• Nie Znaleziono Wyników

Cerometric Determination of Allyl Alcohol and Its Derivatives

N/A
N/A
Protected

Academic year: 2021

Share "Cerometric Determination of Allyl Alcohol and Its Derivatives"

Copied!
6
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S ____ FOLIA C H I M I C A B, 1 9 8 8 _____ ____

M a k s y m i l i a n Ignaczak*, M i r o s ł a w a Deka*

C E R O M E T R I C D E T E R M I N A T I O N OF ALLYL ALCOHOL AND ITS D E R I V A T I V E S

A meth od has been d e v e l o p e d of d e t e r m i n i n g allyl alcohol and its d e r i v a t i v e s u s in g c e ri um p e r c h l o r a t e in aq ue ous s o l u ­ tions of p e r c h l o r i c acid. This m e t h o d relies upon results arising from the ki ne t i c i n v e s t i g a t i o n s c o n c e r n i n g the r e d u c t i o n of c e ri um (IV) by the c o m p o u n d s upon pr es ent co ns i d e r a t i o n . An exce ss of o x i d i z e r was d e t e r m i n e d by the a m p e r o m e t r i c m e th od wi th out the exte rna l potential.

There is no reco rd in ch em ica l li t e r a t u r e c o n c e r n i n g the m e th od of q u a n t i t a t i v e d e t e r m i n a t i o n of allyl alcohol d e r i v a t i v e s by m e ans of its o x i d a t i o n wi th the use of c e ri um p e r c h lo ra te . On ly in the pape r [l] c e ri um s u l p h a t e in the m i x t u r e of s u l p h u r i c and acetic acids has been used for the d e t e r m i n a t i o n of acrolein. An exce ss of ox i d i z e r has been t i t r ate d using the s o l u t i o n of M o h r ’s salt where the ferr oin e was used as an indicator. O t he r d e r i v a t i v e s have been d e t e r m i n e d by me ans of bromo- and io d o m e t r i c m e t h o d [2-4], m e r c u r o - m e tr ic m e t h o d [5] s p e c t r o p h o t o m e t r i c a l l y [8, 9] or c h r o m a t o g r a p h i - cally [10-13]. The ab ove m e th od us ua l l y c o n c e r n the s i ng le compounds, whil e there is no m e t h o d a l lo win g the d e t e r m i n a t i o n of more numb er of the derivat iv es . The results of ea rl i e r i n v e s t i g a t i o n s c o n ­ c e r n i n g the r e a c tio ns of allyl al co hol and its de ri v a t i v e s , with c e ri um p e r c h l o r a t e in s o l u t i o n s of p e r c h l o r i c acid [14, 15] show the p o s s i b i l i t y of an a p l i c a t i o n of this o x i d i z e r for the q u a n t i t a t i v e d e t e r m i n a t i o n of these compounds.

D e p a r t m e n t of Ge ne ral and In or gan ic C h e m i s t r y of I n s t i t u t e of Ch em ist ry , U n i v e r s i t y of I 6 d i .

(2)

R e a g e n t s and S o l u t i o n s

S o l u t i o n of c e r i u m p e r c h l o r a t e 0. 865 m o l e / d m ^ in 6 m o l e / d m ^ p e r c h l o r i d acid was p r e p a r e d a c c o r d i n g to the r e ci pe of S m i t h and G e t z [l6]. For that p u r p o s e 700 g of c e ro us c h l o r i d e was d i s s o l v e d in 600 c m J of triply d i s t i l l e d water. Next, the cero us c h l o r i d e was p e r f o r m e d into c e ro us p e r c h l o r a t e by the step addi ng of 72% p e r c h l o r i c acid to the s o l u t i o n be ing kept in a b o i l ing state. The addi ng of p e r c h l o r i c acid was s t o p p e d w h en the wh ite s m ok es had a p p e a r e d ovier the r e a c t i o n m i x t u r e and the test with s i lv er ni tr a t e had not i n d i c a t e the p r e s e n c e of c h l o r i d e ions. The o b t a i n e d s o l u t i o n was e l e c t r o l y t i c a l l y o x i d i z e d a p p l i n g the c u r r e n t 2.5-4 A and its v o l t a g e 6-8 V. The p l a t i n u m p l at e of the s u r f a c e 40 cm'* was s t a n d i n g for the anode, w h il e the ca th o d e

2 was in a form of w i n d e d p l a t i n u m wi re of the s u r f a c e 4 cm .

