0 — > 4 )-ß -D -G lc p -( l— » 3 )-ß -D -G a lp -( 1 -» 3 )-ß -D -G a Ip N A c -( 1 -> D r z e w ie c k a , S id o r c z y k 2 0 0 5 RÓ ŻALSKI

(6)

The pyranose form is typical for most monosaccharides, except for ribose

which was found in furanose form in Proteus endotoxins (K N IR E L et al. 1997). In

the furanose form GalN in P. penneri 063 OPS is present (A r b a t sk y et al. 1998). Phosphorylation is also characteristic for Proteus OPSs - glycerol and ribitol phosphates, as well as other phosphate-linked substituents such as ethanolamine and choline were found in these O-antigens. The amino group of most amino sugars is acetylated or is substituted by acyl components such as (Ä)-hydroxybutanoyl group (/?-3H0Bu), amino acids (L/D-alanine, D-alanine dipeptide, D-aspartic acid) as well as by residue of malonic or succinic acids. Sugar residues in ca. 35% OPSs are usually non-stoichiometrically substituted with O-acetyl groups. Proteus O-antigens contain sugar constituents rarely found in bacterial products or even in nature, including deoxy sugars such as 6-deoxy-L-talose (L-6dTal), 2-amino-2,6-dideoxy-L- -glucose (L-quinovosamine, L-QuiN), 3-amino-3,6,-dideoxy-D-gIucose (Qui3N), 4-amino-4,6-dideoxy-D-glucose (Qui4N), 2-amino-2,6-dideoxy-L-galactose (L-fuco- samine, L-FucN), 3-amino-3,6-dideoxy-D-galactose (Fuc3N), 2,4-diamino-2,4,6- -trideoxy-D-galactose (FucN4N), 2-amino-2,6-dideoxy-L-mannose (L-rhamnosamine, L-RhaN) and 2,3-diamino-2,3,6-trideoxy-L-mannose (L-RhaN3N), as well as acidic amino sugars - 2-amino-2-deoxy-D-galacturonic acid (GalNA) and 5,7-diamino- -3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (pseudaminic acid, Pse) (R ó ż a lsk i et al. 2002; R ó ż a lsk i 2004). О-specific polysaccharides representing selected O-serogroups of Proteus sp. are shown in Table 1.

4. S E R O L O G IC A L S P E C IF IC IT Y O F P R O TE U S O -A N T IG E N S

The serological specificity of Proteus O-antigens was studied by use of polyclonal rabbit anti-0 sera specific to the particular serogroups. In this study the О -specific polysaccharides, their partial structures, as well as in some studies also synthetic antigens corresponding to Proteus O-antigens were used to identify the epitopes determining the O-specificity. As it was expected uronic acids and hexosamines, the characteristic compounds of Proteus OPSs, play an important role in the serological specificity of these antigens. GlcA and GalA with free carboxyl groups or amidated with amino acids, as well /V-acetylated amino-acids can be often found in the serological determinants of Proteus O-antigens. a-D -G lcA and ß-D-GlcA present as a branch of О -specific polysaccharides chain, serve as immunodominant sugars in specific epitopes in P. mirabilis 0 6

and P. vulgaris 0 4 7 , respectively (Fig. 1) (C E D Z Y N SK I et al. 1998; RÓ ŻA LSKI

et al. 2002). Hexuronic acid present in linear O-polysaccharides can also play an im portant role in the im munospecificity. It was found for OPSs of

P. vulgaris 0 2 2 and 0 3 2 in which ß-D-GlcA and a-D -G alA respectively, were

(7)

P. mirabilis 0 6

a-n-Glc/jA -l!

3

->4)-a-L-Fuc/)N Ac-( 1 ->3)-ß-D-Glc/;NAc-( I —>

P. mirabilis 04 7

ß-n-GIcpA X

4

—»3)-ß-D-Gal/>N Ac-( I -»4)-a-D-GalpN АсЗ Ac-( 1 ->3)-ß-D-GalpN Ac-( I ->

P. vulgaris 02 2 0t-D-Qui/?3NAc2,4Ac i 3 —>2 )-ß -L -R h ap -( 1 —> 4 )-a -L -R h a/> -(l-* 4 )-/?-.D -G /< y v l-(l-» 3 )-ß -D -G lc/)N A c -( I -> P. vulgaris 0 32

->4)-ot-D-GalpA-( 1 -»2)-cx-L-Rhap-{ I ->2)-a-L-Rha/>-( 1 -M yß-D-GalpA-( l-»3)-ß-D-Glc/>NAc-<1 ->

P. mirabilis 0 2 7 ß-D-GIcpNAc

/ ET

4 6

—»3)-ß-D-Glc/>A6(L-Lys)-( 1 —>3)-a-D-GalpA6(L-Ala)-( I —>3)-ß-D-GlcpNAc-( I —»

P. mirabilis 01 4

D-AlaEtnjP 6

-»4)-a-D-Galp-( I -»4)-ß-D-GalpNAc-( 1 ->3)-a-D-Galp6Ac-( 1 ->3)-ß-D-GalpNAc-( l->

P. mirabilis 013 CH)-Gal/)A6(2.V,Ä/?-Alal.ys) 4 —>3)-a-D-Galp-( I —>3)-ß-D-Glc/jNAc-( 1 —> P. myxofaciens (060) -»6)-ß-D-Glc/)NAc-(l—>3)-ß-D-GlcpNAc-(l-»4)-ß-D-Glc/)A6(2Ä',#/f-AlaLys)-(l-^6)-a-D-Gal/)NAc-(l- P. mirabilis 0 3 <x-D-Gal/>A6(l,-Lys) a-D-Glcp i ' I 4 2

