• Nie Znaleziono Wyników

On points of the approximate semicontinuity

N/A
N/A
Protected

Academic year: 2021

Share "On points of the approximate semicontinuity"

Copied!
4
0
0

Pełen tekst

(1)

ZESZYTY NAUKOWE WY ŻSZEJ SZKOŁ Y PEDAGOGICZNEJ w BYDGOSZCZY P r o b le m y Ma t ema t y c z n e 1985 z . 7 TOMASZ NATKANIEC WS P w B y d g o s z c z y ON POINTS OF THE A P P R O X IM A T E S E M IC O N T IN U IT Y Ws u s e t h e f o l l o w i n g n o t a t i o n . T h e s i g n I d e n o t e s t h e S '- i d e a l o f t h e M e a s u re z e r o s u b s e t s o f H, I f X f R I s me a s u r a b l e t h e n if £x> d e n o t e s t h e s e t o f a l l d e n s i t y p o i n t s o f X. F o r t h e f u n c t i o n f : R —* R t h e s i g n s a p - l l m i n f f (t ) and * x o p - 1 1 * su p f ( t ) d e n o te the a p p ro x im a te ly l o w e r and u p p e r t -*■ X l i m i t o f f a t x , r e s p e c t i v e l y . N o t i c e t h a t a p - l i m i n f f ( t ) = su p [ y : D * ( x , [ t : f ( t ) < . y } ) = 0^ and t - > x a p —1 1 * su p f ( t ) = i n f £ y : D * ( x , [ t : f ( t } > y } ) = 0 } , w h e re t e ^ X d ; c x , a ) = i ± » e u p ( - 5 - i ^ n . m ( J ) < i z , . n •♦co T h e s i g n s A ( f ) , S t f ) , S 1 C f ) d e n o t e t h e s e t s o f a l l p o i n t s BL A a t w h ic h f i s a p p r o x im a te c o n t in u o u s , u p p e r and l o w e r s e m i-c o n t ln u o u s , r e s p e c t iv e ly ! A ( f ) = j i t H : f Cx ) = a p - l l m I n f f ( t ) = a p - l i m su p f ( t ) } , 1 t - » x t + x S ( f ) = $ xfcR: f ( x ) ^ a p —11m su p f ( t > i , a t - » x T C f ) c {"x A R : f ( x ) > a p - l i m su p f (t > ^ , t -*x S 1 ( f ) = [ x C R s f t x ) < a p - l l m i n f f ( t ) j , * t + x T 1 ( f ) = f x £ R s f ( x ) < a p - l l m i n f f ( t ) } . a t x Z . G ra n d e sh ow ed i n t h e f o l l o w i n g f a o t s . FACT O. F o r e v e r y f u n o t i o n f : R —>■ R t h e s e t A ( f ) i s m e a s u r a b le . FACT I . F o r e v e r y f : R —*■ R we h a v e T C f) V T 1 ( f ) t 3 .

j

CL 6L FACT 2 . T h e s e t s Sa ( f ) - A ( f ) and S ^ C O - A ( f ) d o n o t c o n t a i n m e a s u r a b le s e t s o f t h e p o s i t i v e m e a s u r e . FACT 3 » L e t A ,B ,C sure s u b s e t s o f R s u ch t h a t

(2)

13 4 - CfcJ, - B S A and C £ A -B , - t h e r e e x i s t s a Gtf s e t D s u ch t h a t B = D -C , - t h e s e t A -B do n o t c o n t a i n a m e a s u r a b le s e t s o f p o s i t i v e m e a s u r e , - R-D i s t h e sum M U N, M and N a r e a F ~ s e t s , N6-3 and M S 'f ( M ) . Th en t h e r e e x i s t s a f u n c t i o n f : R — R su o h t h a t A ( f ) = B, S ( f ) = A , a and T { f ) = C. a My r e s u l t s a r e f o l l o w i n g { s e e [ 2 j ) . FACT U, (M A ) L e t A , C, A ” and C ' a r e s u b s e t s o f R s u ch t h a t ( i ) C u C ' 6 3 , ( i i ) B = A n A ' , ( i i i ) C £ A -B and c ' s a ' - B , ( i v ) t h e r e e x i s t s a G ^ s e t D s u c h t h a t B = D - ( C ^ C ; , ( y ) t h e s e t s A -B and a'- B do n o t c o n t a i n a m e a s u r a b le s e t s o f t h e p o s i t i v e m e a s u r e , ( v i ) t h e r e e x i s t s a s e q u e n c e (G ^ -) n ^ jj o f o p e n s e t s s u c h t h a t G . € G , D a H G and 0 , T ^ f{G ) - B i s n+1 n ’ nfcN n n e N ' n ' a s e t . 0 Then ( x ) t h e r e e x i s t s a f u n c t i o n f : R — R s u c h t h a t A ( f ) = B, S ( f ) = A, T ( f ) = C, s l ( f ) = A ' and T l ( f ) = C ' . a a a a

FACT 5 . (M A ) L e t A, B, C, A* and C ' a r e s u b s e t s o f R and t h e c o n d i t i o n s ( i ) - ( v ) and

( v i i ) R-D i s t h e sum M U N , M and N a r e a F^. s e t s , N t .3 and M S ( f CM )

h o l d . Th en t h e s t a t e m e n t { x ) h o ld s t o o .

REMARK 0 . N one o f t h e i m p l i c a t i o n s { v i ) C v i i ) and ( v i i ) ( y i ) ho I d s .

