• Nie Znaleziono Wyników

APT Model for Electricity Prices on the Day Ahead Market of the Polish Power Exchange

N/A
N/A
Protected

Academic year: 2021

Share "APT Model for Electricity Prices on the Day Ahead Market of the Polish Power Exchange"

Copied!
10
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

F O L IA O E C O N O M IC A 194, 2005

A l ic j a G a n c z a r e k *

APT M O D EL FOR ELECTRICITY PRICES O N TH E DAY AH EAD MARKET OF T H E PO L ISH POW ER EXCH ANG E

Abstract

In th is p a p e r we p resen ted the m odel o f the d ep en d en ce o f the electricity price on m ac ro eco n o m ic facto rs such as changes in the d o lla r price, the D eu tsch e m ark price, th e rate o f in flatio n , the ra te o f un em p lo y m en t, price changes in th e m ining in d u stry , the p ro d u c tio n o f the m a n u fa c tu rin g sector, the o u tp u t o f the m ining in d u stry and w eath er co n d itio n s. T he aim o f th is article w as the em pirical verification o f the price m odel o n the D a y A head M a rk et (D A M ) o f the P olish P ow er E xchange in 2001 based o n the prin cip al c o m p o n e n ts m eth o d .

T h e resu lts w ere c o m p ared w ith the results fo r the A P T m odel, selected by m eans o f the g rap h analysis m eth o d an d the o p tim u m choice m eth o d p ro p o se d by Z. H ellw ig. T h e aim o f this w o rk w as to choose the best m odel for the descrip tio n o f p rice tren d s o n the D A M .

Key words: T h e D ay A head M a rk et, A rbitrage Pricing T h eo ry , factors analysis, the principal c o m p o n e n ts, eigenvalue, eigenvector, the g ra p h analysis m eth o d , an d the o p tim u m choice m eth o d p ro p o se d by Z. H ellw ig

I. IN T R O D U C T IO N

T h e D ay A h ead M a rk e t (D A M ) w as th e first m a rk e t, w hich was established on the Polish Pow er Exchange. T his w hole-day m a rk e t consists o f tw enty-four separate, independent m arkets, w here p a rtic ip a n ts can freely buy and sell electricity. T h e b reak th ro u g h in the developm ent o f the Polish Pow er Exchange was m ade on 1st July 2000, w hen the first tran saction s were com pleted on the D ay A head M arket.

T h e energy m a rk e t is no t a neutral isolated stru ctu re. In this p ap e r we a tte m p t to answ er the question, how the electricity price depends on the

(2)

m acro eco n o m ic factors. T o exam ine these dependencies wc use the APT m odel. W hile selecting the variables for the m odel o f price changes we use th ree m ethods: the factors analysis, the optim um choice m eth o d proposed by Z. H ellwig and the grap h analysis m ethod.

II. T H E A P T M O D E L

T h e A rb itra g e Pricing T heory is based on the ‘o ne p rice’ rule. T he differences in prices o f the same goods can be affected both by system atic risk factors and accidental risk factors. W e take into accou nt th e follow ing items:

R, - ra te o f re tu rn from a price,

E (R ,) - expected ra te o f return from a price, f it - ra te o f re tu rn o f Ith system atic risk factor,

/J; — i — 1 , . . . , k sensitivity coefficient o f the rate o f re tu rn against the ith system atic risk factor,

- accidental risk factor, with the m ean Е (£() = 0 and the covariance D (£t) = a 2, < reR + .

In this p ap e r we have applied the A P T m odel:

R f = E(R ,) + ß i f if + ß d 21 + ••• + ßkfkt+ £(> t = l , . . . , n . (1) T h e e q u a tio n presented in exam ple (1) can be expressed w ith th e m atrix eq u a tio n . We notice:

R - ( n x 1) - vector o f rates o f re tu rn o f prices,

E ( R ) - ( n x 1) - vector o f expected value rates o f re tu rn o f prices, F — (n x k) - m atrix o f rates o f re tu rn o f system atic facto rs o f risk, w here E(F) = 0, E(F F r ) = I,

ß — (k x 1) - vector of coefficients sensitivity o f rates o f return o f systematic facto rs o f risk,

Ł,— (n x 1) - vector o f e rro r term s with n - no rm al d istrib u tio n E(£) = 0, D ( 0 = ff2I, <76R + .

W ith the supp lem entary assum ptions:

E(£ F r ) = 0, (2)

E[R — E(R)] = 0, (3)

(3)

T he price arb itra g e will n o t be possible w hen the n um b er o f values grows. So we can w rite this m odel with the equation:

Rt =

ßo + ß i f i t

+

ß i f i t

+ •••

+ ß kfkt

+

Čo

t=l,...,n.

