• Nie Znaleziono Wyników

Dorota Salata

N/A
N/A
Protected

Academic year: 2021

Share "Dorota Salata"

Copied!
17
0
0

Pełen tekst

(1)

GARNET PROVENANCE IN MIXED FIRST-CYCLE

AND POLY-CYCLE HEAVY-MINERAL ASSEMBLAGES

OF THE ROPIANKA AND MENILITE FORMATIONS (SKOLE

NAPPE, POLISH FLYSCH CARPATHIANS): CONSTRAINTS

FROM CHEMICAL COMPOSITION AND GRAIN MORPHOLOGY

Dorota SA LATA

In sti tute of Geo logi cal Sci ences, Jagiel lo nian Uni ver sity, Ole an dry 2a, 30- 063 Kraków, Po land; e- mail: dorota.sa lata@uj.edu.pl.

Sa lata, D., 2013. Gar net prove nance in mixed first- cycle and poly- cycle heavy- mineral as sem blages of the Ro-pi anka and Menil ite for ma tions (Skole Nappe, Pol ish Flysch Car pa thi ans): con straints from chemi cal com po si tion and grain mor phol ogy. An nales So cie ta tis Ge olo go rum Po lo niae, 83: 161–177.

Ab stract: Gar net in heavy- mineral as sem blages, oc cur ring in sand stones of the Cam panian–Maas trichtian part of the Ropi anka (Late Cre ta ceous–Pa laeo cene) and Menil ite (Oli go cene) for ma tions of the Skole Nappe, is pres ent as first- cycle and poly- cycle grains, de rived from a proxi mal source, re mote ar eas and/or from sedi men tary rocks of the Skole Ba sin fore land. The gar nets in the for ma tions are com po si tion ally simi lar, sug gest ing an ori gin from the same source rocks. Rela tively large amounts of gar net, rep re sented by euhe dral or slightly rounded, weakly etched or unetched al mandine and spessartine- almandine gar net, and mi nor pyrope- enriched al mandine, were de rived di rectly from a source close to the Skole Ba sin. These gar nets are from sedi ments, meta mor phosed at low-to medium- grade con di tions (such as mica- schists, gneis ses) and per haps also gran itic bod ies. Rounded and vari ously etched gar nets, es pe cially high pyrope- almandine and pyrope- almandine- grossular va rie ties, but also partly almandine dominated va rie ties, are sug gested to have been de rived from dis tant sources, such as sedi men tary rocks of the Up per Sile sian and Ma³opol ska blocks. Rocks, form ing up lifted parts of the crys tal line base -ment of Bru no vis tu li cum and/or crys tal line do mains of the Bo he mian Mas sif, could have been pro to liths for part of the almandine- dominated gar net popu la tion, whereas pyrope- grossular- almandine gar nets may origi nate from the granu litic, ec lo gitic or me ta ba sic rocks of the Bo he mian Mas sif. The study shows that analy ses of gar net com po si tion, com bined with ob ser va tions on grain tex tural fea tures and data on the li thol ogy of clasts and peb bles, can per mit the de ter mi na tion of sources for dif fer ent gar net va rie ties in mixed- provenance popu la tions.

Key words: de tri tal gar net, mixed- provenance, pro to lith lo ca tion, flysch, Skole Nappe, Car pa thi ans. Manu script re ceived 18 September 2013, ac cepted 16 December 2013

IN TRO DUC TION

Sed i men tary prov e nance has been the sub ject of con sid er able re search on mod ern and an cient sed i men tary de pos its (e.g., Mange and Wright, 2007). In ves ti ga tors deal ing with mod ern sands have mostly a wide spec trum of min -eral spe cies avail able for anal y ses, which en ables the matching of min eral as sem blages and their ex ist ing source ar eas with a fair de gree of cer tainty. How ever, the iden ti fi ca -tion of min eral prov e nance can be es pe cially dif fi cult and some times im pos si ble for as sem blages, de pleted in diag nostic min eral spe cies, such as am phi bole, pyroxene or ol -iv ine, which are of ten un sta ble dur ing burial diagenesis (e.g., Mor ton and Hallsworth, 1999, 2007). Diagenetic pro cesses are strongly in flu enced by chem i cal and PT con di tions in the bur ied strata (Sevastjanova et al., 2012 and ref -er ences th-erein). Ad di tion ally, the hy drau lic be hav iour of

min er als, de pend ing largely on grain habit and den sity (e.g., Komar and Wang, 1984; Mor ton and Hallsworth, 1999; Hughes et al., 2000; Cascalho and Fradique, 2007), also in flu ences min eral con cen tra tions in sed i ments, mak ing com -par a tive stud ies and prov e nance in ter pre ta tion based on min eral abun dances dif fi cult and un cer tain. The pos si bil ity of mul ti ple sources of heavymin eral as sem blages and re cy -cling, ad di tion ally com pli cates such a study. In such cases, sin gle-grain anal y ses (e.g., Mange and Mor ton, 2007; von Eynatten and Dunkl, 2012), es pe cially of min er als re flect ing protolith com po si tion in their chem is try, bring in valu -able in for ma tion for prov e nance in ter pre ta tions. Gar net is one such min eral, in which the P–T con di tions ex pe ri enced by the orig i nal source rock may be finger printed, mak ing cer tain gar net va ri et ies di ag nos tic for protolith de ter mi na

(2)

-tion (e.g., Deer et al., 1992; Mange and Mor ton, 2007; Win et al., 2007; Aubrecht et al., 2009; Suggate and Hall, 2013).

Stud ies of the flysch de pos its of the Skole Ba sin dem -on strate the chal lenges in es tab lish ing the prov e nance of heavy min er als that may be de pleted in di ag nos tic spe cies, con trolled by depositional pro cesses, and with source rocks not avail able for di rect com par i son. Re cent re search (Salata and Uchman, 2012, 2013) has shown that heavymin eral as -sem blages and so gar net pop u la tions of the Ropianka and Menilite for ma tions have a mixed-prov e nance. Salata and Uchman (2013) have shown ad di tion ally, that a large part of the gar net in both for ma tions rep re sents first-cy cle in put. How ever, a higher pro por tion of gar net, de rived di rectly from crys tal line rocks, is more prob a ble for the Ropianka For ma tion, whereas gar net in the Menilite For ma tion may have been de rived from sed i men tary rocks and pa limp sest/ re cy cled sed i ments (Salata and Uchman, 2013).

This study pres ents a com pi la tion of data on gar net from the Ropianka For ma tion and a com par i son with data on gar net chem i cal com po si tion from the Menilite For ma -tion (partly pub lished in Salata, 2013a) and grain tex tural fea tures. The work at tempts to iden tify gar net protoliths, and the prov e nance of cer tain gar net va ri et ies in sed i ments, de pos ited in the north ern part of the Skole Ba sin.

GEO LOG I CAL BACK GROUND

AND SAM PLING

The Skole Nappe rep re sents the mar ginal, north-east ern part of the Outer Carpathians in Po land. Main ex po sures of it oc cur from the bor der with Ukraine to the Brzesko area but they oc cur also in the area of Wadowice and Radziszów (e.g., Ksi¹¿kiewicz, 1977). It is also pos si ble that south ern pro lon ga tion of the Skole Nappe is rep re sented by the ObidowaS³opnice Unit (¯ytko and Malata, 2001). The north ern edge of the Skole Ba sin was the south ern part of Eu ro pean Plat form. At pres ent, the south ern part of the Skole Ba -sin fore land is deeply bur ied be neath the overthrust of the Carpathian nappes. Thus the Carpathian base ment is known only from a few deep bore holes (e.g., Bu³a and Habryn, 2011).

The area in ves ti gated is lo cated in the north-west ern, mar ginal part of the Skole Nappe (Fig. 1), which in cludes se-diments from Lower Cre ta ceous to Lower Mio cene (Fig. 2). The Late Cre ta ceous–Eocene time in ter val is rep re sented by the Ropianka For ma tion (Up per Cre ta ceous–Palaeo cene; Kotlarczyk, 1978 and ref er ences therein), the Var ie gated Shale For ma tion (Palaeo cene–lower Eocene) and the Eocene Hi ero glyphic For ma tion (Rajchel, 1990). The Oligocene– Lower Mio cene part is com posed of the Menilite and Krosno for ma tions (Kotlarczyk, 1966; Kotlarczyk and Leœniak, 1990).

Sed i ments of the Ropianka For ma tion and Kliva Sand -stone in the study area of the Skole Nappe were sup plied mainly from a north-west ern di rec tion. How ever, the Kliva Sand stone was also sup plied from the north and north-east, to the east of the study area (e.g., Ksi¹¿kiewicz, 1962; Kotlarczyk, 1966, 1976; Œl¹czka and Unrug, 1966; Kotlar-czyk and Leœniak, 1990; Malata and Poprawa, 2006). The

palaeotransport di rec tions (e.g., Ksi¹¿kiewicz, 1962) sug -gest an up lifted area be yond the north-west ern mar gin of the ba sin, which so far has not been con firmed by di rect in ves ti -ga tions. A crys tal line mas sif is sug gested by the peb bles of meta mor phic and ig ne ous rocks, which are clasts in the flysch de pos its. Peb bles of gneiss es, mica-schists, gran ites and vol ca nic rocks were re ported from the Ropianka For -ma tion de pos its of the study area (e.g., Wdowiarz, 1949; Bromowicz, 1974, 1986 and ref er ences therein) and Babica Clay (Fig. 2; Bukowy, 1957; Rajchel and Myszkowska, 1998 and ref er ences therein). Nowak (1963) also re ported por phy ritic andesites and dacites in the Ropianka For ma tion in the Przemyœl and Bircza ar eas. In con trast, ac cord ing to lit er a ture data, the Menilite For ma tion con tains peb bles of dom i nantly sed i men tary rocks and phyllites (Wdowiarz, 1949; Kotlarczyk and Œliwowa, 1963; Kotlarczyk, 1966). Car bon if er ous coal pieces are typ i cal for both the Ropianka For ma tion and Menilite For ma tion. How ever, re cent pre -lim i nary in ves ti ga tions of peb bles, found in the Menilite For ma tion, con firm the pres ence of vol ca nic rocks there as well (Salata, Uchman, Dudek – un pub lished data).

Ac cord ing to sedimentological data, the de pos its of the Ropianka For ma tion rep re sent the ini tial phase of ero sion of the source mas sif, while the Menilite For ma tion strata ac cu -mu lated dur ing a late stage of ero sion (Ksi¹¿kiewicz, 1962; Bromowicz, 1974, 1986). It is also prob a ble that (e.g., Golonka et al., 2006) be fore the north ward thrust ing and ro ta -tion of the Carpathian orogen, the area of the Skole ba sin stud ied here was prob a bly also sup plied with sed i ment, de -rived from the sed i men tary cover of the Ma³opolska and the Up per Silesian blocks.