—>6)-ß-D-GalpNAc-( 1 —>4)-ß-D-GlcpA-( l->3)-ß-D-GalpNA c-( 1 —>

P. mirabilis O l 1

ß-D-GIcpNAc a-D-Glcp

4, X

2 6

—>4)-ß-D-Glc/)A-( 1 —>3)-ß-D-GalpA6(L-Thr)-( 1 ->3)-ß-D-GlcpNAc-( I -4

P. mirabilis 0 26

—>4)-a-n-Gal/>A6(l.-Lys)-( 1 ->4)-a-D-Gal/>-( I ->3)-ß-D-GalpA4Ac-( 1 ->3)-ß-D-GlcpNAc-( 1

P. mirabilis 0 28

(8)

et al. 1999; B a r t o d z i e j s k a et al. 1998). The immunodominat role of the lateral N-acetyl-D-glucosamine residue linked to the ß-D-GlcA(-L-Lys) was

noticed in the specificity of P. mirabilis 0 2 7 (VINOGRADOV et al. 1989). In

some Proteus О-specific polysaccharides unusual compounds can also play immunodominant role, however, it is not a rule. Such a role is played by a unique component /V-[(/?)-l-carboxyethyl]ethanolamine phosphate linked to

the Gal residue in P. mirabilis 0 1 4 OPS ( P e r e p e l o v et al. 1999). The

immunodominat position in OPSs of P. mirabilis 0 1 3 and P. myxofaciens 0 6 0

is occupied by AlaLys linked to the GalA and GlcA, respectively (SwiERZKO

et al. 2001; SlDORCZYK et al. 2003).

The most com mon epitopes showed for Proteus O-antigens were uronic acids substituted by amino aids. The importance o f a-D -G alA(-L-Lys) in the

specificity of P. mirabilis 0 3 ( K a c a et al. 1987), 0 2 6 (SHASHKOV et al. 1996)

and 0 2 8 ( R a d z i e j e w s k a - L e b r e c h t et al. 1995), as well as a-D-GalA(-L-Thr)

in the specificity of P. mirabilis O i l (Arbatsky et al. 2000) were found, however a-D-GalA (-L-Ser) in P. mirabilis 0 2 8 appeared to be out of importance in the specificity.

Polyclonal anti-0 sera contain antibodies of different types of specificity. Usually, the major fraction of antibodies recognizes the main epitope which defines the group specificity, whereas the minor fractions can bind other epitopes in O-antigen or in core region of LPS. О-specific antibodies may cross react with LPS of strains belonging to the same species or genus but classified into other serogroups, as well as even with LPS of taxonomically different bacteria. Indeed, the characteristic feature of Proteus O-antisera is cross reactivity with heterologous lipopolysaccharides of the same genus and

less often with LPS from other bacterial genera (R Ó Ż A L SK I et al. 2002). Due

to the com mon a-L -FucN A c-(l->3)-a/ß-D -G lcN A c disaccharide such cross reactivity was observed in antigen - antibodies systems of LPS and hetero-logous antisera of P. vulgaris 0 8 , 01 2 , 0 3 9 and in P. mirabilis 0 6 (Fig. 2) ( R ó ż a ls k i 2004). The marked serological relationship showed LPS of

P. mirabilis 0 7 and 0 4 9 , containing D-Qui4N N-acetylated with malonic and

succinic acid, respectively (K o n d a k o v a et al. 2004). Close serological related-ness was also shown between P. vulgaris 0 2 2 and 0 3 2 , due to the presence of sim ilar trisaccharides fragments a-L -R h a-(l—»4)-ß-G lcA -(l—»3)-ß-D-GlcNAc

and a-L -R h a-(l—»4)-ß-GalA -(l—»3)-ß-D-GlcNAc, respectively (T O U K A C H et al.

1999; B a r t o d z ie js k a et al. 1998). Comparison of the O-antigen structures of P. vulgaris 0 1 7 and P. vulgaris 04 5 revealed the presence of similar trisaccharide epitopes a-D-GlcpN Ac-( 1 - > 2)-ß-D-Fuc3N[/?3HOBuJ-( 1 —->6)-a-D- Glc and ß-D-Glc/?NAc-(l —>2)-ß-D-Fuc3NAc-(l—>6)-ot-D-GlcNAc, respectively, which may account for the serological relatedness of these strains (To rzew s-

(9)

Fig 2: Cross-reacting epitopes in OPSs from: P. vulgaris 0 8 , 0 1 2 , 0 3 9 and P. m irabilis 0 6 ;

P. m irabilis 0 7 and 0 4 9 ; P. vulgaris 0 2 2 and 0 3 2 ; P. vulgaris 0 1 7 and 0 4 5 (for literature see

text and T able 1). E pitopes are shown in bold type

P. vulgaris 0 8 a-D-Galp I i 3 ->3)-ß-D-Glc/>A-( I —>4)-a-L-Fiic/»NAc-(l-»3)-a-D-Glc/>NAc-(l—> P. vulgaris 0 12 a-D-Glc/K 1 —>6)-a-D-GalpNAc4Ac 1 i 3 —>6)-ß-D-Glc/>-( 1 —>4)-oc-L-l'uc/;NAc-(l—>3)-ß-D-Gky)NAc-( 1 -*3)-Gro-1 -/>-( 0 -> P. vulgaris 0 39 ->8)-ß-Pse/35Ac7Ac-(2-»3)-a-L-FucpNAc-(l->3)-a-D-GlcpNAc-(l-> P. mirabilis 0 6 a-D-Glc/)A-1 i 3 ->4)-a-I.-Fuc/)NAc-(l-»3)-ß-D-Gl(yNAc41-> P. mirabis 0 7 ß-D-Quip4NMal 1 i 6 ->2)-ß-D-Gal/>-( 1 ->4)-ß-D-Glc/>-( 1 —>3)-ß-D-Glc/)N Ac-( 1 -> P. mirabilis 04 9 a-D-Qui/>4NSuc 1 I 4