(5)

IIL FACTOR ANALYSIS

ln the m odel we use the variables which wc can observe and m easure. These variables often depend on o th er factors which we c a n n o t im m ediately describe. T hese factors are called latent variables o r factors. T o separate these facto rs we use the facto r analysis. In this p ap e r we sep arate the laten t variables, which we have applied, m ak in g use o f the principal com ponents m eth o d . We notice:

F = —, f i ] T - vector o f o bservational variables, X = [Xy, X 2, —, -X*]T - vector o f principal co m po nen ts, Л = [at , a 2, ..., a j - o rth o g o n al and norm ality m atrix. T hen wc can express the X vector o f tran sfo rm atio n

X = ATF. (6)

T h e X j principal co m ponents have the follow ing properties:

D 2( X 1) > D 2( X 2) > . . . > D 2( X k), (7)

I D 2( / j ) = £ D2(Xj ). (8)

J= i J = i

Wc determ ine X j m aking use o f eigenvalues and eigenvectors o f the covariance m atrix o f f j o bservational variables. I f we define the ^ -e ig en v alu e o f the / * eigenvector o f the covariance m atrix, then

D 2( X j ) = lj, y = l , . . „ /с. (9) E q u a tio n (8) m eans th a t all the observational variables are described by all principal com ponents and by eigenvalue (9). If w, denotes th e contribution o f X j to th e explan atio n o f observational variables, we can write:

= j = l , . . . , k . (10)

(4)

In the m odel we use only these principal com ponents w hich have th e biggest share in explaining the variance o f observational variables. In the paper we use tw o criteria to determ ine the num ber o f principal com p onents. T he first one, developed by K eiser, takes into accou nt only these principal co m ponents, eigenvalues o f which are close to one o r higher th a n one. T he second criterion is proposed by C attcl. It elim inates these principal co m ­ ponents, eigenvalues o f which decrease very slightly (Ostasiewicz, (ed.) 1999).

IV. E M P IR IC A L A N A L Y S IS

In o rd e r to verify the A PT m odel for the D A M electricity price in 2001 we have used m onthly changes in m acroeconom ic facto rs (T ab. 1).

T abic 1. D escrip tio n o f sym bols and d efinition o f variables

Sym bol

o f variable N a m e o f variable D escrip tio n o f v ariab le

R C , C h an g e in elect­

ricity price

M o n th ly average D A M price o f electricity (C,) in PLN

R C , = — --- —

c , - ,

RW , C hange in electri­ city volum e

M o n th ly average D A M electricity volum e (W,) in M W h

RW . — — ---— Щ -г f u C hange in the r a ­ te o f in flatio n R ate o f inflation (1%) f u = / /I * » /2, C hange in the r a ­ te o f u n em p lo y ­ m ent

R ate o f u nem ploym ent (w % )

f 2l = " /1 0 0

/3, Price changes in the m ining indus­ try

C oefficient o f prices o f sold p ro d u c tio n in th e m ining industry (G K t)

U - G K J 1 0 0 - 1

/4, Price changes in th e m a n u f a c tu ­ rin g in d u stry

C oefficient o f prices o f sold p ro d u c tio n in the m an u fa ­ ctu rin g in d u stry (PP,)

Д , = PPJIQQ - 1 /5, Price changes in

the in d u stry p ro ­ d u cin g and deli­ v e rin g en erg y , gas and w ater

Coefficient o f prices o f sold p ro d u c tio n in th e industry p ro d u cin g and delivering energy, gas an d w ater (EGW,)

(5)

T ab le 1. (contd.) Sym bol

o f variable N am e o f variable D escrip tio n o f v ariab le

f u C h an g e o f d o lla r price N B P D, d o lla r price in P L N . d. - d, . , 61 “ D f i , C h an g e o f D e u ­

tsche m ark price

N B P D M , D eutsche m ark price in PL N

D M , - D M , .

r = J. — — J n ł

/ „ C h a n g e in the o u tp u t o f the m i­ n in g in d u stry

O u tp u t o f the m ining in d u stry (W K ,) in th o u sa n d s o f tonnes W K , - W K , . f _ ' ' - 1 W K ,_ , / * T em p era tu re change

A verage tem p eratu re n o te d in W arsaw ( T t) in °C

T — T

r t 1 t - 1

T1 r - 1

/ 1 Of C hange in cloudi­ ness

A verage cloudiness no ted in W arsaw (Z ,) in octanes

J 101 у

i - i

f u , C h a n g e in s u n ­

lig h t exposition

A verage sunlight ex position n o ted in W arsa w (I/,) in h

f i U ~ U , - i

F o r these variables we use the facto r analysis. In T ab le 2 we present the eigenvalue o f the covariance m atrix for these variables.