Sed i ments of the Ropianka For ma tion were de pos ited by tur bid ity cur rents or other den sity-flow cur rents (Kotlar-czyk, 1978), while sed i ments of the Kliva and Boryslav sandstones types of the Menilite For ma tion ac cu mu lated by grav ity flows, mainly in chan nel zones, though sed i ments of this type also may be found out side the main chan nel zones (Kotlarczyk and Leœniak, 1990). Sand stones of the Ro-pianka For ma tion in the study area are com posed mainly of quartz, to gether with feld spars, lithic frag ments and sub or di nate amounts of mica, glauconite and coalified plant de tri tus. The sand stones are mainly sublitharenites, with sub or di nate subarkoses types (Bromowicz, 1974, 1986 and ref er -ences therein). The Kliva and Boryslav sand stones are mostly fine- to me dium-grained and well- to mod er ately-sorted, al though con glom er atic sand stones are also pres ent. The sand stones are quartzdom i nated. Feld spars and mus -co vite are less abun dant and glau-conite is of ten pres ent, but not reg u larly dis trib uted. The sand stones are mostly mas -sive, rarely lam i nated and poorly ce mented (¯giet, 1963; Kotlarczyk, 1966, 1976; Œl¹czka and Unrug, 1966).

The sand stones sam pled are from the Wiar and Lesz-czyny Mem bers (Kotlarczyk, 1978) of the Campanian– Maastrichtian part of the Ropianka For ma tion (Late Cre ta -ceous–Palaeo cene) and the Kliva and Boryslav sand stones mem bers of the Menilite For ma tion (Oligocene; Fig. 2). The de pos its were sam pled south-east of Rzeszów (the Me-nilite For ma tion) and south-east of £añcut (the Ropianka and Menilite for ma tions; Fig. 1). The Boryslav and Kliva sandstones types of the Menilite For ma tion were sam pled

(3)

Fig. 1. Geo log i cal maps with lo ca tions of pro files sam pled for heavy-min eral anal y ses. A. Sampled lo cal i ties of the Boryslav and Kliva sand stones of the Menilite For ma tion. B. Sampled lo cal i ties of the Ropianka For ma tion sand stones (Salata and Uchman, 2013 mod i fied; part A based on Kotlarczyk and Leœniak, 1990; part B based on Wdowiarz, 1949, with mod i fied de scrip tion of lithostratigraphic units)

(4)

fol low ing chiefly the Rzeszów and £añcut chan nel zones (Kotlarczyk and Leœniak, 1990). For the de tailed sam pled pro files of the Ropianka and Menilite for ma tions see Salata and Uchman (2012, 2013).

RE SEARCH METH ODS

As the sand stones sam pled were very weakly con sol i -dated, they were only gently dis in te grated and washed with wa ter to re move the clay frac tion. Then the sam ples were sieved, us ing a me chan i cal shaker. Heavy min er als were sep a rated by grav i ta tional set tling from the frac tion of 0.063–0.25 mm, which best rep re sented the heavy min eral spec trum, us ing so dium polytungstate of den sity 2.9 g/cm3. Mor phol ogy, microtextures and solid in clu sions of the gar -net grains were stud ied in 100 grains (for each for ma tion sam pled), hand-picked un der a stereomicroscope, us ing a HITACHI S4700 Field Emis sion Scan ning Elec tron Mi

-cro scope in the Lab o ra tory of Field Emis sion Scan ning Elec tron Mi cros copy and Microanalysis, at the In sti tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity. The chem i cal com po si tion of the gar nets was stud ied in pol ished and car -bon-coated grain mounts, us ing a Cameca SX-100 elec tron microprobe (EMP), op er ated in a wave length-dis per sion (WDS) mode, at the Joint-In sti tute An a lyt i cal Com plex for Min er als and Syn thetic Sub stances of War saw Uni ver sity. The WDS an a lyt i cal con di tions com prised a 15 kV ac cel er -at ing volt age, a 20 nA beam cur rent and a fo cused beam. The fol low ing, syn thetic and nat u ral min eral stan dards were used for cal i bra tion: Si and Mg (di op side), Al (orthoclase), Cr (Cr2O3), Ti (rutile), Fe (Fe2O3), Mn (rhodo nite), and Ca

(wollastonite). Sin gle-spot anal y ses were per formed on 120 grains of the Ropianka For ma tion and 140 grains from the Menilite For ma tion. Ad di tion ally, 27 grains from the Ropianka For ma tion and 21 grains from the Menilite For ma -tion were ana lysed in tra verses to check the composi-tional vari abil ity across the grains. The gar net for mu las were cal -cu lated on the ba sis of 24 ox y gen at oms. The Fe3+ con tent was not mea sured, but the Fe2+/Fe3+ ra tio was cal cu lated by stan dard charge bal ance, as sum ing full-site oc cu pancy. The mo lec u lar gar net end-mem bers were com puted, us ing the Ex cel spread-sheet de vel oped by Locock (2008). To ob tain com pa ra ble data and con struct suit able fields on prov e nance di a grams, the same pro ce dure was em ployed for gar net com po si tion from the lit er a ture, if the Fe con tent was given only as FeOtot.

RE SULTS AND DIS CUS SION

Gar net con tent and habit

Gar net is a sig nif i cant com po nent of heavymin eral as -sem blages in both of the for ma tions stud ied, but the con tent is lower and gar net is more uni formly dis trib uted in the Menilite For ma tion (MF) than in the Ropianka For ma tion (RF) (Fig. 3). Gar net com prises 2–47% (mean value = mv = 21%) and 0–25% (mv = 11%) in the Ropianka and Menilite for ma tions re spec tively (Fig. 3). Ex cept gar net, the main con stit u ents of the heavy min eral as sem blages in both for -ma tions are zir con (mv: RF – 27%; MF – 18% ), tour -ma line (mv: RF – 19%; MF – 20%), rutile (mv: RF – 17%; MF – 20% ), less abun dant staurolite (mv: RF – 9%; MF – 16%) and kyan ite (mv: RF – 4%; MF – 14% ). Ap a tite is com mon in the Ropianka For ma tion, while it is al most ab sent in the Menilite For ma tion. Con versely, the lat ter con tains small amounts of an da lu site, which is not pres ent in the Ropianka For ma tion. Epidote, monazite, Cr-spinel and brookite oc cur oc ca sion ally as sin gle grains in in di vid ual sam ples (Salata and Uchman, 2012, 2013). One dark green am phi bole grain was found in the Ropianka For ma tion (Salata and Uchman, 2013).

The zir con–tour ma line–rutile in dex value (ZTR; Hu-bert, 1962) var ies widely from 27 to 95% (mv = 63%) and 29–55% (mv = 43%) in the Ropianka and Menilite for ma -tions, re spec tively. The higher value of the ZTR in dex in the Ropianka For ma tion re sults mainly from higher zir con abun dances, com pared to the Menilite For ma tion (Salata and Uchman, 2013).

Fig. 2. Strati graphic scheme of the Skole Nappe (based on Ko-tlarczyk, 1978; Gasiñski and Uchman, 2009 and ref er ences the-rein) with in di ca tion of the stud ied time in ter vals of the Ropianka and Menilite for ma tions (grey rect an gles). Ab bre vi a tions: Fm – for ma tion; Mb – mem ber; Ss – sand stone; TRShMb – Trójca Red Shale Mem ber; VSh – Var ie gated Shale; ChSMb – Chmielnik Striped Sand stone Mem ber

(5)

There is a strong neg a tive cor re la tion be tween the ZTR value and gar net con tent (Pearson’s cor re la tion co ef fi cient – r = –0.90) for the Ropianka For ma tion. The gar net con tent in creases as the ZTR value de creases. The cor re la tion of ZTR and gar net con tent in the Menilite For ma tion is also neg a tive, but the cor re la tion is weak (r = –0.37; Salata and Uchman, 2013).

Gar net in both for ma tions is pres ent, mostly as ir reg u -lar, bro ken grains, but un bro ken, vari ably rounded and euhedral grains may also be found. Both gar net frag ments and whole grains are vari ably cor roded. The etch ing var ies from very weak to ad vanced, and is re flected mostly as etch- pits, sur face mamillae and small- and large-scale fac ets on gar net sur faces. Some of the cor ro sion marks are vis i ble on smoothed grain sur faces (Fig. 4). Gar net grains are pre dom -i nantly colour less or pale p-ink -in trans m-it ted l-ight. Less com monly, they are salmon-pink and a few grains are dark pink. Rare green gar net grains are also pres ent (Salata and Uchman, 2012, 2013).

Gar net com po si tion

In both for ma tions stud ied, the gar net pop u la tions are very sim i lar, not only in col our and habit, but also in terms of their chem i cal com po si tion. They also dis play sim i lar compositional vari abil ity, in terms of the mo lec u lar pro por -tions of the pyralspite gar net end-mem bers: pyrope (Prp), almandine (Alm) and spessartine (Sps). Grossular (Grs) is the most sig nif i cant rep re sen ta tive of the ugrandite se ries, while con tents of the re main ing mol e cules are low (Fig. 5; Ta bles 1 and 2). On the ba sis of the four gar net endmem -bers men tioned, sev eral compositional va ri et ies of gar net may be dis tin guished:

– grossular-dom i nated (Grs 82–94 mol%) gar nets are un- com mon and only sin gle grains were found in each for ma tion;

– spessartine-dom i nated (Sps = 64 mol%): only two grains of this com po si tion were found in the Menilite For -ma tion;

– pyrope-almandine-grossular (Prp 25–35 mol%, Alm 39–56 mol%, Grs 21–33 mol%) ranges from 1.5% to 5% of gar net pop u la tions in the Ropianka and Menilite for ma tions re spec tively;

– grossular-almandine (Grs 20–36 mol%, Alm 52–72 mol%, while Prp + Sps < 15 mol%); such gar net com prises 3.5% and 9% of the gar net pop u la tions in the Ropianka and Menilite for ma tions re spec tively;

– pyrope-almandine (Prp 20–45 mol%, Alm 44–75 mol%, with Sps + Grs + Adr < 15 mol%) con sti tut ing 16% of the gar net pop u la tion in the Ropianka For ma tion and 33% in the Menilite For ma tion;

– spessartine-almandine (Sps 22–53 mol%, Alm 32–67 mol%, with Prp + Grs + Adr < 20 mol%); com pris ing 26% of the gar net pop u la tion in the Ropianka For ma tion and 8% in the Menilite For ma tion;

– almandine (Alm > 60mol%; Prp + Sps < 20mol%, Grs + Adr < 15 mol%); this gar net va ri ety is the most abun -dant and typ i cal for both for ma tions. It con sti tutes 53% and 44% of the gar net pop u la tion of the Ropianka and Menilite for ma tions re spec tively.

