• Nie Znaleziono Wyników

Preference Relations in Ranking Multivalued Alternatives in Finance Using Stochastic Dominance

N/A
N/A
Protected

Academic year: 2021

Share "Preference Relations in Ranking Multivalued Alternatives in Finance Using Stochastic Dominance"

Copied!
13
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

FO L IA O E C O N O M IC A 175, 2004

G r a ż y n a T r zp io t *

P R E F E R E N C E R E L A T IO N S IN R A N K IN G M U L T IV A L U E D A L T E R N A T IV E S IN F IN A N C E U S IN G S T O C H A S T IC D O M IN A N C E

Abstract. T his study used stochastic d om inan ce tests for ranking alternatives under am biguity, to build an efficient set o f assets for a different class o f investors. We propose a two-step procedure: first test for multivalued stochastic dom inance and next calculate the value o f preference relations.

Key words: am biguity, stochastic dom inance, efficiency criteria, preference relations.

1. IN T R O D U C T IO N

W hile S tochastic D o m in an ce has been em ployed in variou s fo rm s as early as 1932, it has been since 1969-1970 developed and extensively em ployed in the area o f econom ics, finance and o p e ra tio n research. In this study the first, second and third ord er stochastic d o m in an ce rules are discussed for ra n k in g alternatives und er am biguity w ith an em phasis on th e developm ent in the area o f financial issues. T h e first p a rt o f p ap e r reviews the S tochastic D o m in an ce properties. W hile the second p a rt o f th e p ap e r deals with the effectiveness o f the various S tochastic D om in an ce rules in financial app lication.

2. S T O C H A S T IC D O M IN A N C E

In decision situ atio n s we have to co m pare m an y alternatives. W hen alternatives tak e u n ce rtain ch a rac te r we can evaluate the p erfo rm an ce o f alternatives only in a probabilistic way. In finance, fo r exam ple, problem s arise w ith stock selection w hen we need to co m p are re tu rn d istrib u tio n s. T he construction o f a local preference relation already requires the com parison

(2)

o f two p ro b ab ility d istrib u tio n s. S tochastic d o m in ance is based o n a m o ­ del o f risk averse preferences, which was d o n e by P. C. F i s h b u r n (1964) and was extended by II. L e v y and K. S a r n a t (1984), H . L e v y (1992).

Definition 1. Let F (x ) and G(x) be the cum ulative d istrib u tio n s o f two

distinct uncertain alternativ es X and У, with su p p o rt b o un ded by [a, i i ] c J ! and F (x ) Ф G(x) fo r som e x e [ a , h ] cz R. X do m in ates Y by first, second and third stochastic d o m in an ce (F S D , SSD, T S D ) if an d only if

I I t ( x ) = F ( x ) - G(x) 0 for all x e [ a , b] (F F S D G) (1)

X

I I2(x) = \ I I t (y )dy ^ 0 for all x e [ a , b] (F SSD G) (2)

Я3(х) = j H2(y)dy < 0 for all x e [ a , b] (F T S D G) (3) a

F o r definition o f F S D and SSD sec J. H a d a r and W. K. R u s s e l l (1969), G. H a n o c h a nd H. L e v y (1969) and L. J. R o t h s c h i l d and

J. E. S t i g l i t z (1970). G . A. W h i t m o r e (1970) suggested the criterion

for T S D . T h e re la tio n sh ip betw een the three stoch astic d om in an ce rules can be sum m arised by the follow ing diagram : F S D => SSD => T S D , which m eans th a t d om in an ce by F S D implies dom in ance by SSD and do m in an ce by SSD in tu rn im plies dom in an ce by T SD .

