• Nie Znaleziono Wyników

A study of organic matter and habitat of gaseous hydrocarbons in the Miocene strata of the Polish part of the Carpathian Foredeep

N/A
N/A
Protected

Academic year: 2021

Share "A study of organic matter and habitat of gaseous hydrocarbons in the Miocene strata of the Polish part of the Carpathian Foredeep"

Copied!
9
0
0

Pełen tekst

(1)

Przegląd Geologiczny, vol. 46, nr 8/2, 1998

WIĘCŁAW D. 1998 - A study of organie matter and habitat of gaseous hydrocarbons in the Miocene strata of the Polish part of the Carpathian Foredeep. Prz. Geol., 46: 742-750.

KOTLARCZYK J. 1988 - Ewolucja tektogenu karpackiego w mioce-nie. Przew. LIX Zjazdu PTG. Karpaty Przemyskie, Kraków: 5-15.

KOZIKOWSKI H. 1966 - Próba ustalenia "prazbiornika" ropy fliszu Karpat Północnych. Nafta, 22: 65-75.

KVENVOLDEN K.A. 1988 - Methane hydrate - a major reservoir of carbon in the shallow geosphere. Chem. Geol., 71: 41-5l.

KVENVOLDEN KA. & MCMENAMIN M.A. 1980 - Hydrates of na-tural gas: a review of their geological occurrences. U.S. Geol. Sury. Circ., 825: 1-11.

ŁUCZKOWSKA E. 1967 - Paleoekologia i stratygrafia mikropaleonto-logiczna miocenu okolic Grzybowa koło Staszowa. Acta Geol. Pol., 17: 219-249.

MIALL J. 1990 - PrincepIes of sedimentary basin analysis. 2nd edition, Springer, Berlin: 668.

NEY R 1968 - Rola rygla krakowskiego w geologii zapadliska przed

-karpackiego i rozmieszczeniu złóż ropy i gazu. Pr. Geol. Kom. Nauk Ge-ol. PAN Oddz. w Krakowie, 45: 7-82.

NEY R, BURZEWSKI W., BACHLEDA T., GÓRECKI W., JAKÓB-CZAK K & SŁUPCZYŃSKI K 1974 - Zarys paleogeografii i rozwoju litologiczno-facjalnego utworów miocenu zapadliska przedkarpackiego.

Pr. Geol. Kom. Nauk Geol. PAN Oddz. w Krakowie, 82: 3-65.

OSZCZYPKO N. 1982 - Explanatory notes to lithotectonic molasse profiles of the Carpathian Foredeep and in the Polish part of the Western Carpathians. Verbff. Zentralinst. Phys. Erde Akad. Wiss. DDR, 66: 95-115. OSZCZYPKO N. 1996 - Mioceńska dynamika polskiej części zapadli-ska przedkarpackiego. Prz. Geol., 44: 1007-1018.

OSZCZYPKO N. 1997 - The Ear1y-Middle Miocene Carpathian peri-pheral foreland basin (Western Carpathians, Poland). Prz. Geol., 45:

1054-1063.

OSZCZYPKO N. & ŚLĄCZKA A. 1985 - An attempt to palinspatic re

-construction of Neogene Basins in the Carpathian Foredeep. Ann. Soc. Geol. Pol., 55: 55-76.

OSZCZYPKO N. & ŚLĄCZKA A. 1989 - Evolution of Miocene basin in the Polish Outer Carpathian and their Foredeep. Geol. Carpath., 40: 9-28.

OSZCZYPKO N. & TOMAŚ A. 1985 - Tectonic evolution ofthe Car

-pathian Foredeep. Kwart. Geol., 29: 73-89.

STEININGER F.F., BERNOR R.L., & FAHLBUSCH V. 1990 - Euro-pean Neogene marine-continental chronologie correlation. [In:] Europe-an Neogene mammaI chronology, Lindsay E.H., Fahlbusch V., Mein P. (eds). Plenum Press. New York: 15-46.

SZAFRAN S. 1990 - Warunki paleotemperaturowe utworów miocenu autochtonicznego zapadliska przedkarpackiego w Polsce. Spraw. z Pos. Komis. Nauk. PAN Kraków, 32: 162-164.

WAPLES D.W. 1980 - Time and temperature in petroleum formation application ofLopatin method to petroleum exploration. Amer. Ass. Pet-roI. Geol. BulI., 64: 916-926.

WAPLES D.W. 1985 - Geochemistry in petroleum exploration. Int. Hu-man. Res. Dev., Boston: 23~.

WDOWIARZ S. 1983 - Zagadnienie południowo-wschodniego przedłu­ żenia aulakogenu środkowopolskiego w geosynklinie karpackiej. Prz. Geol., 31: 15-2l.

WHITICAR M.J., FABER E. & SCHOELL M. 1986 - Biogenic meta-ne formation in marimeta-ne and fresh water environment, C02 reduction vs.

acetate fermentation - Isotopie evidence. Geochim. Cosmochim. Acta, 50: 693-709.

A study of organie matter and habitat of gaseous hydroearbons

in the Mioeene strata of the Polis h part of the Carpathian Foredeep

Maciej

J.

Kotarba*, Tadeusz Wilczek**,

Paweł

Kosakowski*, Adam Kowalski*,

Dariusz

Więcław*

Geoehemieal studies on the organie matter jrom the autoehthonous Miocene strata oj the Carpathian Foredeep demonstrated the presenee oj gas-prone type 1/1 kerogen in both the Upper Badenian and Lower Sarmatian sediments with rare admixtures oj algal type /1 kerogen. The TOC eontents vary jrom 0.02 to 3.22 wt. %. Down to the depth 3,200 meters the organie matter is immature. 1ts transjormation degree eorresponds to the vitrinite refleetance Rojrom 0.25 to 0.6% and to the Rock Eval Tmax temperatures jrom 415 to 4380

C. Insignifieant variability in spatial and depth distribution oj geoehemieal parameters and indiees (TOC, TEITOC, Tmax, HI, Ro, CPI, etc.) suggest that deposition eonditions oj the organie matter were general!y homogenous within the jul! thiekness oj Mioeene sequenee down to the reeent depth about 3,200 meters. Sueh eonditions resulted in the laek oj diversity oj the TOC, the genetie type and the transjormation degree ojthe studied kerogen. The Miocene terrestrial OM is immature and generated almost exclusively the mierobial methane. The low-temperature thermogenie proeesses have been aetive beneath the depth about 3,200 meters i.e., mainly under the Carpathian overthrust.

