• Nie Znaleziono Wyników

Repository - Scientific Journals of the Maritime University of Szczecin - Estimation of the consequences of...

N/A
N/A
Protected

Academic year: 2021

Share "Repository - Scientific Journals of the Maritime University of Szczecin - Estimation of the consequences of..."

Copied!
7
0
0

Pełen tekst

(1)

Maritime University of Szczecin

Akademia Morska w Szczecinie

2011, 25(97) pp. 70–76 2011, 25(97) s. 70–76

Estimation of the consequences of LNG vessel tank leakage

in the port of Świnoujście

Szacowanie skutków rozszczelnienia zbiorników tankowca

LNG w porcie Świnoujście

Wojciech Ślączka

Maritime University of Szczecin, Faculty of Navigation, Institute of Marine Traffic Engineering Akademia Morska w Szczecinie, Wydział Nawigacyjny, Instytut Inżynierii Ruchu Morskiego 70-500 Szczecin, ul. Wały Chrobrego 1–2, e-mail: w.slaczka@am.szczecin.pl

Key words: accident risk, LNG terminal, thermal effect, accidentconsequences, LNG tanker operations, the port of Świnoujście

Abstract

The safe operations of LNG terminal in Świnoujście mainly depends on safe operations of LNG tankers. Manoeuvring the LNG tanker at the terminal entrance and basin is always connected with a risk of accident. Areas where the risk of accident is the greatest are those in the vicinity of entrance heads and the turning basin. Accidents within these areas are burdened with the most serious consequences. This article presents possible scenarios of LNG tanker accident consequences in the LNG Terminal in Świnoujście.

Słowa kluczowe: ryzyko awarii, terminal LNG, oddziaływanie termiczne, skutki awarii, eksploatacja

tan-kowców LNG, port Świnoujście

Abstrakt

Bezpieczna eksploatacja terminalu LNG w Świnoujściu w głównej mierze uzależniona jest od bezpiecznej eksploatacji gazowców LNG. Manewrowanie statkiem na wejściu do terminalu i w jego obszarze zagrożone jest możliwością wystąpienia awarii. Obszarami potencjalnie najbardziej narażonymi na awarie są główki wejściowe do terminalu oraz obrotnica. Wystąpienie awarii w tych obszarach obarczone jest największymi skutkami. W artykule zostały zaprezentowane możliwe warianty wystąpienia skutków awarii tankowca LNG na terminalu w Świnoujściu.

Introduction

The LNG Terminal in Świnoujście is being built as a completely new investment project. To this end, a new outer port was designed, located east of the existing eastern shelter breakwater. Besides, a new approach channel was designed, a branch of the existing approach channel leading to Świno-ujście seaport. Before the construction of new infrastructure and waterways, attempts have to be made to estimate associated operational risks and, consequently, procedures have to be established with the aim od minimizing the risk level and potential consequences of an accident.

The safety of Świnoujscie LNG terminal opera-tions principally depends on:

 safe technical operation and manoeuvring of LNG tankers on new waterways (entrance heads and the turning basin),

 safe technical operation of the land-based cargo handling facilities.

Part of a relevant analysis presented below refers to safe LNG tanker operation and the predic-tion of consequences of LNG tanker collision with an element of port infrastructure. The estimated data related with the consequences of vessel damage are based on simulation models of ship

(2)

movement created by using a dedicated simulator of the LNG Terminal in Świnoujście (Fig. 1) and research results of other centres [1, 2].

Fig. 1. Simulated model of an LNG terminal, Maritime Uni-versity of Szczecin

Rys. 1. Model symulacyjny terminalu LNG w Akademii Mor-skiej w Szczecinie

This article aims at presenting a method for estimating the size of LNG tanker hull leakage due to a collision with a port structure and potential consequences of such accident. The consequences were brought down to the determination of the den-sity of thermal radiation due to ignition of LNG. The affected areas were marked on the port map.

Identification of potential threats

The basic method used for the identification of threats is the simulation method for determining the amount of LNG leaking from a damaged vessel. The size of the leak depends on the surface area of the hole the liquid gas escapes through. For this purpose analyses were made, based on experiments conducted in the world in real conditions and based on the simulation method. The research was con-ducted on tankers with the plating and double bot-tom, size and construction resembling LNG gas carriers. One of the main experimental tests was a rectangular collision of a large container ship (50 000 DWT) with a tanker (80 000 DWT) by means of which the size of the hole in the plating was determined as the function of the striking ves-sel’s speed (Fig. 2).

