• Nie Znaleziono Wyników

On the Numerical Properties of the M-P Generalized Inverse Algorithms

N/A
N/A
Protected

Academic year: 2021

Share "On the Numerical Properties of the M-P Generalized Inverse Algorithms"

Copied!
13
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O IJ Z I E N S I S

F O LIA OECONOMICA 48, 10P5 ______

Dózef S i a ł a ś * , W ła d y s ła w H i l o * * . Z b ig n ie w ' J o a t l e w s k i * * * ■ ON THE NUMERICAL PRO PERT IES OP THE M-P GENERALIZED

IN VERSE ALGORITHMS

1

. I n t f o d u c tlo n

A la r g o number o f a lg o r ith m s f o r the c a l c u l a t i o n o f a ge­ n e r a liz e d in v e r s e h e

3

been sug g ested in ro c e n t y e a r s . I n t h if i pa­ p er we s h a l l c o n fin o our a t t e n t i o n to the a lg o r it h m s o f th e H ooro-Ponroso g e n e r a liz e d in v e r s e (t h e f’V-P g e n e r a liz e d i n v e r s e ) . These a lg o r it h m s in tu rn can be d iv id e d in t o two c la s 3 c s t n o n - i­ t e r a t i v e and i t e r a t i v e a lg o r it h m s .

In fo r m u la tin g n o n - i t e r a t i v e a lg o r ith m s f o r the c a l c u l a t i o n o f the M»P g e n e r a liz e d in v o r s e A* o f the r e a l m a trix A w it h m rows and n colum ns, i . e . A « Rr (w hore A i s such a m a trix t h a t A*AA* - A * ; AA*A - A ; ( A A * )' « AA+; CA+A ) ' » A+A ) the f a c ­ t o r i z a t i o n p r i n c i p l e i s u sed . T h is p r i n c i p l o c o n s is t s in the f a c t o r i z a t i o n o f g iv e n m a tr ix A w it h r a n k ( A ) ■ in t o th e p ro ­ d u ct o f two ( o r m o re ), i . e .

mxk k xn

( l . l ) A » OF, C « R ° , F « R ° , r a n k (D ) * r a n k ( F ) » kQ.

Oue to the p r o p e r t ie s of the M*P g e n e r a liz e d in v e r s e and tho d e f i n i t i o n s of D, F we have

* D r . , L e c t u r e r a t the I n s t i t u t e o f M a th e m a tic s , U n i v e r s i t y

o f Łó d ź . . _

# i f D r. , L e c t u r e r a t the I n s t i t u t e o f E c o n o m e tric s and S t a ­ t i s t i c s . U n i v e r s i t y o f Ló d ź .

# * ' S e n i o r A s s is t a n t a t th e I n e t i t u t e o f E c o n o m e tric s and S t a t i s t i c s , U n i v e r s i t y o f L ó d ż .

(2)

J o T.bt b ia la c , Wtad^alaw K ilo , Zbip/iiow Wa£itl»wskl

( 1 . 2 ) A* - F *D +.

( 1 . 3 ) F * - F ' ( F F ' ) “ 1 , D+ - ( D 'O ) “ 1p ' ,

Throo ty p e s o f f a c t o r i z a t i o n » a ro v e r y w e ll known. Tha f i r s t typ o has th e form

( f l ) A - LU,

mxk

where L « R l a a lo w e r t r a p e z o id a l m a tr ix w it h u n i t s on the L XII

d ia g o n a l and z e ro s above the d ia g o n a l, U <a R o tp the upper t r a p e z o id a l. T h e r e fo r e , due to ( l , 2 ) , ( 1 . 3 ) i t i s

( 1 . 4 ) A* - U V - U ' ( U U ' T 1 ( L ' L r V .