Key words: petroleum exploration, geoehemieal methods, stable iso top es, organie materials, kerogen, natural gas, genesis, Miocene, Carpathian Foredeep, Poland

Introduction

The studies reported below aimed to measure the geo-chemical parameters and indices

ot

the potential source rocks (c1aystones and mudstones) within the autochthonous Miocene sequence

ot

the Carpathian Foredeep in order to evaluate their hydrocarbon generation potential during transtormation

ot

the organie matter (OM).

Genetic constrains

ot

depositional environment

ot

the OM can be characterized by hydrocarbon geochemical

pa-*University of Mining and Metallurgy, Department of Fossil Fuels, al. Mickiewicza 30,30-059 Kraków, Poland,

email: kotarba@uci.agh.edu.pl

**Polish Oil and Gas Company, Geological Office Geonafta, ul. Jagiellońska 76,03-301 Warszawa, Poland

rameters: Rock Eval hydro gen (HI) and oxygen (Ol) indiees, n-alkanes and isoprenoids distribution, stable carbon isotope composition in bitumens, their individual tractions (satura-ted hydrocarbons, aromatic hydrocarbons, resins and as-phaltenes) and kerogen as well as maceral compositions. Transtormation degree of the OM was evaluated

trom

the vitrinite reflectance Ro and the Rock Eval T max temperature.

The selection

ot

core material collected from wells

tor

the studies on dispersed OM takes into consideration the spatial lithotacial development

ot

the autochthonous Mio-cene molasse tormation in the Polish part

ot

the Carpathian

Foredeep. Thus, the

tour

representative test areas were

cho-sen in the Carpathian Foredeep for comparison

ot

the pre-sumed spatial variability of geochemie al parameters and indices

ot

the source rocks which practically reflect the variability of hydrocarbon generation conditions (Fig. 1).

(2)

repre-...

.

-

-

~

~

--...

~

... ,./._.\

r .J . -{ZAKOPANE. \ ...

:,. • r

,.

.-.

(

'\.-

,.

SLOVAKIA

o

20 40(km) c i

===='

__

II1II' ."\

...

D

outer part of the

Carpathian Foredeep

D

autoehthonous Mioeene northern range of

strata ~ Mioeene strata .---7~ isobaths of the basal surfaee of Mioeene strata (km)

_

inner part of the Carpathian Foredeep

D

the Carpathians Mioeene strata L . - _ - J on the Carpathians margin of the ~ Carpathian overthrust

inferred southern range of Mioeene strata o

tested wells

@)

representative zones of inferred range of reeent geoehemieal eharaeteristies remnants of inner basin of organie matter

Fig. 1. Sketch map of central and eastern parts of the Polish Carpathian Foredeep and location 01' studied wells and test areas. For key to the wells see the text

sent the generation conditions of the outer zone of the Carpathian Foredeep, i.e. north of the recent edge of the Carpathian overthrust whereas the areas C (Rzeszów) and D (Przemyśl) ilustrate such conditions along the recent edge of the Flysch Carpathian overthrust (Fig. 1).

For laboratory analyses 237 c1aystone/mudstone core sampIes were collected: 55 sampIes from Upper Badenian strata and 182 sampies from Lower Sarmatian strata. Total-ly, 41 wells were sampled in the four test areas, as specified below:

A test area - 4 wells: Czarny Las 3 (CL-3), Łazy 9

(La-9), Szczepanów 8 (Sz-8) and Zasów 2 (Za-2),

B test area - 18 wells: Brazylia 6 (Br-6), Brzóza Stadnicka 1 (BS-1), Dębina 2 (De-2), Dębina 4 (De-4), Dobra 4 (Do-4), Kańczuga 24 (Ka-24), Komorów 2 (Km-2), Komorów 3 (Km-3), Kosowy l(Ko-l), Lipnica 12 (Li-12), Lipnica 17 (Li-17), Łętownia 3 (Lt-3), Łętownia 4 (Lt-4),

Mołodycz 1 (Mo-l), Mołodycz 3 (Mo-3), Mołodycz 4 (Mo-4), Rudka 7 (Ru-7) and Żołynia 65 (Zo-65),

C test area - 14 welIs: Nosówka 8 (N-8), Sędziszów 30

(Se-30), Jodłówka 4 (Jo-4), Jodłówka 5 (Jo-5), Jodłówka 8 (J0-8), Jodłówka 14 (10-14), Jodłówka 16 (J0-16), Krasne 26 (Kr-26), Krasne 27 (Kr-27),Rączyna6 (Ra-6) , Rączyna 8 (Ra-8), Tarnawka 2 (Ta-2), Zagórze 1 (Zg-l) and Zalesie 21 (Za-2),

D test area - 5 wells: Buszkowiczki 4 (Bu-4),

Jaksma-nice 257 (J-257), Maćkowice 1 (Ma-l), Przemyśl 262 (P-262) and Przemyśl 268 (P-268).

Authors are grateful to Dr M. Wagner and Mrs G. Semyrka for petrographic studies_

The study has been undertaken as a part of research projects of the Carparhian Foredeep financed by the State Committee for Scientific Research in Warsaw (grant No. 992149203) and National Fund for Environmental Protec-tion and Water Management (grant No_ 2.14.0100.00_0).

Geological setting and gas occurrence

The Carpathian Foredeep is one of the largest sedimen-tary basins in Central Europe. It forms an Alpine-age tecto-nic trough filled with the Miocene marine molasse. The

(3)

Przegląd Geologiczny, vol. 46, nr 8/2, 1998

Tab. 1. Ranges and arithmetic mean values of pyrolytic Rock Eval and extraction data for autochthonous Miocene strata

UPPER BADENIAN

Stratigraphy Values Number

min. max. mean ofsamples min.