Al though the gar net com po si tions are very sim i lar in both for ma tions, there is a no tice able dif fer ence in abun -dance of some gar net types. The con tri bu tion of gar net, rich in pyrope and grossular, is lower in the older sed i ments of the Ropianka For ma tion, which con tain higher num bers of almandine and spessartine-almandine gar nets, com pared to the youn ger Menilite For ma tion de pos its. The dif fer ence in abun dance of gar net va ri et ies may re flect a change in source area li thol ogy, re lated to pro gres sive ero sion. How ever, this fea ture may be an ef fect of burial diagenesis, lead ing to de ple tion in the less sta ble gar net va ri et ies in the older sed i -ments, which causes a rel a tive en rich ment in almandine-rich gar net.

There is also sig nif i cant etch ing and round ing. Round ing and the ef fects of dis so lu tion pro cesses ad vanced to dif -fer ent de grees were ob served on grains of all of the gar net compositional types men tioned above, re gard less of their

Fig. 3. Abun dance of gar net in heavy-min eral as sem blages of the Ropianka and Menilite for ma tions (based on Salata and Uchman, 2012, 2013)

(6)

chem i cal com po si tion. How ever, the euhedral gar nets, which are weakly etched or not etched, are pre dom i nantly almandine or spessartine-almandine va ri et ies. Ad di tion ally, frag ments of almandine or spessartine-almandine va ri et ies com monly have unetched frac ture planes, in con trast to other

gar net types. Only one slightly rounded grain of pyrope-almandine (Prp < 30mol%) was found (Fig. 4).

The gar nets ana lysed pre dom i nantly did not dis play chem i cal change across the grains. Only one grain of gro-ssular gar net showed slight changes (rim-to rim change Ta ble 1 Se lected sin gle-spot anal y ses of gar nets from the Ropianka and Menilite for ma tions of the Skole Nappe.

Ox ides in [wt%], mo lec u lar gar net end-mem bers in [mol%]

Menilite Formation 12 28 148 22 18 8 32 43 16a 10 1 16b 31 25 5 SiO2 40.53 37.95 38.11 36.72 38.41 39.21 37.03 36.71 37.50 38.72 38.00 36.23 37.41 37.09 37.61 TiO2 b.d.l. 0.09 b.d.l. 0.02 0.06 0.13 0.22 b.d.l. 0.16 0.33 b.d.l. 0.04 0.15 0.13 0.05 Al2O3 21.64 21.84 20.31 21.04 22.35 22.61 20.62 19.27 21.67 19.90 21.79 20.71 21.34 20.54 21.37 Cr2O3 b.d.l. 0.05 b.d.l. b.d.l. 0.05 b.d.l. 0.03 b.d.l. 0.03 b.d.l. 0.02 0.02 0.01 b.d.l. 0.06 Fe2O3calc 0.00 0.00 0.54 0.34 0.06 0.42 2.94 2.04 0.00 3.52 0.79 1.71 1.61 1.53 0.63 MgO 11.59 4.52 1.25 1.83 8.34 7.58 2.15 0.25 3.79 0.03 4.88 1.39 2.17 0.93 4.76 FeOre-calc 21.09 28.45 23.46 37.98 29.28 19.14 4.03 24.94 35.36 3.33 29.94 33.63 26.97 33.44 31.08 MnO 0.02 1.10 3.17 0.12 0.48 0.47 29.32 9.91 0.05 0.34 1.27 6.70 3.41 1.98 0.55 CaO 5.02 5.62 13.01 2.00 1.06 10.83 5.39 6.61 2.06 33.46 4.30 0.36 8.25 5.76 3.83 Total 99.89 99.61 99.80 100.01 100.08 100.36 101.53 99.55 100.61 99.59 100.91 100.62 101.16 101.31 99.86 Schorlomite-Al. - 0.1 - 0.1 0.2 0.4 0.7 - 0.5 1.0 - 0.1 0.4 0.4 0.2 Majorite 3.3 - 3.2 - - - - 0.7 - - - -Uvarovite - 0.2 - - 0.2 - 0.1 - 0.1 - 0.1 0.1 - - 0.2 Spessartine - 2.5 7.1 0.3 1.0 1.0 66.8 22.9 0.1 0.7 2.8 15.7 7.7 4.5 1.2 Pyrope 39.3 18.0 0.7 7.4 32.3 28.8 8.6 0.1 15.1 0.1 19.2 5.7 8.6 3.7 18.8 Almandine 44.6 63.5 52.0 86.5 63.7 40.7 9.1 57.0 78.9 7.1 65.9 77.1 60.1 75.2 69.0 Grossular 12.8 15.8 35.3 5.8 2.6 29.1 10.2 13.0 5.3 81.1 12.1 - 21.6 13.0 10.2 Andradite - - 1.6 - - - 4.5 6.3 - 9.9 - 1.3 1.4 3.2 0.4 Ropianka Formation 11 28 11 39 50 10a 179 177 12 28 10b 12 27 22 52 SiO2 39.21 36.77 36.59 36.98 37.14 36.67 37.24 37.49 39.12 36.77 36.74 39.12 37.50 36.66 38.78 TiO2 0.42 0.03 0.20 0.03 0.06 0.38 0.06 0.04 0.38 0.03 0.13 0.38 0.18 0.01 0.08 Al2O3 22.13 19.31 20.44 19.89 19.82 20.57 19.67 19.94 21.93 19.31 20.37 21.93 20.96 20.50 21.16 Cr2O3 0.13 0.01 0.06 0.01 0.03 0.03 0.04 0.06 0.11 0.01 b.d.l. 0.11 0.02 0.04 0.04 Fe2O3calc 0.41 2.43 2.02 0.94 1.57 1.07 1.17 0.67 0.00 2.43 1.03 0.00 1.08 0.69 0.21 MgO 11.96 0.58 4.01 1.19 2.22 0.92 1.71 2.18 11.71 0.58 1.89 11.71 3.43 2.61 7.72 FeOre-calc 24.02 26.43 31.30 40.25 14.26 24.72 14.99 30.26 23.97 26.43 22.29 23.97 24.28 29.10 29.97 MnO 0.38 8.23 0.64 0.91 22.89 7.60 22.84 8.28 0.31 8.23 13.75 0.31 0.95 8.85 0.61 CaO 1.20 6.40 3.77 0.74 2.39 7.90 2.67 1.82 1.39 6.40 3.49 1.39 10.65 0.89 1.65 Total 99.86 100.20 99.02 100.94 100.37 99.87 100.39 100.73 98.92 100.20 99.67 98.92 99.03 99.34 100.22 Schorlomite-Al. 1.2 0.1 0.6 - - 1.2 - - 0.4 0.1 0.4 0.4 0.5 - -Morimotoite - - - 0.2 0.3 - 0.4 0.2 0.3 - - 0.3 - - 0.5 Majorite - - - 1.4 0.3 - 1.9 2.7 - - - 1.8 Uvarovite 0.4 - 0.2 - 0.1 0.1 0.1 0.2 0.3 - - 0.3 0.1 0.1 0.1 Spessartine 0.8 18.9 1.5 2.1 52.3 17.4 52.3 18.9 0.7 18.9 31.6 0.7 2.1 20.4 1.3 Pyrope 45.1 2.3 16.3 2.9 8.4 3.7 4.3 5.2 44.8 2.3 7.6 44.8 13.6 10.6 27.5 Almandine 50.8 60.1 71.3 90.5 32.0 55.9 33.7 68.0 51.3 60.1 50.6 51.3 54.0 66.4 64.9 Grossular 0.8 11.2 7.0 - 1.7 19.5 3.7 2.8 2.2 11.2 7.2 2.2 27.6 1.0 3.4 Andradite 0.8 7.3 3.2 2.9 4.8 2.2 3.6 2.1 - 7.3 2.6 - 2.1 1.5 0.6

(7)

<5mol%) in grossular and an dra dite con tent (Tab. 2). Almandine or spessartineen riched almandine gar nets typ i -cally con tain in clu sions of quartz, rutile and Fe-Ti ox ides, less fre quent xeno time and oc ca sion ally feld spar (Fig. 6). Grossular and pyropeen riched gar nets con tain ap a tite in -clu sions.

Protolith com po si tion

A num ber of di a grams have been used to link gar net chem i cal com po si tion to the li thol ogy of their source rocks. Among them are sin gle ter nary plots (e.g., Mange and Mor -ton, 2007; Méres et al., 2012) and dou ble-ter nary di a grams Ta ble 2 Se lected rim-to-rim anal y ses of gar nets from the Ropianka and Menilite for ma tions of the Skole Nappe.

Ox ides in [wt%], mo lec u lar gar net end-mem bers in [mol%]

Menilite Formation

grt13-2 grt2-4 grt4-2 grt9-4

rim core rim rim core rim rim core rim rim core rim SiO2 39.42 39.44 39.42 36.95 36.77 36.88 37.26 36.86 37.08 36.39 36.35 36.33 TiO2 0.03 0.04 0.01 b.d.l. 0.03 b.d.l. 0.08 0.15 0.05 0.02 0.20 b.d.l. Al2O3 21.62 21.54 21.51 20.15 20.17 20.18 20.05 19.78 2b.d.l. 19.58 19.52 19.83 Cr2O3 0.05 0.08 0.07 0.01 0.01 0.02 0.02 0.05 b.d.l. b.d.l. b.d.l. b.d.l. Fe2O3calc 1.01 1.10 1.04 1.81 1.43 1.27 1.32 1.95 1.18 1.69 1.64 1.84 MgO 11.48 11.43 11.54 2.44 2.47 2.41 2.11 2.24 2.06 1.05 1.09 0.96 FeOre-calc 24.66 24.43 24.59 27.17 27.34 27.28 26.43 25.68 26.23 31.67 31.68 31.64 MnO 0.34 0.46 0.35 11.38 10.96 11.19 11.63 11.69 11.77 8.89 8.92 8.96 CaO 1.34 1.51 1.28 0.88 0.90 0.92 2.07 2.11 2.00 0.77 0.77 0.79 Total 99.93 100.01 99.81 100.78 100.07 100.14 100.97 100.52 100.37 100.06 100.15 100.35 Schorlomite-Al. 0.1 0.1 - - 0.1 - - 0.5 - 0.1 0.5 -Morimotoite 0.1 0.1 0.1 - - - 0.5 - 0.3 - 0.3 -Majorite - - 0.2 - - - 0.3 - 0.5 - - -Uvarovite 0.1 0.2 0.2 - - 0.1 0.1 0.2 - - - -Spessartine 0.7 1.0 0.7 26.1 25.2 25.7 26.5 26.8 26.9 20.7 20.7 20.9 Pyrope 43.4 43.2 43.4 9.9 1- 9.8 8.1 9.0 7.6 4.3 4.4 3.9 Almandine 52.3 51.7 52.2 59.7 61.1 61.0 59.2 58.1 59.2 69.9 69.0 70.8 Grossular 0.5 0.5 0.2 - - - 1.4 - 1.9 - - -Andradite 2.9 3.2 3.0 4.3 3.5 3.5 4.0 5.5 3.6 5.0 5.1 4.3 Ropianka Formation grt5-4 grt10-4 grt2-4 grt 5-1