W hen, in decision situ atio n s, we have an am biguity o n value o f ran k in g uncertain alternatives, th en we m ap a p o in t prob ab ility to an am bigu ou s outcom e. P ro b ab ility d istrib u tio n m ap s probabilities to outcom es described by intervals. P ro b ab ility m ass, sum m ing to one, is d istrib u ted over the subintervals o f the o u tco m e space. T he outcom e space is co n tin u o u s, X is an interval in R and p(Ay) den o te the prob ability m ass a ttrib u te d to the subinterval o f the outco m es space, with no future basis for estab lishin g the likelihood o f a specific value in th a t subinterval. A m biguities in outcom es can be represented by a set o f probability d istrib u tio n s. E ach fam ily has two extrem e probability d istributions on outcom e space X . Low er probability d istrib u tio n is identified by p ro b ab ility m ass co ncen trated o n to m inim um elem ent or value in the subset or interval A y U pper p ro b ab ility d istrib u tio n is identified by p ro b a b ility m ass co ncentrated o n to m ax im um elem ent or value in th e subset or interval A r

(3)

Definition 2. L o w er p ro b ab ility d istrib u tio n for all values

xteX,

we say

P * ( x i ) = T . P ( A j ) (4)

J : x , - m l n l y . y e A , )

A ccording to this definition we have: £/>*(•*<) = E i

Definition 3. U p p e r p ro b ab ility d istrib u tio n for all values x , e X , we say

P*(x i) = Z p ( ^ ) (5)

j : x , ~ m u i { y : y e A , }

N ow we also have: YjP*(x í) = 1-i

In ease o f the p o in t values o f ran d o m variable b o th d istrib u tio n s (low er and u p p e r p ro b a b ility d is trib u tio n s ) are ex actly th e sam e:

p*(x,

) =

p*(xt)

= p(x,) an d we have a prob ab ility d istrib u tio n in the classical sense.

Example 1. W e d eterm ine low er and upper p ro b a b ility d istrib u tio n s for

ran d o m variable X, which outcom es are m ultiv alu ed , include in som e intervals Aj.

T a b l e 1

Probability distribution for random variable X

[2 , 4] [3, 4] И, 5] [5, 6]

M D 0.5 0.2 0.2 0.1

A ccording to th e Def. 2 and 3 we have low er an d up per p ro b ab ility distrib u tio n s fo r ra n d o m variable X.

T a b l e 2

Lower and upper probability distributions for random variable X

x l 2 3 4 5 6

P.(x j) 0.5 0.2 0.2 0.1

(4)

O ur ap proach now is to use stochastic dom inance fo r rank ing m ultivalued alternatives by using low er and upper pro bability d istrib u tio n s o f each alternative.

Definition 4. Let tw o distinct uncertain m ultivalued alternatives X and

Y have low er p ro b a b ility d istrib u tio n s respectively F *(x) and Gt (x), upper probability d istrib u tio n s respectively F*(x) and G*(x), w ith su p p o rt bound ed by [a, b ] c R and F ,(x ) Ф G*(x) for som e x e [ a , b ] c R. We have m ultivalued first, second and th ird stochastic d om inance if and only if

H i (x ) = F , ( x ) - G \ x ) ^ 0 for all x e [ a , b\ (X F S D Y) (6)

I I2( x) = j l l y W y s i O for all x e [ a , b] ( X SSD Y) (7) a

H3(x) = X\ H2( y ) d y ^ 0, for all x e [ a , b] (X T S D Y) (8) a

E x a m p l e 2 T r z p i o t (1998a). Let take the ran d o m variables С and

D w hose outcom es are m u ltivalued, include in som e intervals A j as follows: T a b l e 3

Probability distributions for random variables С and D

A J (0, 1] [1, 2] [2, 31 [3, 4]

P(C) 0.2 0.4 0.4

P( D) 0.3 0.15 0.55

-W e can determ in e low er and up p er p robability d istrib u tio n s for ra n d o m variables С and D and next we can check th a t C T S D D (third degree m ultivalued stochastic dom inance).