—» 2 )-a-D -G al/)A -( 1 —> 3 )-a-L -R h ap -( 1 —>4)-ot-D-Glc/>-( 1 —> 2 )-a-L -R h ap -( 1 —» 3 )-ß -D -G lcp N A c-( 1 —> P. vulgaris 0 22 a-D-Qui/)3NAc2,4Ac 2 I 3 —>2)-ß-L-Rha/)-( I —>4)-a-L-Rha/>-(l—>4)-ß-D-Glc/jA-(l-»3)-ß-D-Glc/>NAc-(l—» P. vulgaris 0 32

-»4)-a-D-Gal/)A-( 1 ->2)-a-L-Rha/j-( I ->2)-a-L-R!ia/>-( I-*4)-ß-D-C al/jA-0 ->3)-ß-D-GlcpNAc-(l -»

P. vulgaris 0 17

—»2)-ß-D-Fuc/>3N(3HOBu)4Ac-(l—»6)-<x-D-Glcp3Ac-(l->4)-ß-D-Glc/)A-(l—>3)-a-D-GlcpNAc-(l—»

P. vulgaris 0 45

(10)

Proteus O-antigens show also similarity with OPSs from bacteria of other

genera. This fact can be reflected in the cross reactivity of Proteus O- -antisera with heterologous LPS. For example, such cross reactivity was found betw een anti-A mirabilis 0 1 3 serum, as well anti-P. myxofaciens serum and LPS from Providencia alcalifaciens 0 1 4 and 0 2 3 . Serological studies revealed an important role of AlaLys for the specificity of these

O-antigens ( K o c h a r o v a et al. 2003; T o r z e w s k a et al. 2004a). The common

compound D-Qui4N carrying N-linked N-acetyl-aspartic acid is responsible for antigenic relationship of O-antigens of P. mirabilis 0 3 8 , as well as P.

alcalifaciens 0 4 and 0 3 3 (K O C H A R O V A et al. 2004; T O R Z E W SK A et al. 2004b). Strong structural and serological similarity was also found between

P. vulgaris 0 2 1 , P. mirabilis 0 4 8 and Hafnia alvei 744 and PCM 1194 ( B a r t o d z i e j s k a et al. 2000).

P. mirabilis strains classified into OXK serogroup (0 3 ) cross-react with

sera directed to Orientia tsutsugamushi. Similar cross reactivity was shown between P. vulgaris 0 X 1 9 (0 1 ), as well as P. vulgaris 0 X 2 (0 2 ) and antibodies from patients with rickettsial infections. Strains belonging to these serogroups are comm only used in unspecific W eil-Felix test for sérodia-gnostics of rickettiosis. Structural and immunochemical studies revealed that the common epitopes which are recognized by these antibodies reside in

Proteus OPSs, however, their exact structures remain unknown (R Ó Ż AL SK I et al. 1997).

5. C O R E R E G IO N

The core region of Proteus lipopolysaccharides was studied in rough

mutants or in smooth forms classified into different serogroups ( R a d z i e j e w s k a -

- L e b r e c h t et al. 1989; V i n o g r a d o v et al. 1994; V i n o g r a d o v et al. 2002). The structural diversity of the core is characteristic for Proteus sp. and makes

it different from E. coli and Salmonella ( H o l s t 1999; V i n o g r a d o v et al.

2002). The core region of Proteus strains is com posed of two parts - inner part, comm on for several number of strains and second, outer part, which is characterized by a structural variability from strain to strain. The common part is not identical in all Proteus strains and is subdivided to three forms known as glycoforms I—III (Fig. 3). The outer part of core region (outer core) contains

oligosaccharide characteristic for particular Proteus strains (Table 2) (V IN O G

(11)

Fig. 3: Chem ical structure of the inner core region o f Proteus LPS (for chem ical structure of the outer core see Table 2). (Vi n o g r a d o v et al. 2002, Ró ż a l s k i 2004)

G lycoform I

EtN-/> ß-Glc ß-Ara4N

Outer core

16 14 |8

->4 )-a -G alA -( 1 ->3)-cc-LDHep-( 1 ->3)-a-LD H ep-( 1 -» 5)-a-K d o -(2->

17 14

ß-Gal A-( 1 ->7)-a-LDHep a-K do

G lycoform II

D D H e p EtN-P ß-Glc ß-Ara4N

Outer core ->4 )-a-G alA -( 1 ->3)-a-LDHep-( 1 -» 3)-a-L D H ep -(l-> 5 )-a -K d o -(2 ->

17 14

ß-G alA -(l-»7)-a-L D H ep a-K do

G lycoform III

ß -G a lA -(l—>7)-a-DDHep EtN-/3 ß-Glc ß-Ara4N

I4 Is

->4)-a-G alA -( 1 ->3)-a-LDHep-( 1 —>3)-a-LDHep-( 1 ->5)-a-K d o-(2 ->

| 7 14

LDHep a-K do

Outer core

T ab le 2: T he outer core oligosaccharides o f selected P roteus strains (Vi n o g r a d o v et al. 2002)

P roteus s tra in s O u te r c ore s tru c tu re

P. mirabilis 0 3 ; R110 a-D D-H ep-( 1 -> 6)-a -G lc N

P. m irabilis 0 6 ß-Qui4NAlaA la-(l -» 3)-a-G al-( 1 - 4 6)-a-G lc N A c-( 1 -> 4)-a-G alN

P. m irabilis 0 2 7 ß-G lc-( 1 5)-(/S)-GaloN Ac-( l->4,6)-cx-GalN

P. mirabilis 0 2 8 , P. penneri 42

ß-G alA L ys4PEtn-(l—»3)-ß-G lcN A c-(l-» 6)-G lcN G ly

P. m irabilis 0 5 7 ß -Q u i4N A la A la -(l-» 3 )-a-G a lN A c -(l-^6 )-a -G lc -(l-» 4)-a -G alN

P. vulgar is 0 2 , 0 4 , 0 8 ,

0 X 1 9; P. penneri 2, 11, 17, 19, 107

(12)

T ab le 2: (cont.)