Operational threats connected with the risk of vessel manoeuvring

The basic threats resulting from the risk of manoeuvring LNG gas carriers while approaching the LNG terminal in Świnoujście are grounding on a shoal and the ship’s collision with a hydrotechni-cal structure. During the vessel’s grounding on the approach fairway the following effects will occur:

Fig. 2. Graph of the size of vessel hull as the function of speed [1]

Rys. 2. Wykres wielkości rozszczelnienia kadłuba w funkcji prędkości [1]

 denting of the external hull (no hole) resulting from the inclination angle of the fairway slope and also the kind of ground (sand),

 temporary blocking of the fairway,

 operation of bringing the LNG carrier off the shoal.

A collision with a hydrotechnical structure, such as the outer breakwater heads of the port of Świ-noujście, may result in puncturing the ship’s hull plating.

The above diagram may serve as the basis for estimating the size of a hole in LNG tanker hull caused by a collision with another vessel or running aground on the rocky bottom. It follows from an analysis of the characteristics presented in figure 2 that:

 no hole in the outer plating was observed for a speed up to 2.2 knots and in the inner plating for a speed up to 4.8 knots,

 a hole of the size of 5 m2 in the outer plating is possible when the vessel moves at speed of 4.2 knots,

 a hole of 5 m2 area in the inner plating is possi-ble when the vessel moves at a speed of 6.2 knots.

In order for environmental pollution to take place the inner plating has to be punctured, and, consequently, a leakage of LNG gas will occur.

LNG vessels passing the outer breakwater heads were moving at a speed not exceeding 5.5 knots, which in case of a rectangular collision with the bow of another vessel may cause a hole not larger than 3 m2. On approach to the outer port of Świnou-jście such an event should not take place because two-way traffic is not permitted when an LNG

Outer hull

Inner hull

Collision speed [knots]

Ho

le siz

e

[m

(3)

carrier is towed in. Nevertheless, assuming a possi-ble collision with a hydrotechnical structure, e.g. breakwater heads, the following assumptions were made:

 an LNG carrier at the moment of collision pro-ceeds at 5 knots (as a matter of fact, the gas car-rier is not able to strike at such speed against the breakwater head as it will not move perpendicu-larly to it);

 the size of the hole in the inner hull plating is not larger than 2 m2.

Threats connected with cargo handling technology

Among the main threats coming from cargo-handling operations resulting in environmental pollution are as follows:

 leakage due to operator error may occur in the system of pipelines and valves, elements of LNG cargo-handling facilities, either on the side of the ship or on the side of the terminal;

 damage to cargo pipeline due to vessel’s motion along the quay, e.g. as a result of the breaking of vessel’s ropes;

 another vessel hitting the gas carrier on which cargo-handling operations are carried out;  deliberate action, such as a terrorist attack (from

land, water or air).

Estimation of threats to LNG carriage and handling

Due to the specific nature of cargo carried, an LNG tanker is exposed during its operation to gas leakage as a result of:

 unintentional damage to the LNG containment system, e.g. as a result of collision with another vessel, grounding, collision with a stationary ob-ject,

 purposeful action, e.g. terrorist attack (from water or air),

 possible tank failure or the vessel’s cargo-handling installation damage,

 human error in handling LNG transfer installa-tion.

The gas leakage may result in:  fire due to ignition of LNG vapours;

a) b)

Fig. 3. Zones of fire resulting from a collision of a bulk carrier with an LNG tanker 200 while mooring at the LNG terminal in

Świnoujście: a) hole 1 m2, b) hole 2 m2

Rys. 3. Strefy gęstości oddziaływania termicznego powstałe w wyniku kolizji tankowca LNG 200 podczas cumowania w terminalu

LNG w Świnoujściu: a) rozszczelnienie kadłuba 1 m2, b) rozszczelnienie kadłuba 2 m2

5975000 5975100 5975200 5975300 5975400 5975500 5975600 5975700 5975800 5975900 5976000 5976100 5976200 5976300 5976400 5976500 5976600 5976700 5976800 5976900 5977000 5977100 5977200 5977300 5977400 5977500 5977600 5977700 5977800 5977900 5978000 5978100 5978200 5978300 5978400 451800 451900 452000 452100 452200 452300 452400 452500 452600 452700 452800 452900 453000 453100 453200 453300 453400 453500 453600 453700 453800 453900 454000 454100 454200 95% Isobath 13 m Isobath 14.5 m Gas leakage area Thermal intensity 37.5 kW/m2 Thermal intensity do 5 kW/m2

Rys. Strefy rażenia będące wynikiem kolizji masowca zbiornikowca LNG 200 podczas cumowania do

terminalu LNG w Świnoujściu, otwór przebicia 1 m2.