A Area TOC (wt. %) 0.30 1.48 0.74 22 Tmax (oC) 419 430 426 22 HI (mg HC/g TOC) 60 120 85 22 Ol (mg C02/g TOC) 83 342 177 22 PI 0.02 0.23 0.07 22 TEITOC (mg/g) 32 68 50 22 HC/TOC (mg/g) 12 26 19 15 B Area TOC (wt. %) 0.43 1 0.02 Tmax (oC) 429 1 422 HI (mg HC/g TOC) 76 1 32 Ol (mg C02/g TOC) 153 1 45 PI 0.08 1 0.00 TE/TOC (mg/g) 42 1 16 HCITOC (mg/g) 23 1 6 C Area TOC (wt. %) 0.31 1.08 0.58 31 0.10 Tmax (oC) 427 438 431 31 415 HI (mg HC/g TOC) 89 207 128 31 29 Ol (mg C02/g TOC) 4 231 108 31 41 PI 0.01 0.19 0.06 31 0.00 TE/TOC (mg/g) 17 91 46 26 14 HCITOC (mg/g) 15 66 28 15 16 D Area TOC (wt. %) 0.60 1 0.37 Tmax COC) 431 1 426 HI (mg HC/g TOC) 106 1 74 Ol (mg C02/g TOC) 60 1 44 PI 0.03 1 0.01 TE/TOC (mg/g) 47 1 21 HC/TOC (mg/g) 20 1 14 TOTALAREA TOC (wt. %) 0.30 1.48 0.64 55 0.02 Tmax (OC) 419 438 429 55 415 HI (mg HC/g TOC) 60 207 109 55 29 Ol (mg C02/g TOC) 4 342 135 55 41 PI 0.01 0.23 0.07 55 0.00 TE/TOC (mg/g) 17 91 48 50 14 HC/TOC (mg/g) 12 66 23 32 6

trough extends along the front of the Carpathian orogenie

belt, from Vienna (Austria) in the west towards the Iron Gate

(Danube) in Romania in the south-east (Fig. l) and partly also underlies the Carpathian nappes. The Carpathian Fore-deep is divided into the two basins: outer and inner (Ney et

al., 1974; Oszczypko, 1996, 1997) (Fig. 1). The folded

Miocene strata of the Stebnik and Zgłobice units known

from the inner basin in the Polish part of the Carparhian Foredeep (Ney, 1968; Oszczypko, 1996, 1997) are thought to be unimportant for petroleum exploration. The eastern part of the outer basin (east from Kraków) is filled with

Badenian and Lower Sarmatian sediments of the following

thicknesses: Lower and Middle Badenian - from O to 300 m,

Upper Badenian - from O to 1,700 m, and Lower Sarmatian

- from O to 2,900 m (Ney et al., 1974). Most of the

discovered gas fields is reservoired within the Upper Bade

-LOWER SARMA TIAN TOTAL MIOCENE

Values Number Values Number

max. mean ofsamples min. max. mean ofsamples

0.30 1.48 0.74 22 419 430 426 22 NOSAMPLES 60 120 85 22 83 342 177 22 0.02 0.23 0.07 22 32 68 50 22 12 26 19 15 3.22 0.75 89 0.02 3.22 0.75 90 433 430 87 422 433 430 88 160 95 87 32 160 94 88 274 140 87 45 274 141 88 0.15 0.04 87 0.00 0.15 0.04 88 400 41 89 16 400 41 90 89 20 50 6 89 20 51 l.l9 0.62 71 0.10 l.l9 0.61 102 433 430 70 415 438 430 101 170 111 70 29 207 116 101 404 133 70 4 404 125 101 0.08 0.03 70 0.00 0.19 0.04 101 78 45 57 14 91 45 83 44 24 22 15 66 25 37 0.78 0.66 22 0.37 0.78 0.66 23 433 430 22 426 433 430 23 132 100 22 74 132 101 23 237 113 22 44 237 111 23 0.07 0.03 22 0.01 0.07 0.03 23 58 37 22 21 58 37 23 32 23 10 14 32 23 11 3.22 0.69 182 0.02 3.22 0.68 237 433 430 179 415 438 430 234 170 102 179 29 207 104 234 404 134 179 4 404 134 234 0.15 0.04 179 0.00 0.23 0.04 234 400 42 168 14 400 43 218 89 21 82 6 89 22 114

nian and Lower Sarmatian strata developed as c1ay-sandy, mainly deltaie facies (Karnkowski, 1989). Maximum sedi-mentation rate of U pper Badenian sediments was 1,500 mIMa, and for the Lower Sarmatian ones it reached 5,000 mIMa. On the other hand, the Lower and Middle Badenian strata

comprise shallow-water, psammitic, argillaceous and

chem-ical sediments. The autochthonous Miocene sediments of

the outer basin of the Carpathian Foredeep have not been

affected by Alpine orogenic movements and rest almost

horizontally upon the Precambrian-Paleozoic-Mesozoic

basement (Oszczypko, 1982, 1996).

The gas fieIds discovered in the autochthonous Miocene of the Polish part of the Carpathian Foredeep contain practi-cally onI y the methane accompanied by small amounts of higher gaseous hydrocarbons. CumuIative production yieIded

(4)

Tab. 2. Vitrinite reflectance Ro and maceraI composition of organie matter from autochthonous Miocene strata

Depth

I

Strati- Ro

Macerai groups (%)

(m) graphy (%) Vitrinites Inertinites Exinites

Łaz)' 9 wen (A areał

903 U.B. 0.29 74.7 25.3 0.0

Rudka 7 wen (B areał

604 L.S. 0.25 70.9 29.1 0.0

1252 L.S. 0.45 80.1 19.1 0.0

1354 L.S. 0.40 79.5 20.5 0.0

Jodłówka 4 wen (C areał

1769 L.S. 0.35 82.7 17.3 0.0 1997 L.S. 0.43 80.9 19.1 0.0 2191 L.S. 0.45 79.3 20.7 0.0 2349 L.S. 0.45 81.9 18.1 0.0 2519 L.S. 0.50 80.6 19.4 0.0 2668 L.S. 0.55 74.5 25.5 0.0 2792 U.B. 0.55 84.0 16.0 0.0