3. S T O C H A S T IC D O M IN A N C E R U LES IN PO R T FO L IO SE L E C T IO N

W e have an a p p ro p ria te investm ent criteria fo r the th ree altern ativ e risk-choice situ atio n s. S tochastic d om inance theorem s assum e th a t a given class o f utility fu n ctio n can describe a decisio n-m aker’s preference stru cture. W e initially assum e th a t no in fo rm atio n is available o n the shap e o f the utility function, a p a rt from the fact th a t it is non-decreasing. A n efficiency

(5)

criterion is a decision rule fo r dividing all p o ten tial investm ent alternatives into tw o m u tu ally exclusive sets: an efficient set an d an inefficient set. Firstly, using stochastic dom inance tests we reduce th e n u m b er o f investm ent alternatives by co n stru c tin g an efficient set o f alternatives a p p ro p ria te for a given class o f investors. A t the second step, we can m ak e the final choice o f the alternatives in acco rd an ce to p artic u la r preferences o f th e investor.

T h e F S D ru le places no restrictions on the form o f the utility fu nction beyond the usual req u irem en t th a t it be nondecreasing. T h u s this criterion is a p p ro p ria te fo r risk av e rtcrs and risk lovers alik e since th e u tility function m ay co n tain concave as well as convex segm ents. O w ing to its generality, the F S D perm its a prelim inary scream ing o f investm ent alternatives elim inating those alternatives which no ra tio n a l investor (ind ep en d en t o f his a ttitu d e tow ard risk) will ever choose.

T h e SSD is the a p p ro p ria te efficiency criterion for all risk av erters. H ere we assum e the utility function to be concave. T his criterion is based on stronger assum p tion s and therefore, it perm its a m o re sensitive selection o f investm ents. O n the o th er h an d , the SSD is applicable to a sm aller g ro u p o f investors. T h e SSD efficient set m ust be a subset o f the F S D efficient set; this m eans th a t all the alternatives included in the F S D efficient set, but no t necessarily vice versa.

T h e JTSD rule is a p p ro p ria te for a still sm aller g ro u p o f investors. In addition to the risk aversion assum ption o f SSD , the T S D also assum es decreasing ab so lu te risk aversion. T h e p o p u latio n o f risk av erters w ith decreasing absolute risk aversion is clearly a subset for all risk averters, and the T S D efficient set is correspondingly a subset o f the SSD efficient set: all T S D efficient portfolios are SSD efficient, b u t n o t vice versa.

T h e th ree sto c h a stic d o m in an ce crite ria, F S D , SSD an d T S D , are optim al in the sense th a t given the assum ptions regarding the investors preferences (describing as a class o f utility functions), th e ap p lica tio n o f the corresp o n d in g stochastic dom inance criterion ensures a m inim al efficient set o f investm ent alternatives. F o r a m o re detailed d escrip tio n o f utility functions belong to th e th ree classes o f the utility fu n ctio n divided all investors to gro u p s by stochastic do m inance test see J. P. Q u i r k and R. S a p o s n i k (1962), H . L e v y and Y. K r o l l (1970), H . L e v y (1992), A. L a n g e w i s c h a nd F. C h o o b i n e h (1996).

4. PR E FER EN C E R E L A T IO N S IN RANKING M U L T IV A L U E D A L T E R N A T IV E S U S IN G ST O C H A S T IC D O M IN A N C E

W hen we verified som e o f the stochastic dom in an ce we also observed additionally th a t th e d o m in an ce is n o t equivalent. C o m p arin g results o f

(6)

ranking alternatives we can observe, th a t in one type o f stochastic dom inance the overlapping area o f the tw o com p aring d istrib u tio n s are ch an gin g but the type o f sto ch astic dom in an ce is still the same. F o r the investor, when we co m pare the re tu rn d istrib u tio n s, it can be a differen t situ atio n , so we need the m etho d for ra n k in g preference inside o f on e type o f stochastic dom inance. W e present preference relations th a t could help globally ra n k in g alternatives. W hen one o f the type o f stochastic d om in an ce is verified, we can calculate the degree o f the decision m ak er preference by using the preference relation.

Definition 5. F o r tw o distinct uncertain alternatives X and У, / ( x ) and

g( x ) are the density functions, for x e [ a , b] cz R, F(x) and G(x) arc the cum ulative d istrib u tio n s, n f and are the m eans o f the altern ativ es X and

У, we define the index

A ccording to the type o f dom in ance this index m ay take differen t values in [0, 1]. T hese values should rcflect a certain degree o f the decisio n -m ak cr’s preference relatively to the considered attrib u te. T h e clarification o f the level o f the decision m a k e r’s preference im pose us to in tro d u ce tw o o th er functions w ith values in [0, 1].