[ m ] [ m ] 5975000 5975100 5975200 5975300 5975400 5975500 5975600 5975700 5975800 5975900 5976000 5976100 5976200 5976300 5976400 5976500 5976600 5976700 5976800 5976900 5977000 5977100 5977200 5977300 5977400 5977500 5977600 5977700 5977800 5977900 5978000 5978100 5978200 5978300 5978400 451800 451900 452000 452100 452200 452300 452400 452500 452600 452700 452800 452900 453000 453100 453200 453300 453400 453500 453600 453700 453800 453900 454000 454100 454200 95% Isobath 13 m Isobath 14.5 m Gas leakage area Thermal intensity 37.5 kW/m2 Thermal intensity 5 kW/m2

Rys. Strefy rażenia będące wynikiem kolizji zbiornikowca LNG 200 podczas cumowania do terminalu LNG

w Świnoujściu, otwór przebicia 2 m2.

[ m ] [ m ] 95% Isobath 13 m Isobath 14.5 m Gas leakage area Thermal intensity 5 kW/m2 Thermal intensity 37.5 kW/m2 95% Isobath 13 m Isobath 14.5 m Gas leakage area

Thermal intensity 5 kW/m2

(4)

 if there is no combustion, the spreading of LNG vapours in the form of a cloud over a distance dependent on external factors;

 sudden explosion of LNG vapours in the form of a cloud with flames, accompanied by a shock wave, with force likely to injure crew members and to cause damage to the gas carrier hull and, possibly, to vessels in the immediate vicinity;  direct contact of the vessel’s crew member with

low-temperature liquid, likely to cause frostbite or burning;

 accumulation in the air of large LNG amounts changing into the gaseous phase; unless those vapours are ignited and burnt, they may lead to people’s suffocation;

 accumulation of leaking LNG between the vessel’s structural elements may, because of the very large difference in temperatures of the cargo and the hull’s structure, lead to steel brittleness and destructively affect the welds. Consequently, the size of damage will be much larger, which in turn will cause larger cargo leakage producing the domino effect with disas-trous results for the vessel.

Estimation of navigational risk of an LNG carrier entering or leaving the outer port of Świnoujście

The probable effects of LNG cargo spillage into the water or evaporation are identical with the ones described above, where leakage takes place in the open sea. The effects, however, may influence the vessel and its crew as well as other vessels berthing in the port. Elements of the surrounding infrastruc-ture, such as bridges or tunnels as well as the LNG terminal itself, port or surrounding buildings may also be damaged or destroyed. In case of LNG leakage in the port all persons staying in the area affected by a vapour cloud (tug, pilot boat, terminal personnel etc.) are exposed to the related risk.

Based on assumptions previously made concern-ing the likelihood of collision of an LNG carrier entering a port, LNG leakage endangered zones and fire intensity zones (thermal intensity) were identi-fied.

Figures 3 present threat zones created after a collision of the gas carrier with the eastern head of the outer breakwater and the inner head of the outer port. The collision, although not very likely to happen as the vessel enters assisted by tugs, if it did occur in windless weather, it would have the fol-lowing effects:

• for a 1 m2 hole in the inner plating (Fig. 3a):  the diameter of LNG spill range will amount

to ca 150 m,

 the radius of thermal radiation intensity (see figure 3a) of 37.5 kW/m2 be ca 180 m,  the radius of thermal intensity radiation of

not more than 5 kW/m2 will be ca 550 m; • for a 2 m2 hole in the inner plating (Fig. 3b):

 the diameter of LNG spill will be ca 210 m,  the radius of thermal radiation intensity (see

figure 3b) of 37.5 kW/m2 will be ca 250 m,  the radius of thermal intensity radiation of

not more than 5 kW/m2 will be ca 780 m. Figure 4 presents zones of fire resulting from leakage of LNG due to a hole of 5 m2 in area. Such a large hole may be made after a terrorist attack or any unintentional action that may cause such results. Because such event does not result from a collision with a hydrotechnical structure, the zones have been designated for a vessel approach-ing the heads and manoeuvrapproach-ing inside the port ba-sin.