Table 2. E igenvalue o f facto rs

N u m b e r o f fa c to r

X J

E igenvalue % to ta l variance C um ulative C um u lativ e variance in % 1 3.31 27.57 3.31 27.57 2 2.66 22.13 5.96 49.69 3 1.96 16.29 7.92 65.98 4 1.34 11.19 9.26 77.18 5 0.95 7.92 10.21 85.10 6 0.70 5.85 10.91 90.95 7 0.48 4.01 11.39 94.96 8 0.43 3.59 11.83 98.55 9 0.10 0.83 11.93 99.38 10 0.06 0.51 11.99 99.89 11 0.01 0.11 12.00 100.00

(6)

Figure 1. P lot o f eigenvalues

B ased on C a tte l’s criterion we use the first eight principal com ponents. W e in co rp o rate these m acroeconom ic variables which have the greatest loadings in relatio n to latent variables into the A PT m odel.

T able 3. F a c to r load in g s (varim ax n o rm alized )

V ariable F a c to r F a c to r * 2 F a c to r * 3 F a c to r F a c to r * 5 F a c to r * 6 F a c to r * 7 F a c to r 0.06 0.01 -0 .9 5 -0.01 0.01 -0 .1 5 0.11 -0.23 f u 0.17 0.14 -0.11 0.04 0.17 -0 .9 4 -0 .0 9 -0 .0 9 f i , 0.12 -0 .8 5 0.06 -0 .1 8 0.04 0.08 0.33 0.31 3* -0 .7 5 -0 .1 2 -0 .2 0 -0 .2 5 -0 .3 5 0.31 0.16 -0.02 4 f -0 .8 6 0.13 0.34 0.04 0.11 0.01 -0.21 0.19 51 0.02 0.17 0.00 0.97 0.06 0.08 0.12 -0 .0 9 6* -0 .2 7 0.00 0.27 0.43 0.03 0.69 -0 .2 6 0.01 I t -0 .7 6 -0 .0 6 -0 .0 9 0.18 0.10 0.56 -0 .0 4 -0 .2 0 8( 0.04 0.16 -0 .2 7 0.09 0.18 -0 .0 4 0.14 -0 .9 2 9 f -0 .0 7 0.22 0.12 -0.11 0.08 0.01 -0 .9 5 0.13 1 Of 0.03 -0 .1 2 0.02 -0 .0 4 -0 .9 7 0.09 0.06 0.17 M i l 0.15 0.78 0.06 0.12 0.54 -0 .1 4 -0 .0 4 0.08 B old - A lp h a reliabilities at a = 0,05.

W e have built the A PT m odel on the ground o f K eiser’s criterion. We have selected the follow ing variables as the first fo u r p rincipal com ponents: change in electricity volum e, change in the ra te o f in flation, change in the

(7)

in the m an u fa c tu rin g industry, price changes in the industry pro du cin g and delivering energy, gas and w ater, change in the D eutsch e m a rk price, change in the o u tp u t o f the m ining industry. T his m odel is insignificant w ith alph a reliabilities o f a = 0.05 based on the F isher-S nedecor test.

T h e m odel built based on the first principal co m p o n en t, is insignificant. If we increase the n um ber o f principal co m p onents, we o b tain insignificant m odels, to o . In the next step we analyse only these factors, which have the absolute value o f loadings higher than 0.8. T his way the m odel comprises: change in electricity volum e, change in the ra te o f unem ploym ent, price changes in the m anufacturing industry, price changes in the industry producing and delivering energy, gas and w ater, change in cloudiness, change in the rate o f inflation, change in the outp u t o f the m ining industry, and tem perature change. W c use th e o rd in ary least squares m eth o d (O LS) to estim ate the param eters o f the m odel:

RC, = a0 + a , / i , -I- a2/ 2( + a 4/ 4( -I- a sf 5, + a 8/ 8, + a 9/ 9l + a 10/ 10( + a ^ R W , + £(, (ID W ith alp h a reliabilities a t a — 0,05 o f T -statistics and F -statistics we receive the m odel:

R C t = 0.272 - 1.7882( - 1.850/4I + 0.855f St- 0.260 /8t - 0 .0 2 0 /1O( + 0 .0 3 2 Я ^ (0.067) (0.408) (0.306) (0.120) (0.018) (0.006) (0.002)

( 12) with change in the ra te o f unem ploym ent, price changes in the m anufactu ring industry, price changes in the industry produ cin g and delivering energy, gas and w ater, change in the o u tp u t o f the m ining industry, change in cloudiness, and change in electricity volume.