rim core rim rim core rim rim core rim rim core rim SiO2 39.39 39.67 39.27 37.27 37.22 37.41 39.86 39.85 39.64 37.40 37.26 37.37 TiO2 0.06 0.02 0.03 b.d.l. 0.10 0.04 0.38 0.43 0.41 b.d.l. 0.01 b.d.l. Al2O3 21.58 21.43 21.51 19.84 19.85 20.01 20.51 19.93 19.79 20.38 20.06 20.41 Cr2O3 0.06 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.01 b.d.l. 0.01 b.d.l. b.d.l. Fe2O3calc 0.00 0.26 0.91 1.37 1.39 0.91 1.91 2.58 3.16 1.04 0.60 1.14 MgO 10.32 10.55 10.50 1.99 2.36 1.89 0.07 0.15 0.14 2.34 2.35 2.16 FeOre-calc 27.28 27.23 26.80 15.43 15.78 15.62 0.41 0.91 0.78 32.29 32.28 32.41 MnO 0.34 0.29 0.37 21.00 21.06 21.27 0.06 0.11 0.14 6.15 6.12 6.24 CaO 0.76 0.87 0.85 3.37 2.55 3.30 37.01 36.49 36.37 1.59 1.49 1.64 Total 99.78 100.31 100.24 100.27 100.31 100.46 100.21 100.46 100.43 101.19 100.17 101.38 Schorlomite-Al. - - - -Morimotoite 0.4 0.1 0.2 - 0.6 0.3 2.2 2.5 2.3 - 0.1 -Majorite 1.2 2.8 0.3 1.3 0.7 1.8 - 0.1 0.3 0.4 2.2 -Uvarovite 0.2 - - - -Spessartine 0.7 0.6 0.8 47.9 48.0 48.5 0.1 0.2 0.3 13.9 14.0 14.2 Pyrope 37.8 36.4 39.5 6.3 8.6 5.2 0.3 - 0.1 8.8 6.5 8.6 Almandine 58.7 57.9 56.6 34.8 35.4 35.1 - 1.1 0.9 72.3 73.0 72.5 Grossular 0.9 1.5 - 5.6 2.5 6.5 91.9 88.6 87.1 1.4 2.4 1.3 Andradite - 0.8 2.6 4.2 4.2 2.8 5.5 7.4 9.0 3.2 1.8 3.5

(8)

Fig. 4. SEM pho to graphs show ing var i ous de gree of round ing and cor ro sion fea tures of cer tain gar net va ri et ies oc cur ring in the Ropianka and Menilite for ma tions. Almandine. A. Euhedral, not-etched grain. B. Euhedral grain with large-scale fac ets. C. Subrounded grain with large-scale fac ets and etch-pits. D. Rounded grain with mamillae and etch-pits. E. Frag ment with smooth frac ture planes and a crys tal face with in cip i ent etch ing. F. Se verely cor roded grain; spessartine-almandine. G. Euhedral, not-etched grain. H. Grain with large-scale fac ets. I. Rounded grain with smooth sur face and ear lier etch-pits. J. Grain with large-scale fac ets. K. A frag ment with small-scale im bri cate wedge marks and etch-pits; pyrope-almandine (Prp<30mol%). L. Subrounded, unetched grain. M. A frag ment with smooth, al most not-etched sur face. N. A frag ment with smooth frac ture-planes and sur faces with mamillae and etch-pits. O. Rounded grain with sur face mamillae and gaps pos si bly af ter in clu sions; pyrope-almandine-grossular. P. Grain with rounded edges, nu mer ous etch-pits and sur face mamillae. R. Rounded grain with nu mer ous etch-pits; grossular-almandine. S. A grain with rounded edges and smoothed, ear lier cor ro sion fea tures. T. Se verely cor roded grain. U. A frag ment with large-scale im bri cate wedge marks. Com po si tion of gar net re fers to gar net compositional types dis tin guished in the text. Ab bre vi a tions: Alm – almandine; Grs – grossular; Prp – pyrope; Sps – spessartine

(9)

(Suggate, 2011, vide Sevastjanova et al., 2012) with dif fer ent api ces of tri an gles and protolith fields. Gar net com po si -tion also may be an in di ca tor of meta mor phic grade (see Win et al., 2007; Andà et al., 2013). How ever, there are

some ubiq ui tous gar net va ri et ies, such as almandine, com mon in var i ous lithologies, for which clear protolith iden ti -fi ca tion is of ten im pos si ble. Re cently pub lished di a grams, con structed us ing 2500 gar net anal y ses (Suggate and Hall,

Fig. 5. Dis tri bu tion of points, re flect ing pro por tions of main end-mem bers of the gar net ana lysed in the ter nary plot, show ing fields typ i cal for gar net orig i nat ing from var i ous protoliths (ter nary di a grams adapted from Suggate and Hall, 2013). Ab bre vi a tions: Adr – an -dra dite; Sch – schorlomite; other ab bre vi a tions as in Fig. 4

(10)

2013) pro vide a new ap proach and of fer good res o lu tion in de fin ing protolith types in gar net prov e nance stud ies.

Grossular gar net most likely orig i nates from im pure calcareous rocks, such as calc-sil i cates, skarns, and ro din-gites, formed dur ing ther mal or re gional meta mor phism (Fig. 5). The protoliths for the spessartine and spessartine-almandine va ri et ies are com monly gran ites and gra nitic pegmatites (Fig. 5), though gar net of such a com po si tion was also re ported from skarn de pos its (Deer et al., 1992). Pyrope-almandine-grossular and pyrope-almandine gar nets are typ i cal of granu lites, eclogites and ultrabasic rocks such

as peri dot ites and sub-ophiolitic rocks (Fig. 5). Almandine gar net, com monly dis tin guished in the pop u la tions stud ied here, is wide spread in var i ous meta mor phosed rocks and may orig i nate from am phi bo lites (Fig. 5) or other rocks of low- to me dium-grade meta mor phic fa cies, such as metapelites, gneiss es and micaschists (Deer et al., 1992). Un for -tu nately, some fields de not ing granu lites, blueschists, ul tra-basites and sub-ophiolitic rocks over lap with each other and ad di tion ally with the field of am phi bo lites in the di a grams used for de fin ing the protolith (Fig. 5). This makes the de -ter mi na tion of source li thol ogy un cer tain with out fur ther ev i dence. Metapelitic and gra nitic or i gin dis plays also tour ma line, in clud ing euhedral grains, oc cur ring in both for ma -tions stud ied (Salata, 2013a, 2014).

In the for ma tions stud ied here, there are no data, e.g., an abun dant chromian-spinel pres ence, sug gest ing der i va tion of the heavy-min eral as sem blages from ophiolitic rocks or ultrabasites. More over, the dis tri bu tion of points show ing gar net com po si tion in di cates that they were formed over a wide range of meta mor phic con di tions, span ning from low P/T to eclogite fa cies (Fig. 7), con firm ing the lithological di ver sity of their source rocks. Gar net col our may also aid in de ter min ing gar net protolith. The dom i nance of colour -less and pink ish gar net va ri et ies sug gests its prov e nance mainly from rocks of am phi bo lite- and granulite-fa cies (Andà et al., 2013), as in di cated by gar net com po si tions.

With re gard to gar net col our, com po si tion and the abun dance of dif fer ent gar net va ri et ies, it may be con cluded that most gar nets were de rived from rocks, formed un der me -dium-grade meta mor phic con di tions, less fre quently from granulite fa cies and gra nitic rocks, and a mi nor ity from high-grade metabasic rocks. In di vid ual grains of grossular were de rived from meta mor phosed calc-sil i cate rocks or skarns, prob a bly de vel oped in the con tact zone with an in tru sive ig -ne ous body.

Prov e nance con straints and protolith mas sifs lo ca tion

The heavymin eral as sem blages which con tain the gar nets stud ied, show fea tures that in di cate mix ing of firstcy -cle and poly-cy -cle grains. These in clude dif fer ent de grees of round ing and etch ing, which af fect not only gar net (Fig. 4), staurolite and kyan ite but also min er als re sis tant to abra -sion and diagenesis such as zir con, tour ma line and rutile

Fig. 6. Typ i cal min eral in clu sions pres ent in gar net grains of par tic u lar com po si tions. Com po si tion of gar net re fers to gar net compositional types dis tin guished in the text. Ab bre vi a tions: Rt – rutile; Qz – quartz; Fe-Ti Ox – Fe-Ti ox ides; Fsp – feld spar; Xtm – xeno time; other ab bre vi a tions as in Fig. 4. SEM im ages

Fig. 7. Meta mor phic grade of crystallisation of gar net stud ied. Points lo cat ing in the field of gran ites in Fig. 5 are ex cluded (di a -gram adapted from Win et al., 2007)

(11)

(Salata and Uchman, 2012, 2013). While etch ing is clearly the ef fect of burial diagenesis, round ing may be formed by me chan i cal abra sion or diagenetic dis so lu tion, both of which could have in flu enced the gar net pop u la tions pres ent in the de pos its stud ied. There fore, in the case of re cy cled grains, it is not clear, which pro cess caus ing round ness was cru cial, as round ing also may be in her ited from pre vi ous sed i men -tary en vi ron ment. Fre quently, it is only pos si ble to find proof of the fi nal pro cess. How ever, etch ing de vel oped on rounded grain sur faces was even tu ally formed by diagenesis (Fig. 4D), whereas rounded grains with smoothed sur faces and with out prom i nent etch ing (Fig. 4I) most prob a bly formed fi nally by me chan i cal abra sion. Some of the cor ro sion etchpits and fac ets vis i ble on gar net grains may rep re sent early stages of sed i men ta tion or (in the case of re cy -cled grains) may be in her ited from pre vi ous sed i men tary en vi ron ment, since they are vis i ble on smooth sur faces and are smooth them selves (Fig. 4I, R, S).