The second typ e has th e form

< f2 ) A • QS,

mxk

Q * R ° , Q'Q ■ I ^ k y S i s the upper t r i a n g u l a r , and

( 1 . 5 ) A* « S ' ( S S ' ) " V - S“ 1^ '

( t h e d e c o m p o s itio n ( f 2 ) can be done by the use o f H o u sh o ld er tran­ s fo rm a tio n s o r th e n o d lf ie d G ra m -Sch ald t p r o c e d u r e ). The t h i r d ty p e has th e f o r e < fl> A - U Л V ', mxk , nxk к л хк U e R ° , V - R , Л. ■ d ia g ( X j , . . . . \ ) « R ° U ' U • О ■ V 'V * 1 ^ y , l a th e d ia g o n a l m a tr ix o f n onzero sq u are r o o t s of e i g e n v a l u e s o f A 'A ( o r A A * ), and ( 1 . 6 ) A* • V A mlU . '■ Л ' /V '■■■• - "" 4 •■V's

The f a c t o r i z e t i o n ( f l ) i e u se d , among o t h e r s . In c a l c u l a t i n g tbe М-Р g e n e r a liz e d in v e r s e , when th e Gaues e lim i n a t i o n method w ith com p lete p i v o t i n g , l a used (« е е th e d e s c r i p t i o n o f th e a lg o

(3)

The f a c t o r i z a t i o n ( f 2 ) l a u se d , among o t h e r s , In the con­ s t r u c t i o n o f th e a lg o r it h m o f I u a c k e [ 3 ] .

Th* f a c t o r i z a t i o n ( f 3 ) i s u sed , among o t h e r s , in th a f o r ­ m u la tio n o f th s a lg o r it h m SVDZ d e s c r ib e d in t h i s p a p e r.

I t e r a t i v e a lg o r ith m s ( t o w hich th e s tu d ie d a lg o r it h m A B I be­ lo n g s ) o ra baaed on th a Id e a of l t o r a t l v o m onotonlc tw o - sid e d op- p ro x lm a tio n e o f S c h u lt z .

Tha e x is te n c e o f th a g r e a t number o f th e a lg o r ith m s f o r c a l ­ c u l a t i o n o f the M oore-Penrose g e n e r a liz e d In v e r s e o f th e m a trix im p lie s th a need o f th e c o m p a ra tiv e s tu d y o f t h e i r p r o p e r t ie s . I n the p a p e r the a u th o rs g iv e a d e s c r ip t io n o f fo u r such a lg o r ith m s and t r y to compare them by use o f the M o n re-C arlo e x p e rim e n ts . Tha m easures o f a lg o r ith m p r e c i s i o n , used in the e x p e rim e n ts , w are based on f o u r c o n d it io n s w hich d e f in e the M oore-Penrose g e n e r a liz e d i n v e r s e . They a re o f th e form«

I A * > - A II II A?AA* - A t | ■ •> .... i * T »> c ) II A* H l ( A A * r - A A ? | H (aT A )* - A * A 8 ---- --- — A— a ) — 1 - ,---1— Ia a* I | aJa | whore A* d e n o te s , g iv e n by th e i - t h a lg o r it h m , e s t im a te o f th e M-P g e n e r a liz e d in v e r s e o f th e m a tr ix A ( i ■ i , 4 ) , and de­ note«} E u c lid e a n norm.

B e s id e s t h i s , we t r y to answ er the q u e e tlo n how much th e chongea in i l l c o n d it io n in g o f the in v e r t e d m a tr ix in f lu e n c e th e form o f th e g e n e r a liz e d In v e r s e o f t h i s m a t r ix , r e a liz e d by aeons o f the 1-th a lg o r it h m . T h is has boon done by means o f a com parison o f th e E u c lid e a n norms o f th e M-P g e n e r a liz e d In v e r « i s « aJ , 1 • 1 , 4 f o r v a r i o u s d e g re e s o f i l l - c o n d i t i o n i n g o f th e in v e r t e d m a tr ix A.

(4)

0 Jû a a f 8U1&», VtadysUw M ilo , Zbigniew V aallew ski

*--- ---- -— --- ;---;— 2 . The D e s c r ip t io n o f th e M g o rlth m e

Wo c o n fin e d o u r a n a l y s i s to ona i t e r a t i v e a lg o r it h m , n ark ed h e re a * A B I , and th r o e n o n - i t e r a t i v e AWMEL, G E IN

1

V, SVOZ bas­ ed on th e Id e e o f th e f a c t o r i z a t i o n o f th e g iv e n m a tr ix A o f ronk k Q. A lg o rith m s AIWIEL and GEINW a r e based on th e fa c - t o r i z e t i o n o f th e fo rm t

A • LU, A « R * * n , r a n k ( A ) ■ kfl < « i n (■ , n ) ,

•xk

w here L e R i s l o n e r t r e p e z o i d e l m a tr ix w it h u n i t s in main d ia g o n a l and z e r o s above i t , U « r?ko * “

1

q u p p er t r a p e z o ld e l m a tr ix and A* a ■ U '( U U * ) ~ * ( L %L ) " ‘* L * .