It follows from an analysis of figure 4 that:  the diameter of LNG spill will be ca 330 m,  the radius of thermal radiation intensity of 37.5

kW/m2 will be ca 390 m,

 the radius of thermal radiation intensity not more than 5 kW/m2 will be ca 1300 m.

The results of thermal radiation effect on the en-vironment have been presented in the table 1 [1, 2].

Table 1. Results of thermal radiation effect on the environment Tabela 1. Skutki oddziaływania promieniowania termicznego na środowisko

Intensity of thermal

radiation Kind of damage

1.6

Admissible level for people and environment, one can be exposed to radiation without time limitation

4.7

Admissible level in areas where the rescue action was continued for a few minutes. It is permitted for a person to stay without a thermal screen, but in adequate clothing.

6.3

Admissible level in areas where the rescue action was continued for one minute. It is per-mitted for a person to stay without thermal screen, but in adequate clothing.

9.5 Admissible level in areas where person’s expo-sure to radiation must not exceed a few seconds, sufficient to escape from the danger zone.

10–12 Level at which plants undergo combustion.

12.5

Minimum radiation energy indispensable for combustion of wood in combination with open fire, causes melting of plastic

25

Minimal radiation energy indispensable for combustion of wood subjected to radiation for a longer time without access of open fire 37.5 Sufficient energy causing destruction of fixed objects (e.g. steel structures, cargo-handling

(5)

Fig. 4. Fire zones resulting from an event other than a collision of LNG 200 tanker during mooring operations at the LNG

terminal in Świnoujście, hole 5 m2

Rys. 4. Strefy gęstości oddziaływania termicznego powstałe w wyniku kolizji tankowca LNG 200 podczas cumowania

w terminalu LNG w Świnoujściu, rozszczelnienie kadłuba 5 m2

5973000 5973100 5973200 5973300 5973400 5973500 5973600 5973700 5973800 5973900 5974000 5974100 5974200 5974300 5974400 5974500 5974600 5974700 5974800 5974900 5975000 5975100 5975200 5975300 5975400 5975500 5975600 5975700 5975800 5975900 5976000 5976100 5976200 5976300 5976400 5976500 5976600 5976700 5976800 5976900 5977000 5977100 5977200 5977300 5977400 5977500 5977600 5977700 5977800 5977900 5978000 5978100 5978200 5978300 5978400 451000 451100 451200 451300 451400 451500 451600 451700 451800 451900 452000 452100 452200 452300 452400 452500 452600 452700 452800 452900 453000 453100 453200 453300 453400 453500 453600 453700 453800 453900 454000 454100 454200 454300 454400 454500 454600 454700 454800 454900 455000 95% Isobath 13 m Isobath 14.5 m Gas leakage area Thermal intensity 37.5 kW/m2 Thermal intensity 5 kW/m2

Rys. Strefy rażenia będące skutkiem działania innego niż kolizja dla zbiornikowca LNG 200 podczas

cumowania do terminalu LNG w Świnoujściu, otwór przebicia 5 m2

.

[ m ] [ m ]

a) b)

Fig. 5. Zones of fire resulting from a collision of LNG 200 tanker during mooring at the LNG terminal in Świnoujście: a) hole 1 m2,

b) hole 2 m2

Rys. 5. Strefy gęstości oddziaływania termicznego powstałe w wyniku kolizji tankowca LNG 200 podczas cumowania w terminalu

LNG w Świnoujściu: a) rozszczelnienie kadłuba 1 m2, b) rozszczelnienie kadłuba 2 m2

5974000 5974100 5974200 5974300 5974400 5974500 5974600 5974700 5974800 5974900 5975000 5975100 5975200 5975300 5975400 5975500 5975600 5975700 5975800 5975900 5976000 5976100 5976200 5976300 5976400 5976500 5976600 5976700 5976800 5976900 5977000 5977100 5977200 5977300 5977400 452300 452400 452500 452600 452700 452800 452900 453000 453100 453200 453300 453400 453500 453600 453700 453800 453900 454000 454100 454200 454300 454400 454500 454600 454700 95% Isobath 13 m Isobath14.5 m Gas leakage area Thermal intensity 37.5 kW/m2 Thermal intensity 5 kW/m2

Rys. Strefy rażenia będące wynikiem kolizji zbiornikowca LNG 200 podczas cumowania do terminalu LNG w Świnoujściu, otwór przebicia 1 m2.