The end of o x i d a t i o n was d e t e r m i n e d in the m a n n e r of t i t r a t i o n the sa mp l e s of an o x i d i z e d s o l u t i o n w i th the use of s o di um ox al a t e s o l u t i o n as a ti tr ant by m e an s of a m p e r o m e t r i c m e t h o d w i t h o u t the e x t e rna l p o t e n t i a l [17]. The c o n c e n t r a t i o n of p e r c h l o r i c acid in c e r i u m p e r c h l o r a t e was d e t e r m i n e d a l k a c i m e t r i c a l l y [18].

The c e r i u m salts in not to h i gh a c id ic s o l u t i o n s ( p H > 1) decom- poce via the h y d r o l y s i s y i e l d i n g the y e l l o w p r e c i p i t a t e of c e ri um hy dr oxi de , wh ile the cero us ones yi eld the h y d r o x i d e p r e c i p i t a t e with pH = 5. M e n t o i n i n g the ab ove facts, the c e r i u m ions have been r e d u ced to c e ro us by s o d i u m o x a l a t e and next t i t r a t e d by the s o d i u m h y d r o x i d e s o l u t i o n as a ti tr a n t up to the a p p e a r a n c e of o p a c i t y caus ed by c e ro us hy dr oxi de .

S o d i u m ox al a t e s o l u t i o n - 0.05 mole/dm'5 P e r c h l o r i c acid s o l u t i o n - 1 0 . B m o l e / d m 5

Al lyl alcohol, ac ry l i c acid, a c r y l i c a l d e h y d e s o l u t i o n s 0.1 m o l e / d m ’5 .

Thes e c o m p o u n d s were d i s t i l l e d in o r de r to remo ve the slight a d d i t i o n s of s t a b i l i z e r s used a g a i n s t p o l i m e r i z a t i o n . The c o l l e c t e d f r a c t i o n s had the b o i l i n g p o i n t s and r e f r a c t i v e i n d e xes c o r r e s ­ p o n d i n g to l i t e r a t u r e data.

C r o t y l i c alcohol, c r o t o n i c al dehyde, c r o t o n i c acid s o l u t i o n s 0.1 mole/dm'* were p r e p a r e d fr o m the w e i g h t e d p o r t i o n s of t h es e c o m ­

(3)

p o un ds being p r e v i o u s l y p u r i f i e d by d i s t i l l a t i o n (alcohol, a l d e hyd e or c r y s t a l i s a t i o n acid).

Meth yl c r o t o n a t e s o l u t i o n 0.05 m o l e / d m 5 in a 3 mole/dm"5 perchlo­ ric acid solution.

3,JJ - d i m e t h y l a c r y l i c acid was o b t a i n e d fr om the m e s i t y l e oxide by me ans of m o d i f i e d h y p o b r o m a t e method. The s o l u t i o n 0.1 m o l e / d m 5 .

P r o c e d u r e

5 mole of c e r i u m p e r c h l o r a t e w e re i n t r o d u c e d into a m e a s u r i n g flask wi th au a p p r o p r i a t e amount of p e r c h l o r i c acid. Wa ter was added to the s o l u tio n and after the a p p r o p r i a t e t e m p e r a t u r e had been o b t a i n e d in the thermos ta t, a s p e c i f i e d q u a n t i t y of r e d u c i n g agent was ad ded (Table 1). The volu me of r e a c t i o n m i x t u r e was 0.1 d m 3 . The time of r e ac tio n was d e t e r m i n e d ex pe r i m e n t a l l y .

In 10 min intervals, 10 c m 5 sa mp l e s of the r e a c t i o n m i x t u r e were taken in w h i c h the n o n - r e a c t e d c e r i u m (IV) was t i t r a t e d us ing s o d i u m o x a l a t e s o l u t i o n as a titrant.

The e q u i v a l e n t po int of t i t r a t i o n was d e t e r m i n e d by the am pe ro- m e t r i c m e t h o d w i t h o u t ex te rna l p o t e n t i a l applied. The o x i d a t i o n p r o c e s s was r e ga rde d as c o m p l e t e d w h en the q u a n t i t y of non re ac t e d o x i d i z e r did not c h an ge ev en the r e a c t i o n was a l l o w e d to coutimie. Five seri es of m e a s u r e m e n t s we re ma de for e a ch re du ctor. The o b t a i n e d re su lts w i th its s t a t i s t i c a l e s t i m a t i o n are p r e s e n t e d in Table 1.