A lg o rith m SVOZ ie based on th e Id e a o f th e e p e e t r s l f a c t o ­ r i z a t i o n o f th e form

mxk_ nxk k x k

O IJ '«/ _ i.'.É _ A - U A . V ', Ü « R ° , V « R A « R ° ° , V 'V • U 'U - I

o where A d e n o te s the d ia g o n a l m a tr ix o f n onzero s q u a re r o o t s o f

* - A \

th e s i n g u l a r v a lu e s o f th e m a tr ix A 'A , and A » V K~ U *.

B e lo w we g iv e a c o n e ls e d e s c r i p t i o n o f th e s u c c e s s iv e s te p s o f th e H o o re -Pe n ro se in v e r s e c o m p u ta tio n by means o f each from th e a n a ly s e d a lg o r it h m s .

» -V ’ • . • •

2 .1 , A lg o rith m A 8 I ( c f . B e n - I s r a e 1 [

2

] )

S l : U s in g one o f th e a lg o r ith m e f o r d e a lin g w it h e ig e n v a lu e p rob lem ( e . g . th e method o f 3 e c o b l) f in d th e g r e a t e s t e ig e n v a lu e o f th e m a tr ix A*A and d e n o te I t by ^ B X . S 2 t f i n d such a v a lu e a t h e t

0

" » < S 3 t Porm - o A * . i o S 4 i F o r J • 1 , 2 . . . compute /

(5)

u n t t l

l x - x A — i ± < r^,

whero ^ d e n o te a tho rank of th e a c c u r a c y o f tho i t e r a t i v e p ro ­ c e s s . I f the c o n ve rg e n c e c r i t e r i o n le s a t i s f i e d f o r J • J z thon p u t A+ j ■ X j z .

2 .2 . A l g o r i t hm AWMEL ( c f . __XI i l l e r [9 . ] )

S ix U sin g the row e le m e n ta r y t r a n s f o r m a t io n s red u ce tho i n ­ v e r t e d m a tr ix A e Rnxn to the norm al H orm ltoon form , i . e . f in d

the m a tr ix H - (•£•). H e Rm* n , G e Rko * n , kQ «* rank ( A ) - rank ( H ) , w h e re :

. f i r s t k rows of m a tr ix H a re nonzero rows and e le m e n ts o

of th e rows kQ ♦ 1 , . . . . n a ra a l l e q u a l z e r o ,

. . the f i r s t nonzero elem ent o f the i - t h row o f the m a tr ix H ( i ■ 1, . . . . k Q) i s e q u a l 1 and b e lo n g s to column n^, nx < n2 < < • • ><n. i

o

. . . th e o n ly nonzero elem en t in column n^ o f th e m a trix H i s

1 in th e i - t h row. (nx|<.

S 2 i U cln g th e m a tr ic e s A and H from m a tr ix P e R 0 a c c o rd ­ in g to th e schome

P ^ î * *=» H ^ ) - 1 ^ J * 1» *••* 1 * I f •••# •

where P ^ , d e n o te r e s p e c t i v e l y the i - t h and J - t h colum ns o f the ir a t r i c e s P . A and H j d e n o te s th e u n it v e c t o r w it h 1-th component e q u a l 1.

(6)

2 .3 . Al g o r i t hm G E IN W ( c f . W a r m u s [

7

] )

S i s U sin g row nnd column e le m e n ta r y t r a n s f o r m a t io n s red u ce the in v e r t e d r a t r l x A e Rl,xn o f rank k o s£ mln (m, n ) to th e mo» t r i x o f th e form

0 \

ranking r e s p e c t iv e row tro n o fo r m a tlo n e on tho m a tr ix G t ■ I and column t r i '•.uforumtlone on the m a tr ix F : « I .n

S 2 : U sin g t r a n s f ore.ed M t r l c e s G end F , o b ta in e d In S I , com-p u te

G~1 " (rm n :

v m, n • m « w- n /

« n)!