The mixed-prov e nance char ac ter of grains is sup ported by the lithologies of the peb bles oc cur ring in the de pos its stud ied; these in clude crys tal line and sed i men tary rocks (e.g., Kotlarczyk and Œliwowa, 1963; Bromowicz, 1974, 1986; Rajchel and Myszkowska, 1998).

The mixed char ac ter of the as sem blages stud ied causes dif fi cul ties in lo cat ing protoliths for cer tain gar net types of the pop u la tions. The dif fer ent de grees of round ness and va-riable amount of etch ing of the gar nets sug gest that some gar net grains in both for ma tions were de rived di rectly from crys tal line source rocks, prox i mal or dis tant, and some were de rived from the sed i men tary cover of the Skole Ba sin fore

-land. The rounded and highly etched grains also may have been de rived from meta sedi ments. There is a large sim i lar ity of gar net pop u la tions in the Ropianka and Menilite for -ma tions. How ever, re cent work by Salata and Uchman (2013) has shown that the Ropianka For ma tion con tains larger amounts of first-cy cle gar net, com pared to the Meni-lite For ma tion, whereas gar nets in the MeniMeni-lite For ma tion, may have been re cy cled to a rel a tively larger ex tent, than those in the Ropianka For ma tion. Con sid er ation of the poly- cy cle prov e nance of some of the gar nets stud ied raises the ques tion of whether gar net can sur vive two cy cles of sed i -men ta tion or long trans por ta tion. Gar net is gen er ally regarded as a mod er ately sta ble min eral (e.g., Mange and Mau -rer, 1992; Mor ton and Hallsworth, 1999, 2007; Mange and Mor ton, 2007 and ref er ences therein). Min er als con sid ered less sta ble, such as ol iv ine, may sur vive abra sion dur ing ex -tremely long trans port dis tances (see Mor ton and Hallsworth, 1999 and ref er ences therein) and there fore longdis tance trans por ta tion seems un likely to in flu ence gar net pres -er va tion. More ov-er, the study by Sevastjanova et al. (2012) showed that min er als, re garded as un sta ble, sur vived trans -port and some of them also sur vived re cy cling in a trop i cal cli mate. How ever, the sur vival of gar net, es pe cially if it was deeply bur ied, may de pend on its chem i cal com po si tion. For ex am ple, grossular-rich va ri et ies are con sid ered to be less sta ble than almandine-rich gar net (Mor ton, 1984, 1987). There fore, the less sta ble gar net va ri et ies could have been dis solved dur ing burial diagenesis, prior to sed i ment de po si tion in the Skole Ba sin, even if they had sur vived ear -lier trans por ta tion or recycling.

Fig. 8. Sketch-map, show ing as sumed lo ca tion of protoliths for gar nets from the Ropianka and Menilite for ma tions (Salata, 2013a mod i fied; based on Bu³a and ¯aba, 2008 and ¯elaŸniewicz et al., 2011): 1– prox i mal source lo cated in the north ern vi cin ity of the Skole Ba sin mar gin; 2 – crys tal line base ment of Brunovistulicum; 3 – Bo he mian Mas sif do mains

(12)

Euhedral crys tals and slightly rounded grains, dis play ing few ef fects of diagenetic dis so lu tion, ob vi ously rep re -sent the first-cy cle gar net pop u la tion. Such grains may have been de rived from an up lifted source area (point 1 in Fig. 8; e.g., the socalled North ern Mar ginal Cor dil lera in older lit -er a ture), the ex is tence of which at the north -ern mar gin of the Skole Ba sin is doc u mented by palaeocurrent dis tri bu tion pat terns (e.g., Ksi¹¿kiewicz, 1962; Unrug, 1979). The al-mandine or spessartine-alal-mandine com po si tion of euhedral gar net in di cates, that its source rocks could have been gneisses and micaschists, formed un der me diumgrade meta -mor phic con di tions, and also gra nitic rocks. The min er als oc cur ring with gar net in the heavy-min eral as sem blages stud ied are typ i cal of meta sedi ments, formed un der me diumgrade meta mor phic con di tions. The crys tal line base ment of the Ma³opolska Block, pen e trated by bore holes be -neath de pos its form ing the Skole Nappe, can not be the pro-tolith of such min eral as sem blage, since it is com posed of anchimetamorphic rocks (Bu³a and Habryn, 2011). The pres ence of me dium-grade meta mor phic and ig ne ous rocks un der the Carpathian overthrust so far has not been confirmed by di rect ob ser va tions, but it is ev i denced by meta mor -phic and ig ne ous rock clasts and peb bles.

The lo ca tion of protoliths for the suite of rounded gar -net grains stud ied is much more prob lem atic and com plex. The di ver sity of com po si tion of the rounded and etched grains sug gests ei ther di verse lithologies in a sin gle source area or der i va tion from dif fer ent source ar eas. As dis cussed above, the rounded gar net com po si tions sug gest der i va tion from gra nitic rocks and me dium to highgrade meta mor -phic rocks, such as gneiss es, mica-schists, am phi bo lites, granu lites and ultrabasites. How ever, there is no ev i dence from the ex otic clasts and peb bles, found in the Ropianka and Menilite for ma tions, for high-grade meta mor phic rocks, such as granu lites and eclogites, or ultra mafic bod ies, in the source mas sif at the north ern mar gin of the Skole Ba -sin. There fore, gar nets orig i nat ing from such lithologies must have been eroded from an other source, which could be dis tant and/or sed i men tary. The ar eas, con tain ing rocks with lithologies in di cated by gar net com po si tion, which may be con sid ered as re mote sources, are the crys tal line base ment of Brunovistulicum (point 2 in Fig. 8) and the Variscan internides of the Bo he mian Mas sif (point 3 in Fig. 8). Mica-schists, gneiss es and am phi bo lites, formed un der green-schist to am phi bo lite fa cies con di tions, con tain ing gar net (e.g., Burtan, 1962; Heflik and Konior, 1972, 1974; Górska and Heflik, 1975), iden ti fied as almandine (Heflik and

Konior, 1974; Górska and Heflik, 1975), are known from bore -holes drilled into the Pre cam brian crys tal line base ment of Brunovistulicum in the area of Bielsko-Bia³a (see Moryc and Heflik, 1998; Bu³a and ¯aba, 2008). The Pre cam brian crys tal line rocks are el e vated in the south ern part of the Bielsko-Andrychów Mas sif (sit u ated cur rently un der the Carpathian overthrust), where they are over lain di rectly by Mio cene strata (Bu³a et al., 2004). They are also up lifted and cov ered by Mid dle Ju ras sic de pos its, in the Rzeszotary Horst (Burtan, 1962; Pelczar and Wieser, 1962; Heflik and Konior, 1972, 1974; Konior, 1974; Bu³a et al., 2004). The Bo he mian Mas sif crys tal line do mains, in turn, are built of var i ous meta mor phic and gra nitic rocks, which are well re -cog nised and widely stud ied in nat u ral ex po sures (e.g., Mazur et al., 2006 and ref er ences therein). The rocks con -tain gar net, which is sim i lar in com po si tion to the gar net ana lysed in this study. The almandine and spessartine-rich gar net va ri et ies are sim i lar in com po si tion to gar net from var i ous metapelites, gneiss es and mica-schists, ex posed in the Moravo-Silesian, Moldanubian and Lugian zones of the Bo he mian Mas sif (Fig. 9). Pyrope- and grossular-rich almandine are compositionally sim i lar to the gar net, oc cur -ring in metabasites and granu lites of the Moldanubian Zone and Sudetes (Fig. 9).

Other crys tal line mas sifs, with rocks in di cated by the chem i cal com po si tion of the gar nets ana lysed, are not known in the upflow di rec tion for palaeocurrents, re corded from the Ropianka and Menilite for ma tions. More over, it has been doc u mented, that the Variscan internides of the Bohemian Mas sif are the most prob a ble sources of the clas-tic ma te rial in Up per Car bon if er ous de pos its of the Up per Silesian Block (Paszkowski et al., 1995; Kusiak et al., 2006). The Bo he mian Mas sif do mains and the el e vated parts of the base ment of Brunovistulicum could also have been sources for the clastic infill of the Ju ras sic pre-Callo-vian palaeokarst in the Czatkowice quarry (Salata, 2013b) and the Mid dle Ju ras sic clastic rocks of the Kraków-Wieluñ Up land, though the lat ter also may have been sup plied from a hy po thet i cal land mass, lo cated south of the up land (Méres et al., 2012). Up per Car bon if er ous and Mid dle Ju ras sic clastics, to gether with other de pos its of the Up per Silesian and Ma³opolska blocks, sub se quently could have been sources for a part of the gar net pop u la tion, bur ied in the Skole Ba sin. Gar nets oc cur ring in the de pos its of the Up per Silesian Block, es pe cially those with el e vated pyrope and grossular or spessartine mol e cules, are compositionally con gru ent with the gar nets stud ied (Fig. 9). The ero sion of

Fig. 9. Com par i son of gar nets from the Ropianka and Menilite for ma tions to gar nets oc cur ring in meta mor phic and ig ne ous rocks of the Moldanubicum, Lugo-Sudeticum and Moravo-Silesicum and to de tri tal gar nets from the Mid dle Ju ras sic clastics from the KrakówWieluñ Up land and clastic infill of the Ju ras sic preCallovian palaeokarst in the Czatkowice quarry (compositional fields of gar -nets in the di a grams based on data from: (Janeczek and Sachanbiñski, 1989; Oberc-Dziedzic, 1991; Maka³a, 1994; Dziedzic, 1996; Kryza et al., 1996; Owen and Dostal, 1996; O’Brien et al., 1997; Pieczka et al., 1997; Bakun-Czubarow, 1998; Puziewicz and Rudolf, 1998; Puziewicz et al., 1999; Bues and Zulauf, 2000; Kröner et al., 2000; Kryza and Pin, 2002; Budzyñ et al., 2004; Èopjaková et al., 2005; Medaris et al., 2005, 2006; Vrána and Bártek, 2005; Vrána et al., 2005; Racek et al., 2006, 2008; Štipská et al., 2006; Tajèmanová et al., 2006; Janoušek et al., 2007; Vrána, 2008; Faryad, 2009; Jastrzêbski, 2009, 2012; Faryad et al., 2010; Redliñska-Marczyñska, 2011; Méres et al., 2012; Salata, 2013b)

(13)
(14)

the sed i men tary cover of the Skole Ba sin fore land is also ev i denced by Car bon if er ous coal frag ments and other Palaeozoic and Me so zoic rocks, pres ent in the de pos its sam -pled (Turnau, 1962, 1970; Kotlarczyk and Œliwowa, 1963; Kotlarczyk, 1979). The in ter preted prov e nance of the gar net grains of the Ropianka and Menilite for ma tions is sche mat i -cally sum ma rized in Fig. 10.