P roteus s tra in s O u te r c ore s tru c tu re

P. vulgaris 0 2 5 ß -K d o -(2 -> 3 b

ß-GlcNAc-( 1 —>2)-ß-Gal-( 1 -»6 )-a -G lcN

P. penn er i 7, 14, 21 a-G lc-( 1 -> 4)-a-G alN Ac-( 1 -» 2)-a-D D -H e p-( 1 -> 6)-ot-GlcNGIy

P. penneri 16, 18 a-FucNH b-( 1 -> 4)-a -G al-( 1 ~>6)-ß-Glc-( 1 -> 3)-a-GalN6/>-Etn

6. L IP ID A

Lipid A is a biological domain of endotoxin. Structurally it is a conservative region o f LPS and in Proteus contains glucosamine disaccharide substituted with phosphate residues and fatty acids. Proteus lipid A differs form lipid A of

E. coli and Salmonella in the presence of 4-amino-4-deoxy-arabino-L-arabinose,

which quantitatively substitutes the ester-linked phosphate residue of glucosamine

backbone (Fig. 4) (SID O R C Z Y K et al. 1983).

(13)

7. B IO L O G IC A L R O L E O F P R O T E U S LPS

Proteus LPS as an endotoxin and as a cell surface antigen is associated

with broad spectrum of biological activities, and with interactions with bac-terial or eukaryotic cells. О-specific polysaccharide chain is exposed outside bacteria, and with capsular polysaccharides are involved in glycocalyx for-mation. Glycocalyx forms bacterial capsule, and via lectins or cations binds bacterial cells and makes possible the adherence of bacterial populations to each other and to the epithelial cells of macroorganisms or artificial surface

e.g. urological catheters (C OST E R T O N et al. 1978). These properties of

glyco-calyx enable bacteria to grow in the form of biofilm on a solid surface. Bacterial biofilm is defined as matrix-enclosed bacterial population adherent to the surfaces. Bacteria enclosed in glycocalyx capsule are protected against the action of antibodies and other antibacterial substances, as well as immune

mechanisms ( D o n l a n , C o s t e r t o n 2002). They also differ in expression of

particular virulence factors and metabolic activity, in comparison to bacteria

growing in liquid media ( L e w i s 2005).

As it was mentioned above, Proteus bacteria under appropriate conditions undergo a differentiation of vegetative rod shape short cells into longer forms called swarmer cells. The population of swarmer cells is then able to migrate

on solid surfaces termed swarming ( B e l a s 1996; R a t h e r 2005). It was shown

that surface polysaccharides are important for this migration. The migration of swarmer cells on solid media is facilitated by cell surface polysaccharides due

to the reduction of cells friction ( S t h a l et al. 1983; G y g i et al. 1995). Most

likely О-specific polysaccharide is also important for the swarming phenomenon

since the R e mutant strain P. mirabilis R45 producing LPS having only the

lipid A and Kdo region was unable to swarm. The R a mutant strain P. mirabilis

R110 containing lipid A and the complete core region expressed only a limited ability for migration on the solid medium, whereas most o f s-forms of

P. mirabilis, P. vulgaris and P. penneri can swarm vigorously ( B a b i c k a 2001;

K wiL 2003).

The acid ic Proteus O -antigens may play an important role in stones formation

w ithin the urinary tract. T he crystalliza tion o f am m on iu m m a gn esiu m phosphate and ca lciu m p hosp hate is initiated by the activity o f urease, w h ich c le a v e s urea to am m o nia and carbon d iox id e , resulting in the rise o f the pH. In such alkaline co n d itio n the crysta lliz atio n pro ce ss occurs in ten siv ely (MOBLEY e t al. 1996; R ó ż a l s k i et al. 1997). T o r z e w s k a et al. ( 2 0 0 3 ) sh o w e d urease as the major factor in v o lv ed in sto n es form ation, h o w e v er she a lso fou nd that the e ffe c t o f this en zy m e m ay be m o d ifie d by bacterial О -sp e c if ic p oly sacch ar id es. It w as

n oticed that the sugar co m p o sitio n o f Proteus LPS m ay either enh ance or

(14)

structure and ability to bind cations. OPS o f P. vulgaris 12 has bound mag-nesium and calcium ions weakly, but increased the crystallization process, whereas OPSs o f P. vulgaris 0 4 7 which are able to bind large amounts of these ions inhibited the process of crystallization (for OPS structure see Table 1), Most likely, the Mg2+ and Ca2+ weakly bound to the polysaccharides, and could be then easily released from the bacterial surface. This phenomenon causes local supersaturation of the solution and leads to the increase in crys-tallization and stone formation.

LPS of S-forms of Gram-negative bacteria contributes to their resistance against bactericidal action of the serum. One of the possible explanations for the bactericidal effect is the action of membrane attack complex (MAC) of activated complement. MAC is extremely hydrophobic and forms pores in bacterial membranes, which lead to the bacterial lyses and death. In S-forms of bacteria hydrophobic MAC cannot pass the hydrophilic barrier of a long chain of О -specific polysaccharides to gain their outer and inner membranes ( K a c a , U j a z d a 1998; M i e l n i k et al. 2004). Biological studies of bactericidal activity o f sera against Proteus strains confirmed this hypothesis. It was shown that P. mirabilis R-mutants synthesizing the LPS molecule without O-specific polysaccharide are sensitive to the serum action, whereas most o f P. mirabilis S-forms, as well as around 50% of S-forms of P. vulgaris and P. penneri are

resistant ( B a b i c k a 2001; F u d a l a 2003; K w i l 2003).

The biological role of the core region is not clear. It is immunogenic which was shown by use o f R-mutants. The antibodies against the core region particularly directed to the heptose or Kdo subregions cross react with LPS of different bacteria, and can be used as endotoxin neutralizing antibodies because of a close similarity of these parts of LPS in different groups of bacteria ( P o l l a c k 1999; Di P a d o v a et al. 1999). The presence o f 4-amino-4-deoxy- -arabino-L-arabinose in the core region, as well in lipid A (see below) led to

the resistance of Proteus bacteria to polymyxin (B O L L et al. 1994).