[ m ] [ m ] 5974000 5974100 5974200 5974300 5974400 5974500 5974600 5974700 5974800 5974900 5975000 5975100 5975200 5975300 5975400 5975500 5975600 5975700 5975800 5975900 5976000 5976100 5976200 5976300 5976400 5976500 5976600 5976700 5976800 5976900 5977000 5977100 5977200 5977300 5977400 452300 452400 452500 452600 452700 452800 452900 453000 453100 453200 453300 453400 453500 453600 453700 453800 453900 454000 454100 454200 454300 454400 454500 454600 454700 95% Isobath 13 m Isobath 14.5 m Gas leakage area Thermal intensity 37.5 kW/m2 Thermal intensity 5 kW/m2

Rys. Strefy rażenia będące wynikiem kolizji zbiornikowca LNG 200 podczas cumowania do terminalu LNG w Świnoujściu, otwór przebicia 2 m2.

[ m ] [ m ] 95% Isobath 13 m Isobath 14.5 m Gas leakage area Thermal intensity 5 kW/m2 Thermal intensity 37.5 kW/m2 95% Isobath 13 m Isobath 14.5 m Gas leakage area Thermal intensity 5 kW/m2 Thermal intensity 37.5 kW/m2 95% Isobath 13 m Isobath 14.5 m Gas leakage area

Thermal intensity 5 kW/m2

(6)

Risk assessment for LNG handling

Assumptions for the risk assessment:

 there is a risk of damage to an LNG carrier by another manoeuvring vessel in the turning basin,  there is a risk of damage to pipeline,

 there will be more serious consequences for the environment when the gas carrier is damaged by another vessel than because of pipeline damage. Figures 5 present zones of thermal radiation in-tensity for the surface area of a leakage hole equal to, respectively, 1 m2 and 2 m2. The ranges are simi-lar to those estimated for a collision with breakwa-ter heads.

Risk management during an LNG leakage

Risk management during the operation of LNG carriers starts with the designation of danger zones. Mostly, three zones are designated, with essentially different danger conditions, and, consequently, varying level of safety. The zones can be desig-nated by the previously presented method through an analysis of thermal radiation intensity and its effect on the surroundings and the environment. Guidelines concerning risk management in various situations of unintentional LNG leakage will be presented below (prepared on the basis of ABS Consulting documents, contract number FERC04C40196).

Guidelines concerning risk management in the case of unintentional LNG leakage

Zone 1

These are areas where LNG transport takes place in narrow ports or canals, under major bridges or above tunnels, or it takes place at a distance shorter than ca 250 m to residential buildings or other important infrastructure elements, e.g. mili-tary objects, densely populated areas or industrial plants. In this zone the risk and the consequences of accidental LNG leakage can be considerable and may have very serious results. Thermal radiation creates serious threat to public safety and may cause serious damage to local infrastructure.

The strategy of risk management should cover threat caused both by spreading of vapours and by appearance of fire, which is why the most rigorous preventive measures such as safety zones around ships and establishing control over the ships are elements of risk management if an emergency situation is likely. It is very important to coordinate the activities of all port security services. The method of management and response in case of accident should be analysed in detail so as to ensure the availability of various kinds of measures (fire

fighting, rescue services etc.) in order to minimize threat and the consequences of accident.

Zone 2

These are areas where LNG transport takes place in wider canals or larger outer ports or at dis-tances from m to 750 m from major infrastructure elements, such as industrial centres and populated areas. Thermal radiation constitutes smaller danger for public safety and buildings. In zone 2 the con-sequences of accidental LNG leakage are less se-vere, therefore the means and methods applied for decreasing danger can be less strict.

In this zone the strategy of risk management during LNG operations shall cover threat caused both by spreading of vapours and appearance of fire. Methods of action shall cover managing and responding in case of accident and ensure the avail-ability of shelters (e.g. closed areas, buildings), familiarization with warning signals and educa-tional programmes for the residents.

Zone 3

This zone covers areas where LNG transport takes place at a distance longer than ca 750 metres from important infrastructure elements, residential areas, industrial complexes, in large bays or in open waters, where the threat and consequences of LNG leakage for people and buildings is minimal.

In zone 3 measures taken to minimize danger are less complicated and less strict. Methods of responding to threats should include a procedure to follow if a gas cloud starts spreading. Places of shelter should be designated and an educational programme for local inhabitants should be imple-mented.