Definition 6. F o r tw o distinct uncertain alternatives X and У, / ( x ) and

g(x) are the density functions (pj(x) and pg(x) are p ro b ab ility d istrib u tio n s for the discrete case, respectively for X and У), for x e [ a , h ] c R , F(x ) an d G(x) are the cum ulative d istrib u tio n s, SV^ and SVg arc sem i-variances o f the alternatives X and У then we define:

(9)

ÍI

n ^ x ) \ d x

1 — Jm in(/"(x), g(x))dx, in the co n tin o u s cade 1 — X m i n i p / x ) , pg(x)), in the discrete case

a

a x

(10)

(1 1)

b ro m these th ree fu n ctio n s it is possible to define a degree o f credibility o f the preference relatio n o f the alternative X to the altern ativ e У.

(7)

Definition 7. F o r tw o d istin ct uncertain alternatives X and У, w ith

respect to Def. 5 and 6, we define the preference relatio n o f the altern ativ e X to the altern ativ e У as:

S(f, g) =

W , g ) ,

if f s d

^(f, g) Q(f, g),

if SSD and n o t F S D

W ,

g) •

<P(f, g) 0 ( f , g), if T S D and n o t SSD (

0, otherw ise

T h e degree o f preference decreases progressively as we go from the dom inance F S D to the d om inance T S D . T his degree o f credibility o f the preference relation will allow us to know the n a tu re o f th e preference relation betw een tw o alternatives X and У basis o f th e characteristic obtained for three fu n ctio n s by type o f dom inan ce, in the case o f each dom inance. T h e im p o rta n t pro perties o f S are: antireflexivity, asym m etry and transivity ( M a r t e l , A z o n d e k o n , Z a r a s 1994). It is easy to apply this relation fo r ra n k m ultivalued outcom es, w hich we firstly ra n k by m ultivalued stochastic dom inance.

Example 3. L et tak e the ran d o m variables A, В and С w hose o utcom es

are m ultiv alued, include in som e intervals Aj as follows:

T a b l e 4 Probability distribution for random variable A

Aj [0,1] [1, 2] [2, 3]

P (A ) 0.2 0.4 0.4

T a b l e 5

Probability distribution for random variable В

Л> [1, 2] [2, 3] [3, 4]

P(Aj) 0.1 0.65 0.25

T a b l e 6 Probability distribution for random variable С

[1,2] [2, 3] [3, 4]

(8)

A ccording to the Def. 2 and 3 we have low er and u p p er p ro b ab ility d istrib u tio n s for this ra n d o m variables.

T a b l e ?

Lower and upper probability distributions for random variables A , В and С XJ 0 1 2 3 4 P.(A) 0.2 0.4 0.4 - -P*(A) - 0.2 0.4 0.4 -P .(B ) - 0.1 0.65 0.25 -H B) - - 0.1 0.65 0.25 p.(Q - 0.1 0.7 0.2 -p4(Q - - 0.1 0.7 0.2

N ow we can verify the stochastic dom inance. W e observed th a t B„ T S D A* and C , T S D A , (T ab. 8). So we have questio n if th a t d o m i­ nances are equivalent. F o r the investor, when we co m p are the re tu rn distributions, it ca n be a different situ atio n , so we calculate the degree o f th e d ec isio n m a k e r p refere n ce by usin g th e p re fere n ce re la tio n (Tab. 9). A ccording these results for the investor th e b etter is to choose С th an B.