LPS is known as endotoxin - the most important virulence factor of Gram-negative bacteria. The mechanism of biological action of endotoxin is comm on to most of bacteria. It shows pathophysiological effects when released from bacterial cells to blood-vascular system. The centre of biological activity of endotoxin is lipid A, which in the blood is bound by LPB (li-popolysaccharide binding protein). Complexes of LPS-LPB are recognized by receptors on different eukaryotic cells (monocytes/macrophages, lympho-cytes, endothelial cells of blood vessels) such as CD 14, as well as TLR2 and TLR4 (tool like receptors 2 and 4) resulting activation of transmembrane signal and induction of cells to produce biologically active mediators - TNF (tumor necrotizing factor), interleukins (IL-1, IL-6, IL-8), oxygen free radicals (OJ, H20 2, NO) and others. These mediators depending o f their concentration in macroorganisms elicit beneficial or most often detrimental effects e.g.

(15)

DIC (dis sem in ated intravascular co agu lation ) and ARDS (acu te respiratory

distress syn dr om e), resu lting in m ultiple organ sy stem failure (MOSF) and

shock syn d rom e ( L u k a s ie w i c z , Ł u g o w s k i 2 0 03 ).

8. SU M M A R Y

Bacteria from the genus Proteus synthesized lipopolysaccharides which are built according to the common scheme characteristic for Enterobacteriaceae family, however, markedly different in detail structure and biological activity, when compared with other representatives of this family. It serves as the basis of the serological classification of these bacteria. Long term structural and immunochemical studies led us to show the molecular basis of this classification. Antigenically, Proteus is heterogenous because of structural differences in the О-specific part of LPS. Until now 76 serogroups have been describe for this genus. Acidic О-specific polysaccharide and structural diversity of the core region are the characteristic features of Proteus LPS. The acidic character of LPS o f these bacilli has most likely very important biological consequence in the formation of bladder or kidneys stones during urinary tract infections. LPS as a endotoxin is also an important virulence factor playing an important pathophysiological role, particularly during sepsis. The future studies will most probably show the exact role of Proteus LPS on the particular stages of infections.

9. R E F E R E N C E S

A rb a t s k y , N. P., Sh a s h k o v, A. S ., Ma m y a n, S . S ., Kn i r e l, Y. A., Zy c h, K ., Si d o r c z y k, Z .

1998. Structure o f the О -specific polysaccharide of a serologically separate Proteus penneri strain 22. Carbohydr. Res. 310: 85-90.

Ar b a t s k y, N. P., S h a s k o v , A. S „ L i t e r a c k a , E., W i d m a l m , G ., K a c a , W ., K n i r e l , Y. A.

20 00. Structure o f the О -specific polysaccharide o f Proteus m irabilis Ol l , another Proteus O-antigen containing an am ide o f d-galacturonic acid with 1-threonine. Carbohydr. Res. 323: 81-86.

Ba b i c k a, D. 20 01. Investigations of serological specificity o f O-antigens of Proteus vulgaris 0 1 , 0 2 , 0 4 and 0 9 and selected biological features of this species. Ph.D. thesis. University of Lodz. [In Polish].

Ba r t o d z i e j s k a, B ., S h a s h k o v , A. S., B a b i c k a , D., G r a c h e v , A. A., T o r z e w s k a , A., P a r a m o n o v ,

N. A., C h e r n y a k , A. Y., R ó ż a l s k i , A., K n i r e l , Y. A. 1998. Structural and serological studies on a new acidic О -specific polysaccharide of Proteus vulgaris 0 3 2 . Eur. J. Biochem. 256: 488-493.

Ba r t o d z i e j s k a, B ., T o u k a c h , F. V ., V i n o g r a d o v , E. V ., S e n c h e n k o v a , S . N„ S h a s h k o v , A. S .,

(16)

and serological studies o f two related О-specific polysaccharides of Proteus vulgaris 02 1 and

P roieus m irabilis 0 4 8 having oligosaccharide-phosphate repeating units. Eur. J. Biochem . 267:

6888-6896.

Be l a s, R. 1992. T he swarm ing phenom enon o f Proieus mirabilis, A S M News. 58: 15-22.

B e la s , R. 1996. Proteus m irabilis swarm er differentiation and urinary tract infection. In: H. L.

T. Mo b l e y, J. W. Wa r r e n (eds.). Urinary tract infections, m olecular pathogenesis and clinical

m anagem ent. ASM Press, W ashington DC, pp. 245-269.

B o l l , M ., Ra d z i e j e w s k a-Le b r e c h t, J., Wa r t h, C., Kr a j e w s k a- Pi e t r a s i k, D., Ma y e r, H. 1994. 4-am ino-4-deoxy-L-arabinose in LPS o f enterobacterial R m utants and its possible role for their polym yxin reactivity. FEM S Immunol. Med. M icrobiol. 8: 329-342.

Ce d z y n s k i, M ., Sw i e r z k o A. S ., Zi o l k o w s k i A., Ró ż a l s k i A., Ka c a, W ., Pa r a m o n o v, N . A.,

Vi n o g r a d o v, E. V ., Kn i r e l, Y. A. 1998. Structural and im m unochem ical studies of two

cross-reactive Proieus mirabilis O-antigens, 0 6 and 0 2 3 , containing ß -1 —>3-linked 2-acetam ido- -2-deoxy-D-glucopyranose residues. M icrobiol. Im munol. 42: 7-14 .

C o k e r , C ., Po o r e A., Li, X., Mo b l e y, H. L. T. 2000. Pathogenesis o f Proieus mirabilis urinary tract infections. M icrobes Infection. 2: 1497-1505.

Co s t e r t o n, J . W ., Ge e s e y, G . G ., Ch e n g, K.-J. 1978. How bacteria stick. Sei. A m . 238: 86-95.