Guidelines concerning risk management in the case of intentional LNG leakage

Zone 1

This is an area where LNG transport takes place in narrow ports or canals, under important bridges or above tunnels, or at distances shorter than ca 500 m from important infrastructure elements, such as military objects, densely populated or industrial areas. In this zone threat and consequences of a large LNG leakage can be considerable and have serious consequences for public safety and may cause damage to local infrastructure.

Risk management should cover threat due to va-pour spreading and fire, which is why the most rigorous preventive measures, such as safety zones around the ship, management of vessel traffic and establishing control over vessels are elements of management process in crisis situations. It is very important to coordinate actions of all port security

(7)

services. The method of management and response in case of accident should be analysed in detail so as to ensure the availability of various kinds of measures (fire fighting, rescue services etc.) in or-der to minimize threat and the consequences of accident.

Zone 2

These are areas where LNG transport takes place in wider canals or larger outer ports or at dis-tances from 500 to 1600 m from important infra-structure elements, such as industrial centres or residential areas. In zone 2 the consequences of a serious LNG leakage are less severe. Thermal ra-diation constitutes a smaller threat to public safety and buildings.

In this zone the strategy of risk management during LNG operations shall cover threat caused by spreading of vapours and appearance of fire. Meth-ods of action shall cover managing and responding in case of accident and ensure the availability of shelters (e.g. closed areas, buildings), familiariza-tion with warning signals and educafamiliariza-tional pro-grammes for the residents.

Zone 3

This area covers areas where LNG transport takes place at distances longer than ca 1600 m from major infrastructure elements, residential areas, in large bays or open waters, where the threat and consequences of LNG leakage for people and build-ings is minimal.

Measures taken to restrict threat are less severe and than in zones 1 and 2. Methods of action in

emergency situations should concern procedures to follow when a gas cloud spreads. Places of shelter should be designated and an educational pro-gramme for the residents should be implemented.

Conclusions

The operation of the LNG terminal in Świno-ujście will call for emergency scenarios including the consequences of a technical failure or human error. Carefully developed emergency procedures going in line with possible scenarios will signifi-cantly contribute to the minimization of the conse-quences. The analysis of thermal radiation effects enables the determination of the radii of thermal wave density from potential locations of accidents. The presented maps may be used for the determina-tion of areas of limited personnel stay and specifi-cation of technical equipment for the protection of terminal personnel.

References

1. ABSG Consulting Inc, Consequence Assessment Methods

for Incidents Involving Releases from Liquefied Natural Gas Carriers, 2004.

2. PARFOMAK P.W.: Liquefied Natural Gas (LNG) Infrastruc-ture Security: Background and Issues for Congress, 2003.

Recenzent: dr hab. inż. Zbigniew Barciu, prof. AM Akademia Morska w Gdyni

Cytaty

Powiązane dokumenty

Takie ujęcie znajduje uzasadnie- nie w specyfice podmiotów zobowiązanych do jej wdrażania (tj. jednostki sektora finansów publicznych) oraz wynika z zakresu i sposobu

W odniesieniu do problemu dotychczasowej ewolucji zagadnieJ\ oraz uwarunkowalI wyceny przedsiębiorstw w Polsce można sformułować liczne wyznaczniki, kształtujące specyfikę

Po drugie, PECL stanowi, że jeżeli wykonanie zobowiązania stanie się nadmiernie uciążliwe z powodu zmiany okoliczności, strony zobowiązane są rozpocząć negocjacje mające na

Ich racjonalnym uzasadnieniem jest potrzeba „zakupu” tych korzyści gospodarki leśnej, które nie mogą być przez leśników „sprzedane” tak jak drewno.. Sprowadzają się one

Analizując badany proces, można wyróżnić następujące cechy krytyczne dla jakości procesu konfekcjonowania kleju: 1 wady tuby: – wadliwy nadruk, – zmienna długość

Przesłanki wykorzystania sieci Petriego w modelowaniu procesów biznesowych Sieci Petriego są wykorzystywane do projektowania i badania procesów biznesowych z uwagi na posiadanie

Do najbardziej popularnych z nich zalicza się: – schematy wykorzystujące ustandaryzowane symbole, opracowane przez ANSI American National Standards Institute, wykorzystywane

- uczestnicy rynku analizują pojawiająq się informację, dochodz'lc do zbliżonych wniosków - podejmują decyzję dotyczącą kupna lub sprzedaży danych aktywów albo