Ve c o n s i d e r t h e f o l l o w i n g e x a m p le s .

EXAMPLE 0 . L e t C £ ^ 0 , 1 > b e t h e C a n t o r ' a s e t s u c h t h a t C £ .t ! and P b e t h e s e t o f a l l b i r a t e r a l l i m i t p o i n t s o f

(3)

I

C . S ln o e t h e s e t C - P i s d e n s e i n C and P i s o f t h e s e c o n d c a t e g o r y i n C, P i s n o t Fg. s e t .

L e t us assum e t h a t B = R -P . T h en t h e c o n d i t i o n ( v i ) d o e s n o t h o l d . I f D i s a G ^ s e t and B £= D t h e n R-D P and R-D & J . Thu s f o r M = 0 and N = R-D we h a v e R-D = M U N . So t h e c o n d i t i o n ( v i i ) h o l d s . EXAMPLE 1 . L e t C b e t h e C a n t o r 's s e t s u c h t h a t C 4- ^ and C £ < 2 , 3 > , c ' b e t h e s e t o f a l l b i r a t e r a l l i m i t p o i n t s o f C and C 11 = C - c ' . I t i s c l e a r t h a t * f ( C ) £ C ' . I f M £ C ' i s a F<y s e t t h e n N = C-M i s a Gj- s e t and N i s d e n s e i n C . H en ce N i s r e s i d u a l i n C. S u p p o se t h a t N i s a F - . s e t . Th en N = F and £> X l & J N n a r e c l o s e d and p a i r w i s e d i s j o i n t s e t s [ 3 ] , S in c e N i s o f t h e s e c o n d c a t e g o r y i n C, t h e r e e x i s t s Fn w h ic h i s o f t h e s e c o n d c a t e g o r y i n C. S in c e Fq i s c l o s e d , t h e r e e x i s t s an o p e n i n t e r v a l I s u ch t h a t 0 0 C () I £ F ^ . H en ce Fn ^-^ •

A ssu m e that B - D - R -C . T h e n the c o n d it io n (v ii) d o e s n o t h o ld .

L e t Gn = D f o r n = 1 , 2 , . . . . N o t i c e t h a t B = 0* H en ce t h e c o n d i t i o n ( v i ) h o l d s . REMARK 1. T h e r e e x i s t s a s e t B and t h e r e e x i s t s a f u n c t i o n f : R — ^ R s u c h t h a t A ( f ) = B and t h e c o n d i t i o n s ( v i ) and ( v i i ) do n o t h o l d . We c o n s i d e r t h e f o l l o w i n g e x a m p le . EXAMPLE 2 . L e t P b e t h e s e t d e f i n e d i n E x a m p le 0 ,C b e t h e C a n t o r 's s e t fr o m E x a m p le 1 and B = R . ( C U P ) . L e t g : R -j> R b e a f u n c t i o n s u c h t h a t A ( g ) = R -P an d h : R - » R b e a f u n c t i o n su ch t h a t A ( h ) = R -C . L e t us d e f i n e a f u n c t i o n f : R — > R a s f o l l o w s f ( x ) = g ( x ) + h (x ). I t i s e a s y t o show t h a t A ( f ) = B and t h e c o n d i t i o n s ( v i ) and

( v i i ) d o n o t h o l d . PROBLEMS ( 1 ) L e t us assum e t h a t f o r A , a' , B , C, c' S R t h e c o n d i t i o n s ( i ) - ( v ) h o l d . D oes t h e n t h e s t a t e m e n t ( x ) h o l d ? (2 ) I s t h e r e f o r e v e r y f u n c t i o n f :R —* R a G^. s e t D su ch t h a t A ( f ) = D - ( T ( f ) u T ^ f ) ) ? >

ft

ft

1 3 9

(4)

136 REFERENCES [ 1 ] G ra n d e Z . , Q u e lq u e s r e ma r q u e s s u r l a s e m ic o n t i n u i t e su p a r i e u r e , Fund. M a th . C X X V / l / l985/ [2 ] N a tk a n i e c T . , Zbi o r y p u n k tó w c i ą g ł y c h i p ó ł c i ą g ł o ś c i f u n k c j i r z e c z y w i s t y c h , d o c t o r ' s t h e s i s [ 3 ] Si e r p iń s k i W. , S u r u n e p r o p r i e t e d e s en s e a b l e s F^_ l i n e a i r e s , Fh n d. M a th . 14 ( 19 2 9 )

Cytaty

Powiązane dokumenty

Denel, Equivalences des continuit´ es des applications multivoques dans des espaces topologiques, Publication n o 111, Laboratoire de Calcul, Universit´ e de Lille, 1978. [4]

Williams, Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure, Appl. Kirk, Topics in Metric Fixed Point Theory,

duces a Koebe function was by shown Pfluger (8), who made use of the fact that the omitted arc of any support point of S has an asymptotic line at °°.) In any case terminal support

If the opposite is not stated explicitly, we denote vectors by lower-case italic and Greek letters and their coordinates by the same letters with appropriate lower indices..

Our proof owes much to Wooley’s ideas, and it is therefore natural to apply it to an arbitrary form for which the surface contains 3 rational coplanar lines.. We hope that

We study the distribution of rational points on certain K3 surfaces defined over an algebraic number field k of finite degree, namely the Kummer surfaces S/k attached to

It is shown, among other results, that the left approximate point spectrum t , has the projection property on the unital Banach algebra A if and only if every

ANNALES SOCIETAT1S MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXII (1981) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO1. Séria I: PRACE MATEMATYCZNE