Di Pa d o v a, F. E ., He u m a n, D., Gl a u s e r, M. P., Ri e t s c h e l, E. Th. 1999. Specificity and

neutralizing properties o f cross-reactive anti-core LPS m onoclonal antibodies. In: H . Br a d e, S. M . Op a l, S. N. Vo g e l, D. C. Mo r r i s o n (eds.). E ndotoxin in health and disease. Marcel Dekker, Inc. New York, Basel, pp. 633-642.

Do n l a n, R. M ., Co s t e r t o n, J . W . 2002. Biofilm s: survival m echanism o f clinically relevant

m icroorganism s. Clin. M icrobiol. Rev. 15: 167-193.

Dr z e w i e c k a, D ., Zy c h, K. Si d o r c z y k, Z . 2004. C haracterization and serological classification

o f a collection o f P roieus penneri clinical strains. Arch. Im m unol. T herap. Exp. 52: 121-128.

Dr z e w i e c k a, D ., Si d o r c z y k, Z . 2005. Characterization o f P roieus pen neri species - hum an

opportunistic pathogens. Post. Mikrobiol. 44: 113-126. [In Polish].

Fu d a l a, R . 2003. C om plem ent activiation and binding o f antibodies by selected lipopolysac-

charides o f P roteus mirabilis. Ph.D. thesis. University o f L odz. [In Polish].

Gy g i, D., Ra h m a n, M. M ., La i, H . C ., Ca r l s o n, R „ Gu a r d-Pe t t e r J ., Hu g h e s, C . 1995.

A cell surface polysaccharide that facilitates rapid population m igration by differentiated swarm cell o f P roteus mirabilis. Mol. Microbiol. 17: 1167-1175.

Ho l s t, O . 1999. Chem ical structure o f the core region o f lipopolysaccharides. In: H. Br a d e,

S. M. Op a l, S. N. Vo g e l, D. C. M orrison (eds). Endotoxin in health and disease. Marcel Dekker, Inc. New York, Basel, pp. 115-154.

Ja n d a, J . M ., Ab b o t, S. L . 2006. The Enterobacteriaceae. ASM Press. W ashington, 233-259.

Ka c a, W ., Kn i r e l, Y. A., Vi n o g r a d o v, E. V ., Ko t e l k o, K . 1987. Structure o f the O-specific

polysaccharide o f P roteus mirabilis S 1959. Arch. Im m unol. Ther. Exp. 35: 431-4 37.

Ka c a, W ., Uj a z d a, E . 1998. Com plem ent activation by bacterial endotoxin. Post. Mikrobiol. 37:

421-4 27. [In Polish],

Ka u f f m a n n, F. 1966. The Bacteriology o f E nterobacteriaceae. W illiam s and W ilkins. Baltimore,

pp. 333-352.

Kn i r e l, Y. A ., Vi n o g r a d o v, E. V ., Sh a s h k o v, A. S ., SiDORCZYk, Z„ Ró ż a l s k i, A., Ra d z i e j e w s k a-

- Le b r e c h t, J., Ka c a, W. 1993. Structural study of О -specific polysaccharide o f Proteus.

J. Carbohydr. Chem . 12: 379-414.

Kn i r e l, Y . A ., Ka c a, W ., Pa r a m o n o v, N . A., Ce d z y n s k i, M ., Vi n o g r a d o v, E. V ., Zi o l k o w s k i,

A., Sh a s h k o v, A. S ., Ró ż a l s k i, A. 1997. Structure o f the О -specific polysaccharide of

P roteus vulgaris 0 2 5 containing 3-0-[(R)-l-carboxyethyl]-D-glucose. Eur. J. Biochem . 247:

(17)

K n i r e l, Y. A., Ka c a, W., Ró ż a l s k i, A., Si d o r c z y k, Z. 1999. S t r u c t u r e o f O a n ti g e n ic p o l y s a c -c h a r i d e s o f P r o t e u s b a -c t e r ia . P o l. J. C h e m . 73: 859—907. Ko c h a r o v a, N . A., Za t o n s k y, G. V., To r z e w s k a, A., Ma c i e j a, Z ., By s t r o v a, О. V., Sh a s h k o v, A. S ., Kn i r e l, Y. A., Ró ż a l s k i, A. 2003. S t ru c t u re o f t h e О - s p e c i f ic p o l y s a c c h a r id e o f Providencia rustigianii 0 1 4 c o n t a i n i n g N '- [ ( S ) - l - c a r b o x y e t h y l ] - N “ - (D - g a l a c tu ro n o y l )- L - ly s i n e . C a r b o h y d r. R e s . 338: 1009-1016.

K o c h a r o v a , N . A., T o r z e w s k a , A., Z a t o n s k y , G. V., B l a s z c z y k , A., B y s t r o v a , O. V„ S h a s h k o v , A. S., K n i r e l , Y. A. R ó ż a l s k i , A. 2004. S t r u c t u r e o f t h e O - p o ly s a c c h a r i d e o f Providencia

sluarlii 0 4 c o n ta i n i n g 4 -( N - a c e t y l- L - a s p a rt -4 -y l ) a m in o - 4 ,6 -d id e o x y -D - g lu c o s e . C a rb o h y d r. R es .

339: 195-200.

Ko n d a k o v a, A. N., Li n d n e r, B„ Fu d a l a, R., Se n c h e n k o v a, S. N.. Mo l l, H., Sh a s k o v, A. S.,

Ka c a, W ., Zh a r i n g e r, U „ Kn i r e l, Y. A. 2 0 0 4 . New stuctures o f the О-specific

polysac-charides o f Proteus. Part 4. Polysacpolysac-charides containing unusual acidic N-acyl derivatives o f 4- am ino-4,6-dideoxy-D-glucose. Biochem istry (Moscow). 69: 1034-1043.

K w i l , I. 2 0 0 3 . Investigations o f selected virulences factors o f Proteus penneri strains. Ph. D. thesis. University o f Lodz. [In Polish],

L ew is , К . 2 0 0 5 . Persister cells and the riddle o f biofilm survival. Biochem istry [M oscow], 70: 267-274.