T a b l e 8

R esults the analysis o f the set o f random variables A, В and С by stochastic dom inance

D om inance A, A , B, в» C , c . A , X A , F S D X F S D T SD X F S D B. F S D F SD FSD X F S D F S D C , F SD T SD X C , F SD F SD FSD F S D X

(9)

T a b l e 9

R esults o f analysis o f the set o f random variables Л, В and С by the preference relations S Ф V 0 S B , T S D A* 0.2 0.25 0.1964063 0.0982 C . T S D A* 0.4 0.3 1.1173333 0.1408 5. E M PIR IC A L A P P L IC A T IO N O F M U L T IV A L U E D ST O C H A S T IC A P P R O X IM A T IO N S: E V ID E N C E FRO M T H E W ARSAW ST O C K E X C H A N G E

C o n tin u o u s o b serv atio n s o f the price o f assets from the W arsaw Stock E xchange are th e em p irical exam ple o f m u ltiv alu ed ra n d o m v ariab les. Values o f the price o f the asset are from an interval: from m inim al price to m axim al price, cach day. Daily we have empirical realisation o f m ultivalued ran d o m variables. As an exam ple o f ap plication o f the th eo ry from the previous points we m ad e an analysis o f the daily ra te o f re tu rn assets from the W arsaw Stock E xchange in Ju n e 1997. W e determ ined m u ltivalued rates o f retu rn for the set o f assets from the W arsaw S tock E xchange, an d th en we applied the m ultivalued stochastic d om inance for ra n k in g alternatives. W c can co m p are alternatives used stochastic dom in an ce tests for ra n k in g alternatives u n d er am biguity, to establish an efficient set o f asset. T h e next step o f the pro ced u re is to apply to an efficient set o f asset a preference relation ô to m ak e the final ra n k in g o f the set o f assets.

Wc started by tak in g the price o f a g ro u p o f 14 asset: A N 1M E X , B PH , B RE, BSK, B U D IM E X , D Ę B IC A , E L E K T R 1M , M O S T O S T A L E X P , O K O ­ C IM , O P T IM U S , R O L IM P E X , S T A L E X P O R T , U N IV E R S A L , W B K , which were observed a t W arsaw Stock E xchange in Ju n e 1997. F ro m the set o f in fo rm atio n a b o u t price we co u n t the m ultiv alu ed ra te o f re tu rn . In financial ap p lica tio n we have cach value from tim e series, in o u r analysis - the ra te o f re tu rn , in the sam e p rob ab ility 1/n, acco rd in g to th e tim e o f observation s (see L e v y a nd S a r n a t 1984). So we are able to build low er and upper p ro b a b ility d istrib u tio n s for the set o f assets and next we can apply the m u ltivalu ed stoch astic dom inan ce for ra n k in g alternatives.

(10)

R esults the analysis o f the set o f assets from the Warsaw Stock Kxchange in June 1997 by stochastic dom inance

W c determ ined m ultivalued rates o f return for the set o f assets from the W arsaw S tock E xch an g e in Ju n e 1997, an d th en we app lied the m u ltiv alu ed sto c h a stic d o m in a n c e fo r ra n k in g alte rn a tiv e s. F o r w hole analysis o f all 14 assets, we should m atch each o f tw o assets. W c present the results o f analysis in T ab . 4, wc read this tab le from left to the top, for E xam ple 2 SSD 3 ( T r z p i o t 1998b).

F ro m these results we have the im plications th a t ST A L E X P O R T was dom in ated by all assets. A ccording to stochastic do m in an ce rule in p o rtfo lio selection the investors can choose different assets to th eir efficient set. T he investor n eu tra l to the risk can add to efficient set: E L E K T R 1M (bccausc o f FSD ). T h e investor with aversion to th e risk can ad d to efficient set: B PH , B U D IM E X , W BK (because o f SSD). W e ca n notice th a t in ou r research period o f tim e was no t T S D th a t m eans th a t it was difficult tim e for invest for investors with decreasing aversion to the risk.

M ost o f the observed stochastic dom inance is SSD, so we need to com pare the quality o f these relations. We can calculate value o f the preference relations Ö for lower and upper d istrib u tio n s, which were im p o rta n t for m ultivalued stochastic d om inance tests. T he degree o f preference decreases progressively as we go from the d o m in an ce F S D to the d o m in ance SSD. T h is degree o f credibility o f the preference relation will allow us to know in the case o f each dom inance, the natu re o f the preference relation between tw o com paring assets based on the type o f dom inance. We present the results o f analysis in T ab . 11, read this tab le from left to the to p , for exam ple <5(2, 3) = 0.5378.