Krasne 27 wen (C areał

1410 L.S. 0.42 n.a. n.a. n.a.

2111 L.S. 0.44 n.a. n.a. n.a.

Rgcz)'na 6 wen (C areał

3412 U.B. 0.45 n.a. n.a. n.a.

Rgcz)'na 8 well (C area)

2380 L.S. 0.44 n.a. n.a. n.a.

2888 U.B. 0.44 n.a. n.a. n.a.

U.B. - Upper Badenian, L.S. - Lower Sarrnatian, n.a. - not ana1ysed

Tab. 3. Ranges of geochemieal indiees of n-alkan es and isoprenoids for autochthonous Miocene strata

Stratigraphy UPPER BADENIAN LOWER SARMATIAN

Values Number Values Number

Ratios min. max. sampies of min. max. sampies of

CPI(TOTAL) 1.11 1.96 10 0.79 1.84 18 CPI(17-23) 0.85 1.33 10 0.92 1.21 18 CPI(25-31) 1.16 2.37 10 0.57 3.25 18 PrlPh 0.15 1.45 10 0.23 1.17 18 Pr/n-Cl7 0.81 6.13 10 0.89 4.51 18 Ph/n-CI8 1.12 21.00 10 0.79 3.44 18 i(b'

i

80 -~ :(a) 60 40 1/1 <II Q. 20 f -i - -i - - l--E tli 1/1 'O "-<II 80 .Q E :I 60 z 40 20

Tab. 4. Results of stable carbon isotope analyses of bitumins, their fractions and kerogen from autochthonous Miocene strata

StabIe carbon isotope composition ó13C (%0)

Depth Strati- Bitu- Hydrocarbons Resins

AsphaI-(m) graphy men tenes

satura-

aroma-ted tic

Łazy 9 wen (A area)

903 U.B. -27.1 -27.3 -26.8 -26.9 -26,8

1001 U.B. -27.0 -28,2 -27,8 -27.2 -26.4

Szczepanów 8 well (A areał

888 U.B. -27.4 -28.5 -27.6 -27.0 -27.0

Brzóza Stadnicka 1 wen (B areał

353 L.S. -28.1 -28.2 -28.0 -28.3 -27.8

886 L.S. -28.0 -28.6 -27.5 -27.1 -27.8

1590 L.S. -28.2 -28.6 -28.0 -27.3 -27.9

Łś<townia 3 well (B area)

756 L.S. -28.4 -28.4 -27.1 -28.2 -27.2

856 L.S. -27.8 -28.9 -27.9 -27.8 -28.3

861 L.S. -28.2 -28.7 -27.9 -27.7 -28.4

Rudka 7 wen (B areał

604 L.S. -27.7 -28.4 -28.3 -27.2 -27.4

1053 L.S. -28.8 -29.9 -28.8 -28.0 -27.6

Jodłówka 4 wen (C area)

2349 L.S. -28.6 -29.1 -28.2 -27.8 -27.4

2670 L.S. -28.3 -28.6 -27.8 -27.4 -27.9

3336 U.B. -27.3 -28.1 -27.0 -26.9 -26.9

Nosówka 8 wen (C areał

3219 U.B. -26.4 -27.7 -26.3 -26.7 -26.6 CPI(TOTAL) (C17+ C19+ .... +C27 + C29 ) + (C19+ C21 + .... + C29 + C3d 2(C18 + c20+ .... +C28 + C30) CPI(l7-23) CPI(25-31) (C'7 + C'9 + C21 ) + (C19 + C21 + C23) 2(C'8 + C20 + Cd (C25 + C27 + C29 ) + (C27 + C29 + C31) 2(C26 + C28 + C30) Kero-gen -26.2 -25.5 -26.7 -25.6 -26.2 -26.5 -25.6 -26.0 -26.0 -25.2 -25.3 -26.4 -26.0 -25.7 -25.5

Fig. 2. Histograms of TOC contents in the autochtho-nous Miocene strata in test areas: (A) Tarnów, (B)

Mielec-Leżajsk, (C) Rzeszów, (D) Przemyśl and Total area, in the ranges (a) from O to 4 wt. % and (b) from

O to 1 wt. %

3 0.2 0.4 0.6 0.8

and 1998. The remaining proved reserves of abo-ut 70d09 cubic meters are still available. Undi-scovered resources are estimated to be about

190* l 09 cubic meters. The production of natural gas from the autochthonous Miocene reservoirs has started in 1924 from the Daszawa field (re-cently in Ukraine). Since 1945 the 70 gas field s have been discovered in the Polish part of the Carpathian Foredeep, and the Przemyśl-J aksma-nice deposit of initial reserves about 80* 109 cubic meters is most important.

200 150 100 50 2 0.2 0.4 0.6 0.8 - - - -TOC (wt. %) .... - - - -TOC (wt. %) .... DUpper Badenian _ Lower Sarmatian

(5)

Przegląd Geologiczny, vol. 46, nr 8/2, 1998 I ~ 500r

f

-Ś <bO?, I 00 o f- o a... w 0 1500 . ' I I I

:,.

C§]

·ł

·

..

.

.

.

..

.

.

:.,.

.:(.

.

.

.

..

I I

~ -o I I I I I I I I I I I 500r-

[9-

I-

[QJ-I'

.

t-E te i'1500 ... oe

f-t

a... w o 2500 r- :t.

~

- r-

--

.

.

..

o - r- -.~ ~o o 0co?, ~ o 3500 r- o I .l 2.0 l - L~ _ _ _ . . l . . . - I _ _ ....LI-:--_----:L-I---J-3.0 1.0 2.0 3.0 1.0

TOTAL ORGANIC CARBON (%wt.)

TOTAL ORGANIC CARBON (%wt.)

Fig. 3. TOC for organie matter from the autochthonous Miocene

strata versus depth in test areas: (A) Tarnów, (B) Mielec-Leżajsk,

(C) Rzeszów and (D) Przemyśl

OXYGENINDEX

(mg CO2/g TOC)

OXYGENINDEX

(mg CO2/g TOC)

[ID

Fig. 5. Hydrogen index versus oxygen index for organie matter from the autochthonous Miocene strata in test areas: (A) Tarnów, (B)

Mielec-Leżajsk, (C) Rzeszów and (D) Przemyśl

Experimental

Pyrolysis assay of sampIes was carried on with the Delsi Model II Rock Eval instrument equipped with an organie carbon module, as described in detail by Espitalie et al. (1977), Kotarba & Szafran (1985), Peters (1986) and Wil-czek & Merta (1992). Results of Rock Eval pyrolysis of c1aystones/mudstones are presented in Tab. 1.

