• Nie Znaleziono Wyników

Study of thermal processes in solar domestic hot-water system

N/A
N/A
Protected

Academic year: 2021

Share "Study of thermal processes in solar domestic hot-water system"

Copied!
7
0
0

Pełen tekst

(1)

Vol. 32 2006 No. 1

ALICJA SIUTA-OLCHA*

THERMAL PROCESSES IN

SOLAR DOMESTIC HOT-WATER SYSTEM

The heating of working medium in the core elements of a solar domestic hot water (SDHW) system depending on weather and operating conditions and using the Exodus procedure is analysed. We made the suggestion about how we could use a theoretical method of testing the dynamics of heating medium, based on our original probabilistic models of a liquid-heating flat plate solar energy collector and a storage tank with thermal stratification. The time-constants of collector were determined. A momentary distribu-tion of water temperature along the tank axis was simulated for selected cases. Theoretical and real charac-teristics of the heating medium in the SDHW system were presented in comparison with external inputs. A study of heating dynamics in the solar system allows formulation of certain operating recommenda-tions.

1. INTRODUCTION

In order to analyse the operation of a solar hot-water system it is necessary to under-stand the heating dynamics of working medium. In real conditions of experiments, a con-tinuous recording and collecting the parameters measured are absolutely essential. The results of this research allow us to verify a simulation program. In model testing, the

f-chart method being developed in the 1970s [1], [2] was repeatedly used. Many

research-ers used the TRNSYS software to simulate the system work in non-steady conditions and to establish the effect of thermal stratification in the storage tank on the operation of the whole solar hot-water system [3], [4]. Some experiments as well as theoretical research were performed by CHOCHOWSKI and CZEKALSKI [5] in order to suggest the methods for controlling the medium flow through collectors. PLUTA and WNUK [6] presented the re-sults of numerical analysis of the operation of a solar hot-water system with double-medium storage tank. A mathematical description of a simplified model of storage of thermal energy in phase-changing materials was provided by GUMKOWSKI [7]. A one-dimensional model of the solar collector in equivalent thermal network has been presented

* Lublin University of Technology, Faculty of Environmental Engineering, ul. Nadbystrzycka 40 B, 20-618 Lublin, Poland, tel: 48-81 5381424, fax: 48-81 5381997, e-mail: a.siuta-olcha@pollub.pl

(2)

in [8].

This paper presents the possibility of using the Exodus procedure for modelling and simulating the operation of a system consisting of a liquid heating flat plate solar collector and a water storage tank with thermal stratification. An indisputable advan-tage of this method is determining the temperature of the medium flowing out of the collectors and the temperature of water in the tank as a time function, taking into ac-count the stochastic character of external inputs.

2. DESCRIPTION OF THE SOLAR DOMESTIC HOT-WATER SYSTEM A small solar domestic hot-water (SDHW) system in a detached house inhabited by four people was tested. In such a family, a mean daily hot water consumption was estimated at 155 dm3/d. The core elements of the system are two solar collectors with

an absorber area of 2.4 m2 and a storage tank of 200 dm3 capacity that supplies water to an electrical boiler of 150 dm3 capacity. The technical parameters of the collectors

are given in the table.

T a b l e Construction and material parameters of a collector in the solar hot-water system

Parameter Description Dimensions: length×width×depth, mm 1920×830×95

Gross area of the collector, m2 1.58

Aperture area of collector, m2 1.43

Absorber area of collector, m2 1.20

Glass cover thickness, mm 4

Absorber plate thickness, mm 3

Insulation thickness, mm 50

Collector box thickness, mm 1

Flow channel diameter, mm 10

Collective fluid conduits diameter, mm 20

Water capacity, dm3 3

Front cover material solar tempered glass

Absorber plate / flow channel material steel / copper

Covering layers on absorbers black galvanic chromium on a nickel-plated sur-face

Insulation material polyurethane foam + Al film

Collector box material aluminium

Number of transparent covers 1

Glass transmittance 0.80

Absorber plate absorptance 0.95

Maximum efficiency of the collector

(3)

The solar energy collectors were held by special stands. A tilt angle of the collec-tors with respect to horizon was adjusted. The surfaces of the colleccollec-tors were oriented south-west. A heat storage in a tank is of short-term character. The steel tank has a diameter of 400 mm and the height of 1.5 m and is heat-insulated by covering it with 50 mm thick foamed polystyrene. There is no heat exchanger in the tank. The height to diameter ratio of the storage tank is 3.75. A flow rate of the heat transferring me-dium in collectors was controlled by a circulating pump and a time programmer. The experimental SDHW system was fitted with a measuring apparatus for monitoring. Measurements were recorded as mean values for each hour. PT 100 temperature sen-sors were located in such places as: medium from the outlets of collectors, the surface of the storage tank at 1/3, 1/2 and 2/3 of its height, on the pipeline connecting the tank with the boiler; an outside air temperature sensor was also installed.