Con sid er ing all the data, a di verse prov e nance and mi-xed char ac ter of gar net grains seems rea son able. How ever, with out fur ther ev i dence, it is im pos si ble to judge to what ex tent the rounded and etched gar net pop u la tion was de -rived from a pri mary source, re mote ar eas or a sec ond ary source. The grains were in flu enced by the coastal en vi ron -ment of the Skole Ba sin, where some gar net fea tures, such as pri mary diagenetic cor ro sion tex tures, could have been oblit er ated. More over, highly cor roded grains could have been to tally de stroyed dur ing trans por ta tion. The gar net pop u la tion could have been also de pleted in the less sta ble va ri et ies. None the less, there are some ob ser va tions that ar -gue for the pri mary prov e nance of a ma jor part of the almandine and spessartinealalmandine gar net with a mi nor ad -mix ture of almandine, slightly en riched in pyrope. These are: i) the large amount of gar net from both for ma tions that may come from first-cy cle de liv ery (Salata and Uchman, 2013); ii) the almandine, spessartine-almandine or pyrope-en riched almandine com po si tions of all of the euhedral, slightly rounded and weakly cor roded gar net and uncorroded sharpedged frag ments, and iii) the lithologies of peb -bles (gneiss es, mica-schists, gran ites). It also seems pos si ble that rel a tively smaller num bers of gar net grains, es pe cially those orig i nat ing from high-grade meta mor phic rocks, have their protoliths lo cated in re mote ar eas, which may be the

crys tal line base ment of the Brunovistulicum and Bo he mian Mas sif do mains.

CON CLU SIONS

Gar net pop u la tions, oc cur ring in the Ropianka and Me-nilite for ma tions, con tain a mix ture of grains, de rived from a prox i mal source, re mote ar eas and/or re cy cled grains, ero-ded from sed i men tary rocks of the Skole Ba sin fore land.

Gar nets in both of the for ma tions stud ied are composi-tionally sim i lar, sug gest ing a prov e nance from lithologi-cally sim i lar source rocks.

Much of the gar net rep re sented by euhedral, slightly rounded, weakly etched or unetched almandine, spessartinealmandine and mi nor pyropeen riched almandine va ri -et ies, orig i nated from meta mor phic rocks formed un der low- to me dium-grade meta mor phic con di tions (such as mica-schists, gneiss es) and gra nitic bod ies, lo cated in a pro- ximal po si tion in re la tion to the Skole Ba sin.

Rounded and vari ably etched gar net, es pe cially high pyropealmandine and pyropealmandinegrossular va ri et -ies, may have been de rived di rectly from dis tant sources or the sed i men tary cover of the Skole Ba sin fore land. Up lifted parts of the crys tal line base ment of Brunovistulicum or cry-stalline do mains of the Bo he mian Mas sif could have been sources for part of the almandinedom i nated gar net pop u la -tion. Ad di tion ally, pyrope-almandine-grossular gar net may orig i nate from the granulitic, eclogitic or metabasic rocks of the Bo he mian Mas sif.

The study shows that sin gle-grain chem i cal anal y ses of gar net, com bined with ob ser va tions of the tex tural fea tures

(15)

of grains and data on the li thol ogy of clasts and peb bles, per mit the de ter mi na tion of sources for gar net va ri et ies in mixed-prov e nance gar net pop u la tions.

Ac knowl edge ment

Rob ert Hall (Royal Hol lo way Uni ver sity of Lon don), Ro man Aubrecht (Comenius Uni ver sity, Bratislava) and Tomasz Malata (Pol ish Geo log i cal In sti tute, Kraków) are ac knowl edged for their pos i tive and con struc tive com ments, which helped the au thor to improve the manu script. The au thor also is in debted to Rob ert Hall and F. Simpson (Wind sor, Can ada) for lin guis tic cor rec tions to an early and re vised ver sion of the manu script re spec tively. The au -thor is also grate ful to L. Je¿ak and P. Dzier¿anowski (War saw University) for their help in EMPA anal y ses.

REF ER ENCES

Andà, S., Mor ton, A. & Garzanti E., 2013. Meta mor phic grade of source rocks re vealed by chem i cal fin ger prints of de tri tal am phi bole and gar net. Geo log i cal So ci ety, Lon don, Spe cial Pub -li ca tions, 386, first pub -lished on June 20, 2013, doi:10.1144/ SP386.5.

Aubrecht, R., Meres, Š., Sykora, M. & Mikuš, T., 2009. Prov e nance of the de tri tal gar nets and spi nels from the Albian sed i -ments of the Czorsztyn Unit (Pieniny Klippen Belt, West ern Carpathians, Slovakia). Geologica Carpathica, 60: 463–483. Bakun-Czubarow, N., 1998. Il men ite-bear ing eclogites of the West Sudetes-their geo chem is try and min eral chem is try. Ar-chiwum Mineralogiczne, 51: 29–110.

Bromowicz, J., 1974. Fa cial vari abil ity and lithological char ac ter of Inoceramian Beds of the Skole Nappe be tween Rzeszów and Przemyœl. Prace Geologiczne, 84: 1–81. [In Pol ish, Eng -lish sum mary].

Bromowicz, J., 1986. Petrographic dif fer en ti a tion of source ar eas of Ropianka Beds east of Dunajec River (Outer Carpathians, Po land). Annales Societatis Geologorum Poloniae, 56: 253– 276. [In Pol ish, Eng lish sum mary].

Budzyñ, B., Manecki, M. & Schnei der, D. A., 2004. Con straints on P–T con di tions of high-grade meta mor phism in the Góry Sowie Mts., West Sudetes. Mineralogia Polonica, 35: 39–52. Bues, C. & Zulauf, G., 2000. Microstructural evo lu tion and geo

-logic sig nif i cance of gar net pyriclasites in the Hoher-Bogen shear zone (Bo he mian Mas sif, Ger many). In ter na tional Jour -nal of Earth Sci ences, 88: 803–813.

Bukowy, S., 1957. Re marks on the sed i men ta tion of the Babica Clays. Rocznik Polskiego Towarzystwa Geologicznego, 26: 147–155. [In Pol ish, Eng lish sum mary].

Bu³a, Z. & Habryn, R., 2011. Pre cam brian and Pa leo zoic base -ment of the Carpathian Foredeep and the ad ja cent Outer Car-pathians (SE Po land and west ern Ukraine). Annales Societatis Geologorum Poloniae, 81: 221–239.

Bu³a, Z., Jawor, E. & Baran, U., 2004. Geotectonic po si tion of Car bon if er ous strata in the south ern part of the Up per Silesian and Ma³opolska blocks. In: Kotarba M. J. (ed.), Mo¿liwoœci Generowania Wêglowodorów w Ska³ach Karbonu w Po³ud-niowej Czêœci Bloku Górnoœl¹skiego i Ma³opolskiego. Towa-rzystwo Badañ Przemian Œrodowiska “Geosfera”, Wydaw-nictwo Naukowe “Akapit”, Kraków, pp. 9–14. [In Pol ish, Eng lish sum mary].

Bu³a, Z. & ¯aba, J., 2008. Struc ture of the Pre cam brian base ment of the east ern part of the Up per Silesian block (Brunovistulicum). Przegl¹d Geologiczny, 56: 473–480. [In Pol ish, Eng -lish sum mary].

Burtan, J,. 1962. Bore hole Rzeszotary 2 (pre lim i nary re port). Kwar- talnik Geologiczny, 6: 245–259. [In Pol ish, Eng lish sum mary]. Cascalho, J. & Fradique, C., 2007. The sources and hy drau lic sort

-ing of heavy min er als on the north ern Por tu guese con ti nen tal mar gin. In: Mange, M. A. and Wright, D. T. (eds), Heavy Min er als in Use. De vel op ments in Sedimentology, 58: 75– 110.

Èopjaková, R., Sulovský, P. & Pat er son, B. A., 2005. Ma jor and trace el e ments in pyropealmandine gar nets as sed i ment prov e -nance in di ca tors of the Lower Car bon if er ous Culm sed i ments, Drahany Up lands, Bo he mian Mas sif. Lithos, 82: 51– 70. Deer, W. A., Howie, R. A. & Zussman, J., 1992. An In tro duc tion

to the Rockform ing Min er als. Longman Sci en tific & Tech ni -cal, Harlow, 696 pp.

Dziedzic, H., 1996. The Variscan am phi bo lite to granulite fa cies tran si tion at Bielawa in the east ern part of the Góry Sowie Block. Bul le tin of the Pol ish Acad emy of Sci ences, Earth Sci -ences, 44: 77–90.

Eynatten, H., von & Dunkl, I., 2012. As sess ing the sed i ment fac -tory: The role of sin gle grain anal y sis. EarthSci ence Re -views, 115: 97–120.

Faryad, S. W., 2009. The Kutná Hora Com plex (Moldanubian zone, Bo he mian Mas sif): a com pos ite of crustal and man tle rocks subducted to HP/UHP con di tions. Lithos, 109: 193– 208.

Faryad, S.W., Nahodilová, R. & Dolejš, D., 2010. In cip i ent eclogite fa cies meta mor phism in the Moldanubian granu lites re -vealed by min eral in clu sions in gar net. Lithos, 114: 54–69. Gasiñski, M. A. & Uchman, A., 2009. Lat est Maastrichtian

fora-miniferal as sem blages from the Husów re gion (Skole Nappe, Outer Carpathians, Po land). Geologica Carpathica, 60: 283– 294.

Golonka, J., Krobicki, M., Oszczypko, N. & Œl¹czka, A., 2006. Palinspastic mod el ling and Carpathian Phanerozoic palaeo-geo graphic maps. In: Oszczpko, N., Uchman, A. & Malata, E. (eds), Palaeotectonic Evo lu tion of the Outer Carpathian and Pieniny Klippen Belt Bas ins. Instytut Nauk Geologicznych Uniwersytetu Jagielloñskiego, Kraków, pp 103–110. [In Pol -ish, Eng lish sum mary].

Górska, L. & Heflik, W., 1975. Hornblende-epidote schists and am phi bo lites from crys tal line base ment of the CieszynKraków area. Geologia, 1(3): 41–47. [In Pol ish, Eng lish sum -mary].

Heflik, W. & Konior, K., 1972. Meta mor phic for ma tions in bore -hole Dobczyce 1. Kwartalnik Geologiczny, 16: 546–556. [In Pol ish, Eng lish sum mary].