Lu k a s i e w i c z, J . , Łu g o w s k i, С . 2003. Biological activities o f lipopolysaccharide. Post. Hig.

Med. Doświad. 57: 33-53. [In Polish],

Mi e l n i k, G., Do r o s z k i e w i c z, W., Ko r z e n i o w s k a-Ko w a l, A. 2004. E xternal structures of Gram -

-negative bacteria and bactericidal activity of complement. Post. Mikrobiol. 43: 39-57. [In Polish].

Mo b l e y, H . L . T . 1996. Virulence o f Proteus mirabilis. In: H. L. Т. Mo b l e y, J. W. Wa r r e n

(eds.). Urinary tract infections, m olecular pathogenesis and clinical m anagem ent. A S M Press, W ashington DC, pp. 245-269.

Mo h r O ’Ha r a, C ., Br e n n e r, F. W., Mi l l e r, J. M. 2000. Classification, identification, and

clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 13: 534-546.

Pe r e p e l o v, A. V., Uj a z d a, E., Se n c h e n k o v a, S. N., Sh a s h k o v, A. S ., Ka c a, W., Kn i r e l, Y. A.

1999. Structural and serological studies on the O-antigen of Proteus mirabilis 0 1 4 , a new polysaccharide containing 2-[(R )-l-carboxyethylam ino]ethyl phosphate. Eur. J. Biochem . 261: 347-353.

Pe r e p e l o v, A . V., Ró ż a l s k i, A., Ba r t o d z ie j s k a, B ., Se n c h e n k o v a, S . N.. Kn i r e l, Y. A.

2004. Structure o f the O-polysaccharide of Proteus m irabilis 0 1 9 and reclassification of certain P roteus strains that were form erly classified in serogroup 0 1 9 . Arch. Im munol. Ther. Exp. 52: 188-196.

Po l l a c k, M . 1999. Biological function of lipopolysaccharide antibodies. In: H. Br a d e, S. M.

Op a l, S. N. Vo g e l l, D. C. Mo r r i s o n (eds). Endotoxin in health and disease. M arcel Dekker,

Inc. New York, Basel, pp. 623-631.

Ra r d z i e j e w s k a- Le b r e c h t, J . , Ma y e r, H . 1 9 8 9 . The core region o f Proteus mirabilis R 110/1959

lipopolisacharide. Eur. J. Biochem. 183: 573-581.

Ra d z i e j e w s k a- Le b r e c h t, J . , Sh a s h k o v, A. S., Gr o s s k u r t, H., Ba r t o d z ie j s k a, B ., Kn i r e l, Y.

A., Vi n o g r a d o v, E. V ., Ró ż a l s k i, A., Ka c a, W., Ko n o n o v, L. О., Ch e r n y a k, A. Y., Ma y e r,

H., Ko c h e t k o v, N. K. 1995. S tru c t u r e an d e p i to p e c h a r a c t e r i s ti c o f О -s p e c i f ic p o l y s a c c h a rid e

o f Proteus mirabilis 0 2 8 c o n t a i n in g a m id e s o f D -g a l a ct u ro n ic a c i d w i th L -s eri n e a n d L -ly s in e . E u r. J. B i o c h e m . 230: 705-712.

Ra e t z, C . R ., Wh i t f i e l d, C. 2002. Lipopolysaccharide endotoxin. Ann. Rev. Biochem. 71:

635-700.

Ra t h e r, P . N . 2 0 0 5 . Swarm er cell differentiation in Proteus mirabilis. Environm ent. Microbiol.

(18)

Ró ż a l s k i, A., Si d o r c z y k, Z ., Ko t e l k o, K . 1997. Potential virulence factors o f Proteus bacilli. Microbiol. Mol. Biol. Rev. 61: 65-89.

Ró ż a l s k i, A. 2 0 0 2 . M olecular basis o f the pathogenicity o f Proteus bacteria. Adv. Clin. Exp.

Med. 11: 3-18.

Ró ż a l s k i, A., To r z e w s k a, A., Ba r t o d z i e j s k a, В ., Ba b i c k a, D ., Kw i l, I., Pe r e p e l o v, A. V .,

Ko n d a k o v a, A. N., Se n c h e n k o v a, S. N„ Kn i r e l, Y. A., Vi n o g r a d o v, E. V . 2002. Chem ical

structure, antigenic specificity, the role in the pathogenicity o f lipopolysaccharide (LPS, endotoxin) one the Proieus vulgaris bacteria’s exam ple. W iadom ości Chem iczne. 56: 585-604. [In Polish],

Ró ż a l s k i, A . 2 0 0 4 . Lipopolisaccharide and others virulence factors o f P roieus bacteria. Post.

M ikrobiol. 43: 40 9-43 1. [In Polish].

Sh a s h k o v, A. S ., To u k a c h, F. V., Pa r a m o n o v, N. A., Zi o l k o w s k i, A., Se n c h e n k o v a, S . N.,

Ka c a, W ., Kn i r e l, Y. A. 1996. Structures of new acidic О -specific polysaccharides o f the

bacterium Proteus m irabilis serogroups 0 2 6 and 0 3 0 . FEBS Lett. 386: 247-251.

Si d o r c z y k, Z ., Za h r i n o e r, U., Ri e t s c h e l, E. Th. 1983. Chem ical structure o f the lipid A com

-ponent o f the lipopolysacharide o f P roteus m irabilis Re m utant. Eur. J. Biochem. 137: 15-22.

Si d o r c z y k, Z ., Ko n d a k o v a, A. N., Zy c h, K ., Se n c h e n k o v a, S . N., Sh a s s k o v, A. S ., Dr z e w i c k a,

D ., Kn i r e l, Y. A. 2003. Structure o f the O -polysaccharide o f P roteus myxofaciens. Clas-sification o f the bacterium into a new P roteus O-serogroup. Eur. J. Biochem ., 270: 3182-3188.

St a h l, S. J ., St e w a r t, K. R., Wi l l i a m s, F. D. 1983. E xtracellular slim e associated with Proteus

m irabilis during swarm ing. J. Bacteriol. 154: 930-937.