3. SIMULATION METHOD

In the simulation studies of the heating dynamics of working medium in the SDHW system, the co-operation of the flat plate solar collectors with the water storage tank was carried out. Thermal and probabilistic models of those two elements of the system have been presented in detail in [9], [10]. The mathematical description of the collector model, using the Exodus procedure, allowed determination of the tempera-ture of three collector elements (i.e., glass cover (Tg), absorber plate (Tp) and working

medium (Tf)) at any time [9]. A four-node storage model was accepted. Temporary

energy-balance equations representing four sections of the tank in the case of loading and unloading have been derived in [10]. The systems of equations were solved by Exodus method.

The simulations were performed using the CollSt.PAS. program. The changes in the temperature of fluid flowing out of the collectors as well as the temperature of the water stored in the tank were investigated. The average values of meteorological and exploitation parameters (measured for one hour) such as a global solar irradi-ance on collector plane I, an ambient temperature Ta, the wind speed vw, a medium

volume flux through collectors Qc, the collector inlet fluid temperature Tf,i, a

domes-tic hot-water flow rate Q obtained on the basis of the measurements recorded, were introduced into the program. An assumption was made that the physical properties of the glass cover and the absorber plate are independent of the temperature. During calculations the temperatures of a glass cover, the absorber plate and the working fluid were determined for each one-second time step. This enabled correction, after each time step, of all physical properties dependent on the temperature as well as the convective heat transfer coefficients, the particular thermal resistances of the

(4)

collec-tor and the capacity of the internal thermal sources. It was assumed that the tem-perature of the tank supply water is approximately the same as the temtem-perature of the water flowing out of the collectors. Heat losses from the tank bottom and its upper surface were neglected. The temperature gradient in a radial direction was also omitted.

4. EXPERIMENTAL AND SIMULATION RESULTS

The heating characteristics of a three-nodal model of the solar collector allowed the heating curves representing all distinguished elements to be drawn (figure 1).

Ta=25 C, Tf,i=18 C, I=700 W/m^2, Qc=1e-5 m^3/s, vw=1,5 m/s

25 30 35 40 45 0 180 360 540 720 900 1080 1260 1440 1620 1800 1980 time, s T, C

Tg

Tp

Tf

Fig. 1. Heating characteristics of the solar collector as a function of time

These curves make the determination of the three time constants of the collector possible. The collector time constant is a basic dynamic parameter of the system. Figure 2 presents an example of the results of the simulation of loading the storage tank with water at a constant temperature of 55 °C (Tf,o) and 10–5 m3/s volume flow

rate (Qc). It was assumed that at the initial moment the temperature in the storage

tank was constant and equal to 22 °C. The changes of the water temperature in the tank at four distinguished levels were recorded every half-hour for the first 5.5 hours of loading.

The ambient temperature of the tank was assumed to be 18 °C. Mean hour values of input parameters, the temperature distribution in the system and a domestic hot-water consumption in selected days are presented in figures 3 and 4. Based on the

(5)

analysis of the curves plotted, the consistence of the simulated and measured values may be called satisfactory.

20 25 30 35 40 45 50 55 0 0,125 0,375 0,626 0,875 1

relative storage height

T, C Serie2 Serie3 Serie4 Serie5 Serie6 Serie7 Serie8 Serie9 Serie10 Serie11 Serie12 Serie13 Series 2 Series 3 Series 4 Series 5 Series 6 Series 7 Series 8 Series 9 Series 10 Series 11 Series 12 Series 13

Fig. 2. Distribution of temperature in the storage tank during loading phase

0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 0 200 400 600 800 1000 T, C, Q, dm ^3/h I, W/m^ 2

Ta, C Tf,o, C Tf,oEx, C T1Ex, C T2Ex, C

T3Ex, C T4Ex, C T3, C Q, dm^3/h I, W/m^2 T, C, Q , dm 3 /h I, W/m 2 Q, dm3/h I, W/m2

(6)

0 10 20 30 40 50 60 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) T, C, Q, dm^3/h (dm^3/min) 0 100 200 300 400 500 600 700 I, W/m^2

Ta, C Tf,o, C Tf,oEx, C T1Ex, C

T2Ex, C T3Ex, C T3, C Qc, dm^3/min

Q, dm^3/h I, W/m^2 T, C, Q, d m 3/h (dm 3/min) I, W /m 2 Qc, dm3/min I, W/m2 Q, dm3/h

Fig. 4. Heating the working medium in the SDHW system in comparison with external inputs

5. CONCLUSIONS

In order to determine a thermal field in the flat plate solar collector and in the sto-rage tank, the Exodus procedure has been applied. It allowed us to simulate the dy-namics of SDHW system, taking into account the real weather and operating condi-tions changing with time. The results of the calculacondi-tions were compared with the results of the measurements. The results calculated make it possible to analyze the SDHW system operation under any conditions, to evaluate the energetic efficiency of its operation and to check the heat dynamics of the system elements.