D i s c u s s i o n

T a ki ng into a c c o unt the q u a n t i t i e s of c e r i u m (IV) us ed for the o b t a i n i n g the final p r o d u c t s and its am ou n t s [l4, 15] it was p o i n t e d out that the r e a c t i o n of the c o m p l e t e o x i d i a t i o n of the c o m p o u n d s upon pr es e n t c o n s i d e r a t i o n can be i n t r o d u c e d a c c o r d i n g to the f o l l o w i n g equations: C H 2= C H C H 2 0H + 1 0 C e +4 + 5 H 2 0 - 3HC00H + 1 0 C e 3+ + 1 0 H + C H 2=C H- CH0 + 8 C e 4 + + 5 H 2 0 - 3HC0 0H + 0 C e 3+ + 8 H + C H 2 = C H- C00 H + 8 C e 4* + 4 H 20 - 2 H C0 0H + C 0 2 + 8 C e 3+ + 8 H + C H 3 - C H = C H - C H 20H + 1 2 C e 4+ + 6 H 2 0 - C H j C O O H + 2 H C0 0H + -|o2 + + 1 2 C e 3+ + 12H+

(4)

T a b l e 1

S t a t i s t i c a l e v a l u a t i o n of the r e s u l t s of d e t e r m i n a t i o n of al lyl alco hol and its d e r i v a t i v e s w i th c e r i u m p e r c h l o r a t e as an o x i d i z e r M I I # 1 D e t e r m i n e d c o m p o u n d R e a ­ c t io n time min T e m p e ­ r a t u r e C HC10„ m o l . d m - "* A m ou nt used M e an o b t a i n e d Me an r e l a t i v e S t a n d a r d d e v i a t i o n Me an s t a n d a r d C o n f i ­ d e nc e i n t e r ­ val 0.95 i * s K l>g] x mg e r r o r% s = r y > S = - Ł VT T c h2 =c h-c h2o h 60 298 2.00 5.8 11.6 5.75 11.49 -0.86 -0 .95 0. 052 0. 174 0. 023 0. 078 0.064 0.217 c h2 =c h-c h o 20 298 2.00 5.6 11.2 5.56 11.10 -0.71 -0 .89 0.064 0. 143 0. 029 0 . 06 4 0.081 0. 178 c h2 =c h-c o o h 60 333 4.00 7.2 14.4 7.12 14.19 -1.11 -1.46 0. 153 0. 123 0. 068 0. 055 0. 189 0. 153 c h3 -c h=c h-c h2o h 30 298 2.00 7.2 14.4 7. 13 14.24 -0.97 -1.11 0. 128 0. 179 0. 057 0. 08 0 0.158 0. 222 c h3 -c h=c h-c h o 30 298 2.00 7.0 14.0 6.88 1 3 . B9 -1.71 -0 .79 0.166 0.171 0. 074 0. 076 0.205 0.211 c h3 -c h=c h-c o o h 30 333 2.00 8.6 17.2 8.49 17.11 -1.28 -0.52 0. 109 0.158 0. 049 0. 071 0.136 0.197 c h3 -c=c h-c o o h c h3 40 333 4.00 10.0 20.0 10.07 19.92 0.70 -0 .40 0 . 128 0 . 128 0.057 0. 057 0.158 0.158 C H 3 - C H = C H - C 0 0 C H 3 40 333 2.00 10.0 20.0 9.88 19 .88 -0 .20 -0.10 0. 114 0.095 0.051 0.042 0. 142 0. 11 7 M a k s y m i l i a n I g n a c z a k , M i r o s ł a w a D e k a

(5)

C H 3- C H = C H - C H 0 + 1 0 C e 4+ + 6 H 20 - C H j C O O H + 2HC0 0H + ¿ 0 2 + + 1 0 C e i+ + 1 0 H+ C H 3C H = C H - C 0 0 H + 1 0 C e 4+ + 4 H 2 0 - C H 3COOH + 2 C 0 2 + 1 0 C e 3+ + 1 0 H + ( C H 3)2C = C H - C O O H + 1 2 C e 4+ + 6 H 2 0 - CH-jCOOH + 2 H C 0 0 H + C 0 2 + + 1 2 C e î+ + 1 2 H+ C H }C H = C H - C 0 0 C H 3 + 1 4 C e 4+ + 6 H 20 - C H j C O O H + 2 C 0 2 + H C OO H + + 1 4 C e îf + 14 H +

The acids: formic and acet ic one do not ox id i z e in the c o n d i ­ tions of the pr es e n t m e a s u r e m e n t s [19-20].