Sw i e r z k o, A. S., Ce d z y n s k i, M., Zi o l k o w s k i, A., Se n c h e n k o v a, S . N., Pe r e p e l o v, A. V., Kn i r e l,

Y. A., Ka c a, W. 2001. Structure and serological characterization o f an Nc-[(R )-l-c arboxy- ethyl)-L-lysine-containing О-chain o f the lipopolysaccharide o f Proteus m irabilis 0 1 3 . Arch. Im m unol. Ther. Exp. 49: 163-169.

To r z e w s k a, A., St a c z e k, P., Ró ż a l s k i, A. 2003. The crystallization o f urine m ineral components

m ay depend on the chem ical nature o f Proteus endotoxin polysaccharides. J. Medical. Microbiol. 52: 471-477.

To r z e w s k a, A ., Ko c h a r o v a, N. A., Ma s z e w s k a, A., Kn i r e l, Y . A ., Ró ż a l s k i, A. 2004a. S e

-rological characterization of the О-specific polysaccharide of P rovidencia alcalifaciens 0 23 . Arch. Im m unol. Therap. Exp. 52: 43-49.

To r z e w s k a, A., Ko c h a r o v a, N. A., Za t o n s k y, G. V., Bl a s z c z y k, A., By s t r o v a, О. V., Sh a s h k o v,

A. S ., Kn i r e l, Y. A, Ró ż a l s k i A. 2 0 0 4 b . Structure of the O-polysaccharide o f Providencia

stuartii 0 3 3 containing 4-(N-acetyl-D-aspart-4-yl)am ino-4,6-dideoxy-D-glucose. FEM S Immunol.

Med. M icrobiol. 41: 133-139.

To r z e w s k a, A., Gr a b o w s k i, S ., Ko n d a k o v a, A . N., To u k a c h, F. V ., Se n c h e n k o v a, S . N..

Sh a s h k o v, A . S ., Ar b a t s k y, N. P., Kn i r e l, Y. A., Ró ż a l s k i, A., Ka c a, W. 2006. Structure

and serology o f the O-antigen o f P roteus strains classified into serogroup 0 1 7 and form er serogroup 0 3 5 . Arch. Im m unol. Therap. Exp. 52: 277-282.

To u k a c h, F . V ., Ba r t o d z ie j s k a, B ., Se n c h e n k o v a, S . N ., Wy k r o t a, M „ Sh a s h k o v, A. S .,

Ró ż a l s k i, A., Kn i r e l, Y. A. 1999. Structure of a new acidic O-antigen of P roteus vulgaris

0 2 2 containing O -acetylated 3-acetam ido-3,6-dideoxy-D-glucose. Carbohydr. Res. 318: 146-153.

Vi n o g r a d o v, E . V ., Kr a j e w s k a-Pi e t r a s i k, D., Ka c a, W., Sh a s h k o v, A. S ., Kn i r e l, Y. A.,

Ko c h e t k o v, N. K . 1989. Structure o f P roteus mirabilis 0 2 7 О -specific polysaccharide

containing am ino acids and phosphoethanolam ine. Eur. J. Biochem . 185. 645-650.

Vi n o g r a d o v, E . V ., Th o m a s-Oa t e s, E., Br a d e, H ., Ho l s t, О. 1994. Structural investigations of

the lipopolysaccharide from Proteus m irabilis R45 (Re-chemotype). J. Endotoxin Res. 1: 199-206.

Vi n o g r a d o v, E . V ., Si d o r c z y k, Z., Kn i r e l, Y. A. 2002. Structure o f lipopolysaccharide core

(19)

Wa r r e n, J . W . 1 9 9 6 . Clinical presentations and epidem iology o f urinary tract infections. In: H. L. T. Mo b l e y, J. W. Wa r r e n (eds.). Urinary tract infections, m olecular pathogenesis and clinical m anagem ent. A S M Press, W ashington DC, pp. 2 - 2 8 .

Za b ł o t n i, A. 2006. Im munochem ical characterization and serological characterization o f selected

P roteus m irabilis strains. Ph. D. Thesis. University o f Łódź. [In Polish],

Zy c h, K ., P e r e p e l o v , A. V., S i w iń s k a , M., K n i r e l , Y. A., S i d o r c z y k , Z. 2005. Structure of

the O-polysaccharides and classification o f Proteus genom ospecies 4, 5 and 6 into respective

Cytaty

Powiązane dokumenty

Limfocyty Th17 wydzielają głównie IL-17A ale także: Il-6, IL-17F, IL-22, IL-21, IL-26, TNF-α aktywując fibroblasty, komórki endotelialne, komórki epitelialne, makrofagi... 2012,

— pozycja piśmiennictwa; HSCT (hematopoietic stem cell transplantation) — transplantacja komórek krwiotwórczych; UD (unrelated donor) — niespokrewniony dawca; non-MRD —

Urokinase-type plasminogen activator receptor (uPAR) release in the experimental models of co-culture of human corneal and conjunctival epithelial cells.. Co-culture: pRSV-T corneal

Mimo że komórki Th17 różnicują się z dzikich komó- rek CD4+ na drodze odmiennej niż komórki Th1 i Th2, to jednak ich rozwój również jest kontrolowany przez kom- binacje

Psoriatic skin lesions were characterized by a higher number

Autorzy wyka- zali, że komórki Tr1, poprzez wydzielanie IL-10 oraz TGF- β, mają za zadanie hamować powstawa- nie przeciwciał skierowanych przeciwko Dsg 3, a produkcja przeciwciał

Liczba KL na mm 2 naskórka w wycinkach skóry chorych na atopowe zapalenie skóry barwionej prze- ciwciałami anti-human CD1a i anti-human HLA-DR znacznie różniła się od liczby

After the discovery of Th17 cells, many studies have been focused on the mechanisms that lead to the differentiation of CD4+ cells. Th17 cells are a newly established Th