(11)

T a b l e 11 Results o f analysis o f the set o f assets from the Warsaw Stock Exchange in June 1997 by

the preference relations S

6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 - 0.4229 2 0.5378 0.4320 0.4371 3 - 0.4203 4 - 0.4405 5 0.3295 - 0.4229 6 - 0.4225 7 0.4138 - 0.4560 0.4148 К - 0.4242 9 - 0.4545 10 - 0.4540 11 - 0.4736 12 -13 0.4238 14 0.5000 0.5504 1 - A N 1M E X , 2 - B P H , 3 - BRE, 4 - BSK, 5 - B U D IM E X , 6 - D E B IC A , 7 - ELEK - I'RIM, 8 - M O ST O ST A L E X P, 9 - O K O C IM , 10 - O PT IM U S, 11 - R O L IM P E X , 12 - ST A L E X P O R T , 13 - U N IV E R S A L , 14 - W BK.

N ow we have ad d itio n al in fo rm atio n by value o f preference re la tio n s S. As an exam ple wc ca n notice th a t all assets in d ifferent degree d o m in ate ST A L E X P O R T . W e can p ro p o se for the investor w ith aversion to th e risk efficient set (it was ch o o sin g by SSD ) with the higher value o f ô: B PH , W B K , and R O L 1M P E X (the n u m b er o f assets depends o n how m a n y assets we w ant to ta k e to the portfolio).

A fter these tw o steps o f analysis: test for m ultivalued stochastic dom inance and calculating value o f preference relations Ö, the investor can ch o ose an efficient set o f assets, acco rd in g to individual preferences. N ext he can choose a m eth o d for creatin g an individual p o rtfolio .

6. C O N C L U SIO N

M u ltivalued stoch astic ap p ro x im a tio n s have an ap p lica tio n in this class o f problem s w hen the classical p o in t o f view from ra n d o m v ariables is n o t enough, w hen we h av e a set as an outcom es o f ra n d o m variables. T h e area o f app licatio n s is very wide. W hen we determ in e m u ltiv alu ed sto chastic variables, we can do som e em pirical applications. W e can define m u ltivalued stochastic do m in an ce, an d then we can d o som e analysis on th e stock exchange. W e can use th e sam e m eth o d as in classical sto ch astic d o m in an ce and calculate the value o f preference relations ô, which help in ra n k in g the

(12)

set o f assets. T h e em pirical exam ples are the illu stratio n o f the fact, th a t wc have a n u m b er o f n o n d o m in atcd alternatives. In th e situ atio n , where d om inan ce c a n n o t be show n, the investors m ay be satisfied by in fo rm atio n a b o u t any o f n o n d o m in a tc d altern ativ e s, o r they m ay look fo r som e additional in fo rm atio n and rep eat analysis.

REFER EN C ES

F i s h b u r n P. C. (1964), D ecision a n d Value Theory, John Wiley and Sons, N ew York. H a d a r J., R u s s e l W. К (1969), Rules fo r Ordering Uncertain Prospects, Amer. E conom ic

R ev., 59, 25-34.

H a n o c h G. , L e v y H. (1969), The E fficiency A nalysis o f Choices Involving R isk, Rev. E conom ic Studies, 36, 335-346.

L a n g e w i s c h A. , C h o o b i n e h F. (1996), Stochastic Dominance Tests f o r Ranking Alternatives under A m b ig u ity, “ European Journal o f Operational Research” , 95, 139-154.

L e v y H. (1992), S tochastic D om inance and E xp ected Utility: Survey and Analysis, “M anagem ent Science” , 3«, 4, 555-593.

L e v y H., K r o l l Y. (1970), Ordering D om inance with R iskless A ssets, “Journal o f Financial and Quantitative A n alysis” , 11, 743-773.

L e v y H. , S a r n a t K. (1984), Portfolio and Investm ent Selection, T heory a n d Practice, Prentice- Hall Intentional, Inc., L ondon.