Heflik, W. & Konior K., 1974. The pres ent state of knowl edge con cern ing the crys tal line base ment in the Cieszyn–Rzeszo-tary area. Biuletyn Instytutu Geologicznego, 273: 195–221. [In Pol ish, Eng lish sum mary].

Hubert, J. F., 1962. A zir contour ma line ma tu rity in dex and the in ter de pen dence of the com po si tion of heavy min eral as sem -blages with the gross com po si tion and tex ture of sand stones. Jour nal of Sed i men tary Pe trol ogy, 32: 440–450.

Hughes, M. G., Keene, J. B. & Jo seph, R. G., 2000. Hy drau lic sort ing of heavy min eral grains by swash on a me dium-sand beach. Jour nal of Sed i men tary Re search, 70: 994–1004. Janeczek, J. & Sachanbiñski, M., 1989. Beryl-bear ing pegmatites

in two-mica gran ite from the east ern part of the Strzegom-Sobótka Mas sif. Archiwum Mineralogiczne, 54: 57–75. [In Pol ish, Eng lish sum mary].

Janoušek, V., Krenn, E., Fin ger, F., Míkova, J. & Frýda, J., 2007. Hyperpotassic granu lites from the Blanský les Mas sif (Mol-danubian Zone, Bo he mian Mas sif) re vis ited. Jour nal of Geo-sci ences, 52: 73–112.

(16)

Jastrzêbski, M., 2009. A Variscan con ti nen tal col li sion of the West Sudetes and the Brunovistulian terrane: a con tri bu tion from struc tural and meta mor phic re cord of the Stronie For ma tion, the Orlica-Œnie¿nik Dome, SW Po land. In ter na tional Jour nal of Earth Sci ences, 98: 1901–1923.

Jastrzêbski, M., 2012. New in sights into the polyphase evo lu tion of the Variscan su ture zone: ev i dence from the Staré Mìsto Belt, NE Bo he mian Mas sif. Geo log i cal Mag a zine, 149: 945– 963.

Komar, P. D. & Wang, C., 1984. Pro cesses of se lec tive grain trans port and the for ma tion of plac ers in beaches. Jour nal of Ge ol -ogy, 92: 637–655.

Konior, K., 1974. Geo log i cal struc ture of the Rzeszotary el e va tion in the light of re cent geo phys i cal and drill ing data. Rocznik Polskiego Towarzystwa Geologicznego, 44: 321375. [In Pol -ish, Eng lish sum mary].

Kotlarczyk, J., 1966. Di at o mite ho ri zon of the Krosno Beds in the Skole Nappe, Pol ish Carpathians. Studia Geologica Polonica, 19: 110–129. [In Pol ish, Eng lish sum mary].

Kotlarczyk, J., 1976. Przyczynki do wyjaœnienia genezy piask-owców kliwskich w Karpatach Polskich. Sprawozdania z Po-siedzeñ Komisji Naukowej PAN, Oddzia³ w Krakowie, 19: 185–187. [In Pol ish].

Kotlarczyk, J., 1978. Stra tig ra phy of the Ropianka For ma tion or of Inoceramian beds in the Skole Unit of the Flysch Carpathians. Prace Geologiczne, Polska Akademia Nauk, Oddzia³ w Kra-kowie, Komisja Nauk Geologicznych, 108: 1–81. [In Pol ish, Eng lish sum mary].

Kotlarczyk, J., 1979. Oc cur rence of coal in the Carpathian flysch – some sedimentological ob ser va tions. Rocznik Polskiego To-warzystwa Geologicznego, 49: 135–154. [In Pol ish, Eng lish sum mary].

Kotlarczyk, J. & Leœniak, T., 1990. Lower part of the Menilite For ma tion and Re lated Futoma Di at o mite Mem ber in the Skole Unit of the Pol ish Carpathians. Wydawnictwo Akademii Górniczo–Hutniczej, Kraków, 74 pp. [In Pol ish, Eng -lish sum mary].

Kotlarczyk, J. & Œliwowa, M., 1963. On knowl edge of the pro duc -tive Car bon if er ous for ma tions in the sub stra tum of the east ern part of the Pol ish Carpathians. Przegl¹d Geologiczny, 11: 268–272. [In Pol ish, Eng lish sum mary].

Kröner, A., O’Brien, P. J., Nemchin, A. A. & Pidgeon, R. T., 2000. Zir con ages for high pres sure granu lites from South Bo he mia, Czech Re pub lic, and their con nec tion to Car bon if er ous high tem per a ture pro cesses. Con tri bu tions to Min er al ogy and Pe -trol ogy, 138: 127–142.

Kryza, R. & Pin, C., 2002. Mafic rocks in a deep-crustal seg ment of the Variscides (the Góry Sowie, SW Po land): ev i dence for crustal con tam i na tion in an extensional set ting. In ter na tional Jour nal of Earth Sci ences, 91: 1017–1029.

Kryza, R., Pin, C. & Vielzeuf, D., 1996. High-pres sure granu lites from Sudetes (south-west Po land): ev i dence of crustal subduction and collisional thick en ing in the Variscan Belt. Jour -nal of Meta mor phic Ge ol ogy, 14: 531–546.

Ksi¹¿kiewicz, M. (ed.), 1962. Geo log i cal At las of Po land. Fas ci -cle 13 – Cre ta ceous and Early Ter tiary in the Pol ish Ex ter nal Carpathians. Instytut Geologiczny, Warszawa.

Ksi¹¿kiewicz, M., 1977. The tec ton ics of the Carpathians. Po¿a-ryski, W. (ed.), Ge ol ogy of Po land. Vol. 4, Tec ton ics. Wy-dawnictwa Geologiczne, Warszawa, pp. 476–620.

Kusiak, M. A., Kêdzior, A., Paszkowski, M., Suzuki, K., GonzálezÁlvarez, I., Wajsprych, B. & Doktor, M., 2006. Prov e -nance im pli ca tions of Th-U-Pb elec tron microprobe ages from de tri tal monazite in the Car bon if er ous Up per Silesia Coal Ba sin, Po land. Lithos, 88: 56–71.

Locock, A. J., 2008. An Ex cel spread sheet to re cast anal y ses of gar net into end-mem ber com po nents, and a syn op sis of the crys tal chem is try of nat u ral sil i cate gar nets. Com puter & Geosci ences, 34: 1769–1780.

Maka³a, A., 1994. Gar net-layer sil i cates parageneses of meta-pelites from Stara Kamienica Chain. West ern Sudetes. Archi-wum Mineralogiczne, 50: 31–54.

Malata, T. & Poprawa, P., 2006. Evo lu tion of the Skole Subbasin. In: Oszczpko, N., Uchman, A. & Malata, E. (eds), Pala-eotectonic Evo lu tion of the Outer Carpathian and Pieniny Klippen Belt Bas ins. Instytut Nauk Geologicznych Uni-wersytetu Jagielloñskiego, Kraków, pp. 103–110. [In Pol ish, Eng lish sum mary].

Mange, M. A. & Mau rer, H. F. W., 1992. Heavy Min er als in Col -our. Chap man and Hall, Lon don, 147 pp.

Mange, M. A. & Mor ton, A. C., 2007. Geo chem is try of heavy min er als. In: Mange, M. A. and Wright, D. T. (eds), Heavy Min er als in Use, De vel op ments in Sedimentology, 58: 345– 391.

Mange, M. A. & Wright, D. T. (eds), 2007. Heavy Min er als in Use. De vel op ments in Sedimentology, 58, 1283 pp.

Mazur, S., Aleksandrowski, P., Kryza, R. & Oberc-Dziedzic, T., 2006. The Variscan Orogen in Po land. Geo log i cal Quar terly, 50: 89–118.

Medaris, L. G., Jr., Wang, H., Jelínek, E., Mihaljeviè, M. & Jakes, P., 2005. Char ac ter is tics and or i gins of di verse Variscan peri dot ites in the Gföhl Nappe, Bo he mian Mas sif, Czech Re pub -lic. Lithos. 82: 1–23.

Medaris, L. G., Jr., Ghent, E. D., Wang, H. F., Fournelle, J. H. & Jelínek, E., 2006. The Spaèice eclogite: con straints on the P–T–t his tory of the Gföhl granulite terrane, Moldanubian Zone, Bo he mian Mas sif. Min er al ogy and Pe trol ogy, 86: 203– 220.

Méres, Š., Aubrecht, R., Gradziñski, M. & Sýkora, M., 2012. High (ultrahigh) pres sure meta mor phic terrane rocks as the source of the de tri tal gar nets from the Mid dle Ju ras sic sands and sand stones of the Cra cow Re gion (Cra cow-Wieluñ Up land, Po land). Acta Geologica Polonica, 62: 231–245.

Mor ton, A. C., 1984. Sta bil ity of de tri tal heavy min er als in Ter -tiary sand stones of the North Sea Ba sin. Clay Min er als, 19: 287–308.

Mor ton, A. C., 1987. In flu ences of prov e nance and diagenesis on de tri tal gar net suites in the For ties sand stone, Paleocene, cen -tral North Sea. Jour nal of Sed i men tary Pe trol ogy, 57: 1027– 1032.

Mor ton, A. C. & Hallsworth, C. R., 1999. Pro cesses con trol ling the com po si tion of heavy min eral as sem blages in sand stones. Sed i men tary Ge ol ogy, 124: 3–29.

Mor ton, A. C. & Hallsworth, C. R., 2007. Sta bil ity of de tri tal heavy min er als dur ing burial diagenesis. Heavy Min er als in Use. De vel op ments in Sedimentology, 58: 215–245.

Moryc, W. & Heflik, W., 1998. Meta mor phic rocks in the base -ment of the Carpathians be tween Bielsko-Bia³a and Cra cow. Kwartalnik Geologiczny, 42: 1–14.

Nowak, W., 1963. Pre lim i nary re sults of study on exotics from the Inoceramian Beds of the Skole se ries, of sev eral sites in the Przemyœl and the Bircza Carpathians. Kwartalnik Geolo-giczny, 7: 421–430. [In Pol ish, Eng lish sum mary].

O’Brien, P. J., Kröner, A., Jaeckel, P., Hegner, E., ¯elaŸniewicz, A. & Kryza, R., 1997. Pet ro log i cal and iso to pic stud ies on Palaeozoic high-pres sure granu lites, Góry Sowie Mts., Pol ish Sudetes. Jour nal of Pe trol ogy, 38: 433–456.

Oberc-Dziedzic, T., 1991. Uwagi o genezie granatów w granitach izerskich. Prace Geologiczno-Mineralogiczne, 23: 269–296. [In Pol ish].