The c1aystone/mudstone sampIes were pulverized and then extracted with chloroform in the Soxhlet apparatus.

I I I !\ • - fo

~

l··

C§]

~ 500

-i:

-Ś ~

.

I °°8 f- 00 a... o o ł: w 015001- -I I I I I I I I I 5001-

[9-

I-

[QJ-~

...

..

..

..

E

.

..

..

i'1500

-t'

- - -f-

,-a... w • I o

.,

#I

-1.

1• o 2500 - -

-o;t·

[ • L. SARMATIAN g o u. BADENIAN o óQ> OCO 35001- .l .l I - l- I I I -100 200 300 100 200 300 TE/TOC TE/TOC

Fig. 4. Bitumen index (To tal extract/TOC) for organie matter from the autochthonous Miocene strata versus depth in test areas: (A)

Tarnów, (B) Mielec-Leżajsk, (C) Rzeszów and (D) Przemyśl

600 O-~ 500 J2l u I .[400 X W ~ 300 Z W Cl ~ 200 o >-I 100 200

[8J

~o [6] ~ "" "" O- '" '" '1 "" o l-I J2l ~ 150 I O) E- I 0-.o~/// x II _ w

.-1-~ 100 o

-';1

1 z 8~o~8 I II w lel_: Cl - I o o:: o >- 50 I 200 ~ 150 420 430 440 420 430 440

Ljli[~f~:::::;;:::~d

TEMPERATURE T max (C)

420 440 460 480 500 520

TEMPERATURE T max (C)

Fig. 6. Hydrogen index versus T max temperature for organie matter

from the autochthonous Miocene strata in test areas: (A) Tarnów,

(6)

Chloroform extracts were separated into saturated hydrocar -bons, aromatic hydrocar-bons, resins and asphaltenes by the column chromatography. Alumina/silica gel (2: 1 v/v)

col-umns (0.6x20 cm) were eluted with petroleum benzin, ben-zene and benben-zene-methanol (1: 1 v/v) in order to obtain first three fractions. Asphaltenes were precipitated with petroleum

-- 500 Ś I f-o.. W 0 1500 500 Ś1500 I f-o.. W O 2500 3500 - c-f- •

- c-I I I I

[8J

610 w I w

gCO

z I z ~o o o:: I o o:: 0 8 o o.... I o.... I I o o CI) ....J o o « I (5 0 I I I I I I I I I I

~

w I w z I z o I o

t'. o:: o.... I o:: o....

••

I I I CI) I ....J • , • C3 I (5

o I

·3··

I I

)C ,.

I ~.

.

I

.

..

,

I

'e

.~ I I 0:0 o I o I 6> o o o o lo I I I 100 200 300 HYDROGENINDEX (mg HC/g TOC)

-•

I wlw

.'

ZIZ 01 0

..

g:1g:

.-'

I I I

• •

~I~

01 0

...

I I I

I

,

o I I I I 100 200 300 HYDROGENINDEX (mg HC/g TOC)

Fig. 7. Hydrogen index for organie matter from the autoehthonous Mioeene strata

versus depth in test areas: (A) Tarnów, (B) Mielec-Leżajsk, (C) Rzeszów and (D) Przemyśl -- 500 Ś I f-o.. W 0 1500 500 E 1500 I f-o.. W O 2500 3500 - c - l -I I I I eg o

~

-go o 0000 gO I o I o o o o I I -I I I I I I I I

$J-•••

CI) I

fB

w CI)

• •

I CI) CI) • • • I CI) w w o

.0

• .1

g-O I o::

o:: o....

··'1 '

I o.... ....J o ~ , I «

·!Ie·.

I z 05 I •• I w O

g-o::

...

:

I o

•••

I :?: ~

· .0

I o:: 8 o w o I I o eool f-o f-ol o I I I -420 430 T max TEMPERATURE (C) I I , . " I -

'I··

.~

-..

'

;

. , • • • •

I.,.

I •••

·'11 •

I , . . I I- • I·· I -." I o I I I I I I I -

~-• ~-• I·

••

CI)

·1.

I

fB

w CI)

I CI)

CI) CI) I w

W I- O I 0 -O

•• I O o:: I o:: o.... o.... ....J

I 5ł «

• •

I z 05 o I w

-

O I

g-o:: O I :?: ~ [ • L. SARMATIAN J: o:: w I o u. BADENIAN I f-I c- I I I -420 430 T max TEMPERATURE (C)

Fig. 8. Rock Eval T max temperature for organie matter from the autoehthonous Mioeene strata versus depth in test areas: (A) Tarnów, (B) Mielec-Leżajsk, (C)

Rzeszów and (D) Przemyśl

benzin prior to the column separations. Ranges of bitumen (TE/TOC) and hydrocarbon

(HCITOC) ratios are presented in Tab. 1 . Petrographic studies of the OM inc1uded quantitative analyses of vitrinite, exinite and inertinite maceral groups under the Axioplan-Opton microscope. Measurements of mean ran-dom vitrinite reflectance (Ro) were carried at 546 mm in oil with the Axioplan-Opton microphoto-meter and Opton 20 Microscope System

Proces-sor. Point -countings were made in accordance with the procedure of the ICCP. Results of

pe-trographic observations and vitrinite reflectance measurements for c1aystones/mudstones are presented in Tab. 2 .

The C11 + saturated hydrocarbons (n-alkanes

and isoprenoids) were separated on a Hewlett

Packard 5890 Series II gas chromatograph with

a 25 m x 0.32 mm capillary column coated with methyl silicon gum phase temperature - pro-grammed from 110 to 310°C. Ranges of ratios ca1culated based on n-alkanes and isoprenoids distribution in bitumen s are presented in Tab. 3. After the removal of carbonates and bitu-mens, the c1aystone/mudstone sampies selected for stable carbon isotope analyses were combu-sted in sealed glass tubes, according to the pro-cedure after Sofer (1980). Bitumens and their

fractions were prepared for stable carbon isotope analyses in accordance with the same procedure. Stable carbon isotope analyses were run with the Micromass MM 602C and MI-120l mass spec-trometers. The stable carbon isotope data are presented in the standard b-notation relative to the PDB. Analytical precision is estimated to be

±0.2%o. Results of stable carbon isotope

analy-ses of chloroform extracts (bitumen s ), their

indi-I

I • ( . L. SARMATIAN

o u. BADENIAN o o 1000 -

-.-.