REFERENCES

[1] DUFFIE J.A., BECKMAN W.A., Solar Engineering of Thermal Processes, John Wiley & Sons, New

York, 1980.

[2] JANUSZEWSKI J.M., Zasady projektowania urządzeń słonecznych do celów ogrzewczych,

Wy-dawnictwo Politechniki Wrocławskiej, Wrocław, 1986.

[3] JOHANNES K., FRAISSE G., ACHARD G., RUSAOUËN G., Comparison of solar water tank storage

mod-elling solutions, Solar Energy, 2005, 79, pp. 216–218.

(7)

draw-offs, Solar Energy, 2005, 78, pp. 291–300.

[5] CHOCHOWSKI A., CZEKALSKI D., Charakterystyka pozyskiwania energii słonecznej w instalacjach z

kolek-torami cieczowymi. Część II, Ciepłownictwo, Ogrzewnictwo, Wentylacja, 1996, 10, pp. 484–487.

[6] PLUTA Z., WNUK R., Słoneczna instalacja przygotowania ciepłej wody użytkowej ze zbiornikiem

akumulacyjnym z podwójnym czynnikiem magazynującym energię, Ciepłownictwo, Ogrzewnictwo,

Wentylacja, 1993, 2, pp. 42, 47–49.

[7] GUMKOWSKI S., Uproszczony model magazynowania energii cieplnej w przemianach fazowych –

współpraca magazynu z kolektorem słonecznym, Archiwum Energetyki, 1995, 1–2, pp. 31–40.

[8] CHOCHOWSKI A., Analiza stanów termicznych płaskiego kolektora słonecznego, Wydawnictwo SGGW, Warszawa, 1991.

[9] SIUTA-OLCHA A., Analiza stanów termicznych płaskiego kolektora słonecznego metodą Exodus, PhD Thesis, IPPT PAN, Warszawa, 1999.

[10] SIUTA-OLCHA A., Badania modelu wodnego zbiornika akumulacyjnego metodą Exodus, Techniczne,

ekologiczne i ekonomiczne aspekty energetyki odnawialnej, edited by A. Chochowski,

Wy-dawnictwo SGGW, Warszawa, 2001, pp. 112–122.

DYNAMIKA NAGRZEWANIA CZYNNIKA ROBOCZEGO W INSTALACJI SŁONECZNEJ CIEPŁEJ WODY UŻYTKOWEJ

Opisano, korzystając z procedury Exodus, nagrzewanie medium roboczego w głównych elementach instalacji słonecznej ciepłej wody użytkowej w zależności od warunków klimatycznych oraz parametrów eksploatacyjnych. Zaproponowano teoretyczną metodę badania dynamiki nagrzewania czynnika na podstawie wcześniej opracowanych autorskich modeli probabilistycznych płaskiego cieczowego kolekto-ra energii promieniowania słonecznego okolekto-raz zbiornika akumulacyjnego ze stkolekto-ratyfikacją termiczną. Okre-ślono stałe czasowe kolektora, które charakteryzują bezwładność cieplną układu. Dla wybranych przy-padków eksploatacyjnych przeprowadzono symulacje chwilowego rozkładu temperatury wody wzdłuż osi zbiornika. Sporządzono oraz porównano teoretyczne i rzeczywiste charakterystyki nagrzewu czynni-ka w systemie słonecznym bezpośrednim w zestawieniu z wymuszeniami zewnętrznymi. Badania dyna-miki nagrzewania w obiegu kolektorowym umożliwiają ocenę energetyczną danej instalacji słonecznej oraz sformułowanie pewnych zaleceń eksploatacyjnych.

Cytaty

Powiązane dokumenty

Prezentacja wyników i sposobów ich analizy ich analizy Testy subiektywne Metoda preferencji Metoda preferencji dwójkowych. (test

The environmental impacts of the five urban water systems studied in this paper—that is, freshwater only (FWA), seawater desalination (FRA), SWTF coupled with the

Do cech odzieży jednorazow ej należy zaliczyć: brak zapięć, często rezygnację z konstruowania pleców, brak podkroju pod pachami oraz zszywania i wykańczania

Pismo, mimo że redagowane jest przez asystentów i doktorantów, adresowane jest do całej społeczności naukowej. Udało się jednak zachęcić do współpracy młodych

Bilanse rozchodów oddziału świadczą otym, że placówka tajnej policji zatrudniała mniej więcej stały personel etatowy, zmieniającą się w niewielkim zakresie liczbę agentów

The figure shows the power input to the RAC as well as the heat loss through radiation and (free) convection that occurs at the inner cavity wall and at the insulated outer wall.

If the minus rail is used to short- circuit the active phases and the star point of the motor gets the same potential as the minus rail then the induced voltage in the inactive phase

For the installation consisting of 3 solar collectors supporting preparation of hot utility water for a single-family residential building, the characteristic moments of the