In the econom etric m odel we use the m ethod which is proposed by Hellw ig (G an czarek, 2002). We choose the variable co m b in atio n with three variables: change in electricity volume, price changes in the industry producing and delivering energy, gas and w ater and change in the D eutsch e m ark price. T h e integral capacity o f this com bination is the greatest o f all possible co m b in atio n s o f the variables from T ab le 1.

H = 0,5545.

We use the o rd in ary least squares estim ate p aram eters o f th e m odel for this com binations:

(8)

and we receive:

R C , = — 0.016 + 0.762/S( — 0.236/-7, + 0.023RW,.

(0.008) (0.564) (0.194) (0.007) 1

In the third m odel we select the variables based on the g rap h analysis m eth od and receive the follow ing variables: change in the ra te o f un em p­ loym ent, price changes in the m ining industry, the m a n u fa ctu rin g industry, and the industry producing and delivering energy, gas an d w ater, as well as ch ange in the o u tp u t in the m ining industry (G an czarek 2002). T h e A PT m odel fo r electricity prices can described w ith the eq uation :

RC, = ß 0 + ß z f 21 + ß j it + ßbfbt + ß s f i l + ß s f s i + ß l2RW, + (15) W e use the ordin ary least squares estim ate p aram eters for this m odel and w ith a lp h a reliabilities a t a = 0,05 o f T-statistics an d F -statistics we receive:

R C t = 0.219 - 1.455/2t + 0.8 0 6 /5t —0.23 4/8, + 0.034J?Wi. , (0.072) (0.444) (0.522) (0.022) (0.003) U '

V. C O M P A R IS O N O F T H E E F F E C T IV E N E S S O F T H E M O D E L S

W e com p are the three m odels with the changes in electricity price listed on the D ay A head M ark et in 2001 and the results o f the analysis are presented below.

T able 4. C o m p ariso n o f the values o f changes in electricity price o n the D a y A head M a rk e t in 2001 with the values o f the presented m odels

M o n th C h an g e in price on D A M F a c to r analysis (12) H ellw ig’s m ethod (14) G ra p h analysis (16) T he residuals o f m odel (12) T h e resid u als o f m odel (14) T he residuals o f m odel (16) 1 0.0355 0.0380 0.0444 0.0379 -0.0025 -0 .0 0 8 9 -0.0024 2 0.0088 0.0095 -0.0119 0.0055 -0.0007 0.0207 0.0033 3 0.0069 0.0056 0.0212 0.0079 0.0012 -0.0143 -0 .0 0 1 0 4 0.0248 0.0268 0.0031 0.0281 -0.0019 0.0217 -0.0033 5 -0 .0 1 3 5 -0.0168 -0.0074 -0.0150 0.0033 -0.0061 0.0015 6 -0 .0 1 4 2 -0.0141 -0.0191 -0.0155 -0.0001 0.0050 0.0014 7 -0 .0 0 3 0 -0 .0 0 2 6 -0.0045 -0.0054 -0.0004 0.0014 0.0024 8 -0 .0 1 9 4 -0 .0 2 0 2 -0.0274 -0.0257 0.0009 0.0080 0.0063 9 -0 .0 5 3 2 -0.0523 -0.0349 -0.0442 -0.0009 -0.0183 -0.0090 10 -0.0433 -0.0428 -0.0055 -0.0431 -0.0004 -0.0378 -0 .0 0 0 2 11 0.0402 0.0362 0.0195 0.0405 0.0040 0.0207 -0.0002 12 -0 .0 0 5 0 -0 .0 0 2 5 -0.0128 -0.0062 -0.0025 0.0078 0.0012

(9)

T abic 5. E rro rs o f the m odels

Sym bol o f variable T h e A F I' m odel (12) F a c to r analysis T h e A P T m odel (24) M odel o f H ellw ig T h e A P T m odel (16) M odel o f analysis o f g raph R w 0.997 0.777 0.991 R 2 0.994 0.605 0.982 S u 0.004 0.021 0.006 D u rb in -W a tso n 1.386 1.470 1.450

--- Change in price on DAM — — Model of factor analysis ... Model of Hellwig --- Model of graph analysis

Figure 2. V alues o f em pirical and theoretical changes in electricity price on D A M

F igure 2 show s th a t the A P I' m odel (12), w hich is based on the factor analysis, describes changes in the electricity price on D A M in 2001 m ost accurately. T h e stan d ard deviation (S u) o f this m odel is sm aller th an in o th er m odels. T h e determ ination coefficient R 2 = 0.994 m eans th a t this m odel describes the price change on D A M with the accuracy o f 99.4% . But we should no t com pare the determ ination coefficients ( R 2) and m u lti­ c o rrelatio n coefficient (R w), because the m odels have a different num ber o f variables. D u rb in -W atso n test has the lowest value for th e m odel (12), so this m odel has the highest au to co rrelatio n o f residuals.