•••

Ś

••

I

f-

o... 2000 W -

-O

"

#

..

o eo 3000 f-- o -I o I 0.4 0.6 VITRINITE REFLECTANCE (%)

Fig. 9. Vitrinite ref1eetanee for organie matter from the autoehthonous Mioeene strata versus depth. Data from Table 2 and after Kotarba et al. (1987)

(7)

Przegląd Geologiczny, vot. 46, nr 8/2, 1998

RUDKA 7WELL

JODŁÓWKA

4 WELL

n-Alkanes

Isoprenoids

n-Alkanes

Isoprenoids

Lower Sarmatian Lower Sarmatian

15 --- --- --- --- --- 1 5 --- --- --- --- -- ---Depth: 300 m Depth: 2,000 m

1: :

-

_: _:: __:: :\/\,

fi-l

~

:

--

---:i

1

:

:--::

:

-

::-::

:-:\- -

-:t~-:-:

::

::

~ 1 5 --------- --Lower Sarmatian ------------------- ------- ---- ---- ---

--~

Depth: 452 m ~ ~ 10 --- -- --- ---Lower Sarmatian 15 --- --- --- --- --Depth: 2,349 m

~

5

--

-mmm-

-

,NJ1il~j

-.

~m

__ mm

~

rJJ. Lower Sarmatian ~ 15 --- --- --- --- -- -- ----~ Depth: 1,053 m ~ 15 _______ ~Q~ę~_$_Ęł~IJJ~!i?}) _______ --- ---Depth: 2,519 m

+

10 --- ---

---~

5

---

----~

---

---l-1

:::-:i

1:

-

-

:---::Ir:--~~:::

li

=

Lower Sarmatian ~ 15 --- 15 ________ ~2R~r_~~~tę-'}l~~

___

________

__

_____

__

_

__

_

~ Depth: 1,112 m Depth: 3,190 m

O

10 --- 1 O --- --- --- ---

---~ 5

-m----m---f~1

~t;hWł~---m---m

5 --- -Lower Sarmatian 15 --- -- --- --- --- --- -- -Depth: 1,455 m Upper 8adenian 15 ---- --- ---Depth: 3,336 m 1 O --- --- --- --- ----I I I I I I I

1-

I I I I I I

II

1--10 15 20 25 30 35 15 20 10 15 20 25 30 35 15 20

CARBON NUMBER

CARBON

NUMBER

Fig. 10. Examples of clistribution of n-alkanes and isoprenoids in bitumens from the autochthonous Miocene sequence from the Rudka 7 and Jodłówka 4 wells

vidual fraetions and kerogen from claystones/mudstones are listed in Tab. 4.

Results and discussion

The results of the Roek Eval pyrolytie analyses enable the preliminary assessment of the OM eontained in

auto-ehthonous Mioeene se quenee. In the Upper Badenian strata total organie earbon (TOC) eontents vary from 0.30 to 1.48 wt. % (average 0.80 wt. %), and in theLowerSarmatianones the TOC ehanges from 0.02 to 3.22 wt. % (average 0.69 wt. %) (Tab. 1). Numerous TOC results obtained in the laboratories of the Polis h Oil & Gas Company (unpublished data) are very c10se to those data and reaeh up to 5.1 wt. %

(8)

~(c (%0)

~3 ~1 ~9 ~7 ~5 ~3

f -

TERRIGENOUS

S.He. pic curves for bitumen s Fig. 11. Carbon isoto- -22

BIT. of organie matter trom the autochthonous

A.He. Miocene strata in test o -24

areas: (A) Tarnów, (B) ~

RES. Mielec-Leżajsk and

O

ASPH. (C) Rzeszów o::: -26 ~ ~ ~ 'Za -28 KER.

Fig. 12. Carbon isoto-pie compositions of

sa-S.He. turated versus aromatic -30

fractions of bitumens. ALGAL

BIT. Compositional fields (MARINE OR NON MARIN E)

after Sofer (1984) A.He. RES. ASPH. KER. S.He. BIT. A.He. RES. ASPH. KER.

(average 0.88 wt. %) and 3.4 wt. % (average 0.82 wt. %) in the Upper Badenian and the Lower Sarmatian strata, respec-tively. According to Dickey & Hunt (1972), the TOC concen-tration over 0.5 wt. % is required to qualify a rock as having hydrocarbon potential. The total amounts of extracts norma-lized to organie carbon vary from 17 to 91 (average 48) mg TE

i

I TOC and from 14 to 400 (average 42) mg TE g-I TOC in the Upper Badenian and the Lower Sarmatian strata, respectively (Tab. 1, Fig. 2). Both the TOC and the TE/TO C values in specific lithostratigraphic Miocene members (Up-per Badenian and Lower Sarmatian) as well as their spatial and depth distribution show rather poor diversity (Figs 3 and 4). This evidences similar deposition conditions of the OM in the whole Miocene basin of the Polish part of the Carpathian Foredeep.

The values of the Rock Eval HI, Ol and T max (Tab. land

Figs 5 to 7) evidence the general dominance of the type III terrestrial OM in the whole Miocene sequence. This OM consists mainly of vitrinite-group macerals (from 70.9 to 84.0% ) with the complete absence of the members of exinite group (Tab. 2), which also supports the typical terrestrial origin. Moreover, such origin has been also confirmed by the results of elementary analyses of the Miocene fossil remnants (Kotarbaet al., 1987). Ifthe terrestrial OM disper

-sed in c1aystones/mudstones was capable of generating and expelling oil it should reveal the HI values typically higher

-31 -29 -27 -25 -23 -21

813C (SAT) (%0)

than about 200 (Hunt, 1991). However, the HI values c10se to that limit were found in only few sampIes (Figs 5 to 7, and Kotarba et al., 1987) which may suggest the presence of small amounts of algal (marine and/or non-marine) OM. The lack of obvious depth trends of the HI values (Fig. 7) advocates the gas-prone character of the whole Miocene sequence.