M a r t e l J. M. , A z o n d e k o n S., Z a r a s K. (1994), Preference R elations in M ulticriterion A n a ly s t under R is k, “Belgian Journal o f Operations Research, Statistics and Computer Science”, 31, 3 ^ , 55-83.

Q u i r k J. P., S a p o s n i k R. (1962), A dm issibility a n d M easurable U tility Functions, “ Review o f E conom ics Study” , 29, 140-146.

R o t h s c h i l d L. J., S t i g l i t z J. E. (1970), Increasing R isk. A D efinition, “Journal o f Econom ic T heory” , 2, 225-243.

T r z p i o t G . (1998a), S to ch a stic D om inance Under A m b ig u ity in O ptim a l P ortfolio Selection: Evidence fr o m the W arsaw S to c k E xchange, D ata Science C lassification a n d R elated M ethods, short papers from VI Conference o f the International Classification Societies, R om e, 311-315.

T r z p i o t G . (1998b), M u ltiva lu ed S tochastic D om inance in O ptim al P ortfolio Selection: Evidence fr o m the W arsaw S to c k E xchange, “ Université Laval, C R A E D O " , 004, Québec, Canada.

T r z p i o t G . (1999), W ielow arloiciow e zm ienne losowe iv badaniach ekonom icznych, A kadem ia E konom iczna, K atow ice.

T r z p i o t G . (2000a), M u ltiva lu ed S to p -L o ss Stochastic D om inance Tests, “A cta U niversitatis L odziensis” , F olia O econom ica, 152, 83-92.

T r z p i o t G. (2000b), R y z y k o na ryn ku kapitałow ym , [in:] T. T r z a s k a l i k (red.), M odelow anie preferencji a ry zy k o '0 0 , A kadem ia E konom iczna, K atowice, 243-266.

W h i t m o r e G. A. (1970), T h ird Degree Stochastic D om inance, Amer. Econom ic R ev., 60, 4 57-459.

(13)

G r a ż y n a T r z p io t

Z W IĄ ZK I PR E FE R E N C JI W R A N K IN G O W A N IU W IELO W A R TO ŚC IO W Y C H A LTER NATY W

W F IN A N SA C H PR ZY U Ż Y C IU D O M IN A C JI ST A T Y S T Y C Z N Y C H

W artykule w ykorzystano testy stochastycznej dominacji dla rangowanych hipotez alter­ natywnych w warunkach dw oistości w celu zbudowania efektyw nego zbioru aktyw ów dla różnych klas inwestorów. Z aproponow ano procedurę składającą się z dw óch kroków. Pierwszym jest test dla w iclow artościowej dominacji stochastycznej. W następnym kroku obliczona jest wartość dla pow iązań preferowanych.

Cytaty

Powiązane dokumenty

Rozwiązanie zadania obserwacyjnego powinno zawierać: dane dotyczące przyrządów uŜytych do obserwacji i pomiarów, opis metody i programu obserwacji, standardowe dane

The findings point towards four gendering processes that venture from the structure of the profession of attorney in Poland: professionally committed women are not limited by

Powyższe problemy mają szerszy kontekst. Współczesna demokracja, znajdu- jąca się obecnie pod silną presją tendencji populistycznych, utrudnia długofalowe planowanie,

Wzmocnienie stropu poprzez wykonanie zespolenia powoduje zmianę dotychczasowego układu konstrukcyjnego, zmienia się również rozkład naprężeń zginających w przekroju

W celu efektywnego korzystania z cyfrowego modelu na etapie eksploatacji budynku przy konfiguracji programu do zarządzania należy uwzględnić specyfikę obiektu,

(CC) – when a “covers” b, b should not be ranked before a; in case of exploitation of fuzzy relation R, property CC of applied RM guaranties that the final ranking produced by

We applied the Robust Ordinal Regression (ROR) and the Stochastic Multiobjective Acceptability Analysis in order to take into account the whole set of parameters compatible with

Tego rodzaju dylematy, wątpliwości i wynikające z nich przemilczenia, dyk- towane po trosze względami społecznymi, częściowo psychologicznymi, a naj- pewniej quasi-, a