(17)

Owen, J. V. & Dostal, J., 1996. Prograde meta mor phism and de -com pres sion of the Gföhl gneiss, Czech Re pub lic. Lithos, 38: 259–270.

Paszkowski, M., Jachowicz, M., Michalik, M., Teller, L., Uchman, A. & Urbanek, Z., 1995. Com po si tion, age and prov e nance of gravel – sized clasts from the Up per Car bon if -er ous of the Up per Silesia Coal Ba sin. Studia Geologica Polonica, 108: 45–127.

Pelczar, A. & Wieser, T., 1962. Budowa metamorfiku wykrytego otworem wiertniczym w Rzeszotarach. Kwartalnik Geolo-giczny, 6: 444–445. [In Pol ish].

Pieczka, A., Go³êbiowska, B. & Kraczka, J., 1997. Mn-gar nets from the Sowie Mts. meta mor phic pegmatites. Mineralogia Polonica, 28: 81–88.

Puziewicz, J. & Rudolf, N., 1998. Pe trog ra phy and or i gin of the leucocratic twomica gneiss es of the Doboszowice Meta mor -phic Unit (Sudetes, SW Po land). Archiwum Mineralogiczne, 51: 181–212. [In Pol ish, Eng lish sum mary].

Puziewicz, J., Mazur, S. & Papiewska, C., 1999. Pe trog ra phy and or i gin of two-mica paragneisses and ad ja cent am phi bo lites from Doboszowice Meta mor phic Unit (Lower Silesia). Archiwum Mineralogiczne, 52: 35–70. [In Pol ish, Eng lish sum mary].

Racek, M., Štípská, P. S., Pitra, P., Schulmann, K. & Lexa, O., 2006. Meta mor phic re cord of burial and ex hu ma tion of oro-genic lower and mid dle crust: a new tectonothermal model for the Drosendorf win dow (Bo he mian Mas sif, Aus tria). Min er -al ogy and Pe trol ogy, 86: 221–251.

Racek, M., Štípská, P. S. & Powell, R., 2008. Gar net–clino-pyroxene in ter me di ate granu lites in the St. Leonhard mas sif of the Bo he mian Mas sif: ultrahightem per a ture meta mor phism at high pres sure or not? Jour nal of Meta mor phic Ge ol -ogy, 26: 253–271.

Rajchel, J., 1990. Lithostratigraphy of the Up per Paleocene and Eocene sed i ments from the Skole Unit. Zeszyty Naukowe AGH, Geologia, 48: 1–112. [In Pol ish, Eng lish sum mary]. Rajchel, J. & Myszkowska, J., 1998. Ex otic clasts of

organo-detritic al gal lime stones from lithosomes of the Babica Clay, Skole Unit (Outer Flysch Carpathians, Po land). Annales So-cietatis Geologorum Poloniae, 68: 225–235.

Redliñska-Marczyñska, A., 2011. Giera³tów ver sus Œnie¿nik gneiss es – what is the real dif fer ence? Geologos, 17: 71–96. Salata, D., 2013a. Source rocks for heavy min er als in lower part of

Menilite For ma tion of Skole Nappe (Pol ish Flysch Car-pathians), based on study of de tri tal gar net and tour ma line. Annales Societatis Geologorum Poloniae, 83: 1–17.

Salata, D., 2013b. Heavy min er als as de tri tus prov e nance in di ca -tors for the Ju ras sic pre-Callovian palaeokarst infill from the Czatkowice Quarry (Kraków–Wieluñ Up land, Po land). Geo -log i cal Quar terly, 57: 537–550.

Salata, D., 2014. De tri tal tour ma line as in di ca tor of its source rocks li thol ogy: ex am ple from the Ropianka and Menilite for ma tions (Skole Nappe, Pol ish Flysch Carpathians). Geo log i -cal Quar terly, 58 (1), in press, doi: 10.7306/gq.1133 Salata, D. & Uchman, A., 2012. Heavy min er als from the

Oligo-cene sand stones of the Menilite For ma tion of the Skole Nappe, SE Po land: a tool for prov e nance spec i fi ca tion. Geo -log i cal Quar terly, 56: 803–820.

Salata, D. & Uchman, A., 2013. Con ven tional and high-res o lu tion heavy min eral anal y ses ap plied to flysch sed i ments: com par a -tive prov e nance stud ies of the Ropianka (Up per Cre ta ceous– Palaeo cene) and Menilite (Oligocene) for ma tions (Skole Nappe, Pol ish Carpathians). Geo log i cal Quar terly, 57, (4): 649–664.

Sevastjanova, I., Hall, R. & Alterton, D., 2012. A de tri tal heavy

min eral view point on sed i ment prov e nance and trop i cal wea-thering in SE Asia. Sed i men tary Ge ol ogy, 280: 179–194. Suggate, S., 2011. Prov e nance of Neo gene Sand stones of Sabah,

North ern Bor neo. Un pub lished PhD The sis, Royal Hol lo way Uni ver sity of Lon don, 441 pp.

Suggate, S. M. & Hall, R., 2013. Us ing de tri tal gar net com po si -tions to de ter mine prov e nance: a new compositional da ta base and pro ce dure. Geo log i cal So ci ety, Lon don, Spe cial Pub li ca -tions, 386, first pub lished on July 18, 2013, doi:10.1144/ SP386.8.

Œl¹czka, A. & Unrug, R., 1966. Sed i men tary struc tures and pe trol -ogy of some sand stone mem bers of the Menilite Beds, Car-pathians. Rocznik Polskiego Towarzystwa Geologicznego, 36: 155–184. [In Pol ish, Eng lish sum mary].

Štipská, P., Pitra, P. & Powell, R., 2006. Sep a rate or shared meta mor phic his to ries of eclogites and sur round ing rocks? An ex -am ple from the Bo he mian Mas sif. Jour nal of Meta mor phic Ge ol ogy, 24: 219–240.

Tajèmanová, L., Konopásek, J. & Conolly, J. A. D., 2006. Dif fu sioncon trolled de vel op ment of sil icaundersaturated do -mains in fel sic granu lites of the Bo he mian Mas sif (Variscan belt of Cen tral Eu rope). Con tri bu tions to Min er al ogy and Pe -trol ogy, 153: 237–250.

Turnau, E., 1962. The age of coal frag ments from the Cre ta ceous de pos its in the Outer Carpathians, de ter mined on microspo-res. Bul le tin d’Académie Po lo naise des Sci ences, Se¾rie des Sci ences Ge¾ologiques et Ge¾ographiques, 10: 85–89. Turnau, E., 1970. Plant microfossils and palaeo ge ogra phy of the

Car bon if er ous coal de pos its in Pol ish Carpathians. Biuletyn Pañstwowego Instytutu Geologicznego, 235: 163–244. [In Pol ish, Eng lish sum mary].

Unrug, R., 1979. Palinspastic re con struc tion of the Carpathian arc be fore the Neo gene tectogenesis. Rocznik Polskiego Towa-rzystwa Geologicznego, 49: 3–21.

Vrána, S., 2008. Min eral in clu sions in pyrope from gar net peri dot ites, Kolín area, cen tral Czech Re pub lic. Jour nal of Geosci -ences, 53: 17–30.

Vrána, S. & Bártek, J., 2005. Ret ro grade meta mor phism in a re -gional shear zone and re lated chem i cal changes: The Kapice Unit of mus co vite–bi o tite gneiss es in the Moldanubian Zone of south ern Bo he mia, Czech Re pub lic. Jour nal of Czech Geo -log i cal So ci ety, 50: 43–57.

Vrána, S., Štìdrá, V. & Fišera, M., 2005. Pe trol ogy and geo chem -is try of the Bìstvina granulite body meta mor phosed at eclo-gite fa cies con di tions, Bo he mian Mas sif. Jour nal of the Czech Geo log i cal So ci ety, 50: 95–106.

Wdowiarz, S., 1949. Struc ture géologique des Carpates margi-nales au sud-est de Rzeszów. Biuletyn Pañstwowego Instytutu Geologicznego, 11: 1–51. [In Pol ish, French sum mary]. Win, K. S., Takeuchi, M. & Tokiwa, T., 2007. Changes in de tri tal

gar net as sem blages re lated to transpressive up lift ing as so ci ated with strike–slip fault ing: an ex am ple from the Cre ta -ceous Sys tem in Kii Pen in sula, south west Ja pan. Sed i men tary Ge ol ogy, 201: 412–431.

¯elaŸniewicz, A., Aleksandrowski, P., Bu³a, Z., Karnkowski, P. H., Konon, A., Oszczypko, N., Œl¹czka, A., ¯aba, J. & ¯ytko, K., 2011. Regionalizacja Tektoniczna Polski. Komitet Nauk Geologicznych PAN, Wroc³aw. [In Pol ish].

¯giet, J., 1963. Wstêpna charakterystyka sedymentologiczna pias- kowców kliwskich. Kwartalnik Geologiczny, 7: 715–716. [In Pol ish].

¯ytko, K. & Malata, T., 2001. Paleogeograficzna pozycja fliszu jednostki Obidowej-S³opnic w basenie Karpat zewnêtrznych. Przegl¹d Geologiczny, 49: 425–430. [In Pol ish, Eng lish ab -stract].

Cytaty

Powiązane dokumenty

Ex- plosive mixtures of dust and air may form during transport (e.g. in bucket elevators) and during the storage of raw mate- rials such as cereals, sugar and flour. An explosion

tych przez poszczególne działy zagłębiowskich placówek muzealnych, tj.: Muzeum Zagłębia w Będzinie, Muzeum w Sosnowcu, Sosnowieckie Cen- trum Sztuki -Zamek Sielecki

W części materiałów źródłowych zamieszczono opracowany przez Adama Ku- bacza urbarz dóbr Łaskarzówka z 1728 roku, sprawozdania z pierwszego i drugiego transportu

Tematyka, którą zajmowano się w Pra- cowni Cytochemii Procesów Wzrostu i Róż- nicowania była bardzo szeroka, od począt- kowych badań nad oocytami owadów, przez

Typ działania % 1 pozyskiwanie kapitału inwestycyjnego spoza gminy 78,3 2 rozwój infrastruktury technicznej 76,7 3 ochrona środowiska 73,3 4 reagowanie na bieżące

With the aggravation between major centers of power (US, EU, Russia), Ukraine is a significant factor of changing world order, but still it becomes more a kind of

These and other questions about the world’s future in the next century Sylwest- er Szafarz attempts to answer in his book entitled Cywilizacja XXII wieku (Civiliza-.. tion of

The scope of the General Counsel to the Republic of Poland consisted of: the general legal representa- tion in matters relating to the property and public rights and interests