The immature terrestrial OM shows Rock Eval Tmax

temperature below 435°C (Espitalie & Bordenave 1993). Most of the Miocene sampIes gave the T max temperatures

from 415 to 435°C (Tab. 1). Only in a single sample from Upper Badenian strata (10-4 well, depth 3,336 m) the T max

=

438°C (Fig. 6) was measured. Such T max values

together with no obvious depth trends (Fig. 8) indicate that down to the depths 3,200-3,300 meters the Miocene terre-strial OM is immature and generates almost exc1usively the microbial methane. The initial phase oflow-temperature thermogenic proces s proceeds beneath these depths, under the Flysch Carpathian overthrust. Distribution of vitrinite reflectance values of the Miocene OM with the depth (Fig. 9) confirms its low maturation degree. For n-alkanes and iso

-prenoids distribution there were analyzed 18 sampIes from Brzóza Stadnicka 1, Jodłówka4, Łazy 9, Łętownia 3, Nosów-ka 8, RudNosów-ka 7 and Szczepanów 8 wells representing the A, B and C test areas (Fig. 1). The sampIes originate from wide depth interval (from 300 to 3,219 m) and from various Miocene members (10 from Upper Badenian and 18 from Lower Sarmatian). Ranges of geochemie al indices for n-al-kanes and are presented in Tab. 3. For most ofthe measured sampIes the n-alkanes and isoprenoids distributions are bi

-modal with distinct maximum for the long-chained hydro-carbons and increased concentrations of odd-number hydrocarbons C2S-C31 • Such features may be indicative of

the terrestrial origin of the OM and of its immaturity. Only few sampIes taken from greater depths are apparently domi-nated by long-chainedhydrocarbons which may be the result of low-temperature thermogenic processes. The values of Pr/n-Cl7 index are usually much higher than 1 which is typical of terrestrial environments (Didyk et al., 1978) whereas the Pr/Ph index is in most cases less than 0.5 which points to the reducing depositional environment. Examples of analytical results for sampIes from the Rudka 7 and

(9)

Przegląd Geologiczny, vol. 46, nr 8/2, 1998

The last two decades have seen a growing interest in the studies on the origin of hydrocarbons and on genetie corre-lations between oils and source rock based on stable carbon isotope analyses of oils, bitumens, subfractions (saturated and aromatic hydrocarbons, resins and asphaltenes) and kerogens (e.g., Schoell, 1984a, b; Sofer, 1984; Galimov, 1985; Peters et al., 1986; Chun? et al., 1992; Curiale, 1994).

Stable carbon isotope ratios (8 3C) for autochthonous

Mio-cene sampies vary within the following ranges (Tab. 4 and

Figs 11 and 12): bitumen s - from -28.8 to -26.6%0 (2.2%0

difference), saturated hydrocarbons - from -29.9 to -27 .3%0

(2.6%0 difference), aromatic hydrocarbons - from -28.8 to

-26.3%0 (2.5%0 difference), resins - from -28.3 to -26.7%0

(1.6%0 difference), asphaltenes - from -28.4 to -26.4%0

(2.0%0 difference), and kerogen - from -26.7 to -25.2%0

(1.5%0 difference). Shapes of isotopic curves (Fig. 11)

indicate that organie matter of all analyzed sampies have terrestrial character (gas-prone type III kerogen) and that the

bitumen s are always co-genetic with kerogen. The Sofer' s

correlation (Sofer, 1984) between 813C (saturated

hydrocar-bons) and 813C (aromatic hydrocarbons) suggests that the

OM accumulated within the autochthonous Miocene strata

contains also the algal component (Fig. 12). Howeverit must

be emphasized that the Sofers correlation was initially de-signed for studies on oils and, thus, some doubts arise to what an ex tent such approach is applicable to the extracted bitu-mens. During expulsion ofhydrocarbons from the source rocks the isotopic fractionation may appear between the expelled oils, bitumens and kerogens. However, the studied terrestrial OM from the autochthonous Miocene is immature and, undoubtedly, the expulsion of liquid hydrocarbons has not

taken place. Hence, it can be concluded that the stable carbon

isotope composition of saturated and aromatic hydrocarbons of Miocene bitumens represents the indigenous liquids whieh may not match the criteria of Sofer' s oil genetic classification. This problem apparently needs detailed stu-dies and explanation.

Conclusions

The geochemical studies of the OM from the Auto-chthonous Miocene of the Carpathian Foredeep proved its terrestrial origin (gas-prone III type kerogen) both in the Upper Badenian and the Lower Sarmatian strata. The admix-tures of algal organie matter (kerogen II) are rare. The TOC contents vary from 0.02 to 3.22 wt. % with the mean value 0.68 wt. % for 237 sampies. Down to the depth 3,200 meters the OM is immature. !ts transformation degree is very low

and corresponds to the vitrinite reflectance

Ro

from 0.25 to

0.6%, (dominating value 0.4%) and the Rock Eval Tmax

temperatures from 415 to 438°C. Insignificant changes in

spatial and depth distribution of geochemical parameters

and indices (TOC, TE/TOC, Tmax , HI,

Ro,

CPI, etc.) suggest

the homogenous depositional environment of the OM in the Miocene sequence down to the recent depth 3,200 meters. Such conditions resulted in the lack of remarkable differen-ces in the TOC, the genetic types and the transformation degree of the studied OM. Considering the hydrocarbon generation model for typ e III kerogen, the maturity of the

OM does not exceed the T max

=

435°C threshold for microbial

methane generation. The low-temperature thermogenic

pro-cesses could commence only at greater depths (belowabout 3,200 meters) under the Carpathian overthrust.

References

CHUNG H.M., CLA YPOOL M.A., ROONEY A. & SQUIRES R.M. 1994 - Source characteristics of marine oils as indycated by carbon iso-topie ratios ofvo1ati1e hydrocarbons. Bul!. Amer. Ass. Petro!. Geo!., 71: 396-408.