In this p ap e r we have presented three m ethods o f selecting variables for econom etric m odels and we developed three different m odels. In m y opinion, the m odel which we developed with the principal co m pon ents m ethod is the best. B ut the selection depends on individual preferences and can be different.

(10)

R E F E R E N C E S

B arczak A .S ., B iolik J. (1999), P odstaw y ekonom etrii, A E , K atow ice. C h o w G .C . (1995), E konom etria, P W N , W arszaw a.

G a n cz a rek A. (2002), P rzew idyw anie k ształto w an ia się cen energii elektrycznej n a R D N polskiej giełdy energii, [in:] M odelowanie procesów ekonom icznych, W S H -S G G W , Kicl- ce W arszaw a, 21-28.

G a n cz a rek A . (2002), W eryfikacja em piryczna ceny energii elektrycznej n a R D N G iełdy Energii SA , [in:] M e to d y ilościowe w badaniach ekonom icznych, S G G W , W arszaw a, 64-72. Jaju g a K . (1993), S ta ty sty cz n a analiza wielowymiarowa, P W N , W arszaw a.

M ielczarski W. (2000), R yn e k energii elektrycznej. W ybrane a sp ekty techniczne i ekonom iczne, A gencja R y n k u Energii SA, W arszaw a.

O stasiew icz W. (od.) (1999), S ta ty sty czn e m etody analizy danych, A E , W rocław .

Alicja Ganczarek

M O D E L A P T D LA C E N Y E N E R G II E L E K T R Y C Z N E J N A R D N G IE Ł D Y E N E R G II SA

Streszczenie

W p ra cy przedstaw iliśm y m odel zależności zm iany ceny energii elektrycznej od czynników m ak ro ek o n o m iczn y ch , takich ja k zm iany: k u rsu d o lara , k u rsu m ark i, inflacji, b ezrobocia, cen p ro d u k c ji w górnictw ie, kopalnictw ie o ra z p rzetw órstw ie przem ysłow ym , w ydobyciu węgla k a m ien n eg o o ra z czynników pogod o w y ch . P rzedm iotem b a d a ń jes t e m p iry cz n a w eryfikacja m o d elu ceny n a R D N G iełdy E nergii SA w 2001 r. z w y k o rzy stan iem m eto d y głów nych składow ych.

O trzy m an e w yniki sk o n fro n to w aliśm y z w ynikam i uzyskanym i d la m odelu A P T , w któ ry m d o d o b o ru sk ładow ych m odelu zastosow aliśm y m eto d ę analizy grafów i m eto d ę o p tym alnego w yboru p re d y k ta n t zap ro p o n o w an y ch przez Z. Hellw iga. Celem tej p racy jest w yłonienie m odelu efektyw niej opisującego k ształto w an ie się cen n a R D N .

Cytaty

Powiązane dokumenty

Nie przeczę, iż inną jest organiza- cya duchowa tworzącego poety, a działającego społecznika ; różność tę wywołuje odmienny układ elementów i sił

Biblique Pontijical dans la vallée du Jourdain dans l'ensemble de l'ar- chéologie de Palestine. Musée des antiquités de

Zadałbym pytanie o wpływ rozwoju ruchu w miastach na jego rozwój na wsi oraz wpływ tego, co się działo wówczas na wsi, na całokształt sytuacji w kraju.. Zadałbym pytanie

Od pewnego czasu dał się bowiem zauważyć zastój w opracowywaniu społeczno-gospodarczych dziejów miast w czasach nowożytnych, a ukazujące się ostatnio prace,

MS01.. Pretest 2: relatedness between physical form and the intended product metaphors Pretest 2 aimed to test whether people were able to relate the physical form to the

availability and development of the water quality will be necessary to ensure human health nowadays and in the future (USEPA, 2012). A number of recent studies in Rwandan

By using a flat plate in the fixed bed reactor at an initial HA concen- tration of 10 mg·L 1 the solar photocatalytic degradation of HA was 3.4 times lower than in the case of the

Ship motion causes discomfort and injury to people, damage to cargo, fatigue stressing in structure, loss of speed and shipping of water.. The ideal ship would have zero mOtion in