The o b t a i n e d results in almost all case s involve small n e g a t i v e r e l a tiv e error. This is p r o b a b l y c a us ed by the p a r t ial o x i d a t i o n of the c o m p o u n d st ud i e d by thn in fl uen ce of light. In rega rd to the amou nts of the su b s t a n c e s used for d e t e r m i n a t i o n s the values of me an rela tiv e error can be c o n s i d e r e d as r e l a tiv el y small ones. The small relative s t a n dar d d e v i a t i o n values c o n f i r m the ac cu rac y of the p r o p o s e d method. One is also in p o s i t i o n to m e n t i o n that our m e t h o d is rather s i mp le and it does not re gu ire the use of any s o p h i s t i c a t e d apparatus. Re | £ £en ce s [1] S u p r u n V., Y a., S t a r c h e v s k i i V. L., Zavod. Lab. , 46. (2), 112 (1980). [2] S t r i r a r M. J., Monats., .39, 617 (1918). [3] M I 0 d e c k a 3., Chem. Anal., 4, 53 (1959). [4] N e m a S. N., V e r m a R. H., Analyst., 1_04, 691 (1979). [5] W r 0 ri s k i M., Z. Anal. Chem., 171 . 177 (1959). [6] S o k 0 1 0 v A. G., K l y u e v a N. D., Zh. Anal. Khim., 20(6), 759 (1965). [7J S c h e d d e 1 R. T., An al. Chem., 2£. (1958). [8] S t 0 1 y a r 0 v K. P., I v a n o v V. S., Zhur. Anal.Khim., 13, 246 (1958).

[9] A v i g a d A., Anal. Biochem., 1_34(2), 499 (1983). [lO] T r u e d s o n L. A., J . Ch ro mat og r. , 2 3 4 . 47 (1982).

|.llj S a a r i n e n L . , K a r o n e n K., K e m- Kem i _£(4), 182 ( 1979).

(6)

[12] D o n a l d F., F r e d e r i c k J., Anal. C h e m . , 4 £ ( 8 ) , 1362 (1968).

[ 1 3 ] S e m b a e v D. K., K a n I. I., N e v s k i i V. M., Izv. Akad. Nauk SSR, Ser. Khim., 1 4 0 ) , 92 (1964).

[14] I g n a c z a k M . , D e k a M . , K o m i s a r s k i S., Pol. J . C h em ( in p r e s s ).

[15] I g n a c z a k M., D e k a M., K o m i s a r s k i S., Ki- n e ti ka i K a t a l i z (in press).

[16] S m i t h G. F., G e t z F., Ind. Eng. Chem. Anal. Ed., 1 2 . 339 (1940).

[17] M i c h a l s k i E., C z a r n e c k i K., Chem. Anal., 83 (1959).

[18] D z i e g i e ć J., D o c t o r a l Thesis, Univ. Lodz. (1973). [19] K h n a n I . , B o s e S., Indi an J. Appl. Chem.,. 30, 48

(1967).

[20] M i c h a l s k i E., I g n a c z a k M., Soc. Sci. Lodz. Acta Chim. , U , 35 (1967).

M a k s y m i l i a n Ignaczak, M i r o s ł a w a Deka

C E R O M E T R Y C Z N E O Z N A C Z A N I E A L K O H O L U A L L I L O W E G O I JEGO P O C H O D N Y C H

O p r a c o w a n o m e t o d ę o z n a c z a n i a a l k o h o l u a l l i l o w e g o i jego p o c h o d ­ nych przy u ż yc iu n a d c h l o r a n u c e r o w e g o w w o d n y c h r o z t w o r a c h kw asu n a d c h l o r o w e g o . W y k o r z y s t a n o w tym celu k i n e t y c z n ą m e t o d ę u s t a l o n e g o c z as u reakcji oraz m e t o d ę a m p e r o m e t r y c z n ą do o k r e ś l a n i a iloś ci prze- r e a g o w a n e g o ce ru (IV).

Cytaty

Powiązane dokumenty

In the first case we may apply Theorem 8 along with Lemmas 1, 2 to p(2>(2) and in the second case Theorem 6 together with Lemmas 1, 2 to p^(z) to conclude that P(z) has at least

sulting solution was filtered and, after removing the solvent, the oily residue solidified at 0 °C, and it was crystallized from methanol. The solution was filtered and, af­..

The efficiency of Cu(II) sorption was at satisfactory level (90 % for the batch system and 60 % after 80 batch volumes in the dynamic conditions), in addition the

Studies show that, in addition to previously used p-toluenosulfonoego acid, the process can be carried out also by using methanesulfonic acid (64%) and sulfuric acid (43%) (Table

Then, while it had been vigorously stirred, a water solution of natrium chloroacetate was added to the mixture (the solution was prepared by neutralization of 5g (0.05

To a solution of 3.81g (0.015 mole) of sodium salt of 2-dibenzofuransulfi- nic acid in 80cm3 of water, 3.44g (0.017 mole) of chlorohydride of S-benzyli- sothiourea in 45cm' of

The elaborated screening method for determination o f fentanyl and its three anal ogues was linear in the tested concentration ranges o f 2.5-25 ng/ml for all

HSP90 target proteins regulate a number of processes determining the growth and spread of cancer cells, specifically factors: stimulating angiogenesis (factor-1 induced by