CURIALE 1.A. 1994 - Correlation of oils and source rocks - a concep-tual and historical perspective. [In:] The petroleum system - From source to trap, Magoon, L.B., and Dow, W.G. (eds). Amer. Ass. Petro!. Geol., Mem., Tulsa, 60: 251-260.

DICKEY P.A. & HUNT 1.M. 1972 - Geochemical and hydrogeological methods of prospecting for stratigraphic traps. Amer. Ass. Petro!. Geo!., Mem., Tulsa, 16: 136-137.

DIDYK B.M., SIMONEIT B.R.T., BRASSELL S.c. & EGLINGTON

G. 1978 - Organie geochemical indicators of palaeoenvinronmental conditions of sedimentation. Nature, 272: 216-222.

ESPIT ALII~: 1. & BORDENAVE M.L. 1993 - Rock Eval Pyrolysis. [In:] Applied petro1eum geochemistry, Bordenave M.L. (ed.). Technip,

Paris: 237-261.

ESPITALIE l., LAPORTE 1.L., MADEC M., MARQUIS F., LEP LAT P., PAULET 1. & BOUTEFEU A. 1977 - Methode rapide de

charac-terisation des roch es mere de leur potential petrolier et de leur degre d'e-volution. Rev. IFP, 32: 23-42.

GALIMOV E.M. 1985 - The biological fractionation of isotope.

Lon-don, Orlando, Acad. Press: 26l.

HUNT 1.M. 1991 - Generation of gas and oil from coal and other ter

-restrial organie matter. Org. Geochem., 17: 673-680.

KARNKOWSKI, P. 1989 - Utwory deltowe przedgórza Karpat. Prz. Geol., 37: 28-42.

KOTARBA M.J. & SZAFRAN S. 1985 - Zastosowanie analizatorów

Rock Eval i Oil Show w poszukiwaniach naftowych. Nafta, 3:

81-88.

KOTARBA M., SZAFRAN S. & ESPITALIE 1.1987 - A study of or-ganie matter and naturaI gases of the Miocene sediments in the Polish part of the Carpathian Foredeep. Chem. Geo!., 64: 197-207.

NEY R. 1968 - The role of the "Cracow bołt" in the geological history of the Carpathian Foredeep and in the distribution of oil and gas deposits.

Pr. Geo!. Kom. Nauk Geo!. PAN Oddz. w Krakowie, 45: 7-82. NEY R., BURZEWSKI W., BACHLEDA T., GÓRECKI W.,

lAKÓB-CZAK K. & SŁUPCZYŃSKI K. 1974 - Zarys paleogeografii i rozwoju

litologiczno-facjalnego utworów miocenu zapadliska przedkarpackiego.

Pr. Geol. Kom. Nauk GeoI. PAN Oddz. w Krakowie, 82: 3-65. OSZCZYPKO N. 1982 - Explanatory notes to lithotectonic molasse profiIes of the Carpathian Foredeep and in the Polish part of the Western Carpathians. Verbff. ZentraIinst. Phys. Erde Akad. Wiss. DDR, 66:

95-115.

OSZCZYPKO N. 1996 - Mioceńska dynamika polskiej części zapadli-ska przedkarpackiego. Prz. GeoI., 44: 1007-10 18.

OSZCZYPKO N. 1997 - The Early-Middle Miocene Carpathian peri-pheral foreland basin (Western Carpathians, Poland). Prz. GeoI., 45: 1054-1063.

PETER S K.E. 1986 - Guidelines for evaluating petroleum source rock using programmed pyrolysis. +Amer. Ass. Petro!. Geol., 70: 318-329.

PETERS K.E., MOLDOWAN 1.M., SCHOELL M. & HEMPKINS W.B. 1986 - PetroIeum isotopie and biomarker composition related to source rock organie matter and depositional environment. [In:] Advances in Organie Geochemistry 1985, Leythaeuser D. and 1. Rullkbtter 1. (eds).

Oxford, Pergamon Press. Org. Geochem., 10: 17-27.

SCHOELL M. 1984a - Stable isotopes in petroleum research. [In:] Ad-van ces in petroleum geochemistry, Brooks, l., and Welte, D. (eds). Lon-don, Acad. Press, 1: 215-245.

SCHOELL M. 1984b - Recent advances in petroleum isotope geoche-mistry. Org. Geochem., 6: 645-663.

SOFER Z. 1980 - Preparation of carbon dioxide for stable isotope ana-lysis ofpetroleum. Anal. Chern., 52: 1389-1391.

SOFER Z. 1984 - Stable carbon isotope compositions of crude oils: ap-plicaton to source depositional environments and petroleum alteration. Amer. Ass. Petro!. Geo!. BulI., 68: 31-49.

WILCZEK T & MERTA H. 1992 - Wstępne wyniki badań pirolitycz-nych metodą Rock EvaI. Nafta, 48: 109-116.

Cytaty

Powiązane dokumenty

Vialov (1965) pro posed that the tran si tion be tween the Dobrotiv and the Stebnyk for ma tions is grad ual and the bound ary is con ven tion ally pro posed at the base of the

Com par i son of foraminiferal as sem blages from Anadoly with the Kudryntsi (see Gedl and Peryt, 2011) and Shchyrets (see Peryt et al., 2014) sec tions shows that the Anadoly

The study in cluded also re la tion ships be tween re sults of the com pre hen sive in ter pre ta tion: po ros ity (PHI), wa ter sat u ra tion in flushed zone (SWXO) and un in

There fore, in the walls of ex po sures, the gi ant crys tals are com monly seen as the large {010} cleav age sur faces, shin ing in the sun light like big mir - rors, or as com po

A comparison of synthetic seismograms calculated using only sonic velocity and seismic velocity corrected for attenuation, with the recorded seismic traces, shows that the

In the northern peripheral part of the Carpathian Foredeep, the Middle Miocene (Badenian) gypsum deposits comprise two major, laterally extensive members: the lower is mostly

Three bivalve zones are recognized in the Sarmatian detrital deposits of Poland viz., the concurrent-range Mactra eichwaldi-Plicatiforma praeplicata pseudoplicata Zone

The autoor summarized some problems of Miocene geology and largely characterizes the basement of the Miocene formation in oalive sulphur ore areas (northern, peripheral part