V m (V'r )’lr'A .

* F " 1 ®( “ •"•■•I ••

Y

U » 'V t f 't y f T 1 ,

y^n-m.n

J

W - UV and forra th e - m a tr ix n- ko ' ko ko * m- ko W n- kO*l"“ kO; S 3 : Compute A* » FYG, 2 .4 . A lg o rith m SVÜZ ( c f . __ G^ o 1 u b ,___ R e i n e _ c _ h _ [ 6 ] M l 1_ W a e

1

1 e w s k 1 _ 1.5 ] )

3 1 ; U sin g one o f the a lg o r it h m s f o r d e a lin g w it h e ig e n v a lu e ¡>robie® ( e . g . the method o f O ^ c o b i) f in d th e e ig e n v a lu e s

md r j s p e c t i v e e ig e n v e c t o r s v x o f th e m a tr ix A #A o f rank ko . SS. •. O rd er e ig e n v a lu e s , o b ta in e d in S I , in a d e c r e a s in g

man-2 2

(7)

♦ - ° „ S 3 : Compute A « V O A

3. N u m e ric a l A n a l y s i s or tho A lg o r it h m s ' P r o p e r t ie s r--r--- — - -tct,;---—- . . . . {a n « № r & u 'Jia s a a ^ - <- - ■ .a .- rjg < i.n » r.i»n , •- - ^cxra

The com p ariso n s of tho p r o p e r t ie s o f tho fo u r a lg o r it h m s dov- c r ib e d a b o ve , w ere c o n fln o d to o n ly one s p e c i f i c n u m e ric a l s t r u c t u r e o f tho In v e r t e d m i i t r i c e i , Thu A n a ly s is coir-prisos sym m etric and r e c t a n g u la r n o t r ic o 's , and f o r each typ e of m a tr ic e s th e re •.'»ere d is t i n g u is h e d v a r i o u s d e g re e s o f i l l - c o n d i ­ t io n in g and c o l l l n e a i i t y . Kach n u itrrx A was g e n e ra te d in two s ta g e s . A t f i r s t ttio re was g e n e ra te d n o n s in g u la r t r iiiit t g o n a ! b a s is m a tr ix w it h u n it s on d ia g o n a ls and z e ro s e ls e w h a r? (d e n o ­ ted f u r t h e r as T I n th e next s ta g e the m a tr ix T war. e n la r g e d . I l l - c o n d i t i o n i n g was in tr o d u c e d throu g h sym m etric e n la rg e m e n t of the m a tr ix T by columna and rows d i f f e r i n g from r e s p e c t iv e co­ lumns and rows o f the m a trix T o n ly in m a in - d ia g o n a l ele m e n t by n e a r ze ro v a lu e t. S i n g u l a r i t y , i n tho caso o f sym m e tric m a t r ic e s , woo in tr o d u c e d throu g h e n la rg e m e n t of tho m a tr ix l by columns find rows b ein g the l i n e a r c o m b in a tio n s o f tho s u c c o s o lv o two co­ lumns and rows o f t h i s m a tr ix . R e c t a n g u la r m a tr ic e s were o b t a in ­ ed by ad d in g to m a tr ix T i t s colum ns w it h In c r e a s e d by th e con­ s t a n t v a lu e

(3

e le m e n ts o f the l a s t row , and by ad d in g colum ns b e in g l i n e a r c o m b in a tio n o f th e s u c c e s s iv e two colum ns o f the m a trix T. Such a g e n e r a t io n o f th e m a tr ix A w i l l f i x in on a r b i t r a r y way th e number o f l l n e a r l l y dependent colum ns (t h e de­ g re e o f th e s i n g u l a r i t y o f tho m a tr ix A ) as w e l l as th e number o f colum ns b e in g th e c a r r i o r o f i l l - c o n d l t l o n l n g and i t s magni­

tu d e . A t th e same tim e the g e n e r a l s t r u c t u r e o f the In v e r t e d ma­ t r i c e s s t i l l rem ain s th e some. D e s c r ib in g th e r e s u l t s o f the e x p e rim e n ts we t i i l l use the f o llo w in g p a r a m e t r ic n o te c h a r a c t e ­

(8)

w h e re j ,

a , n ,k - r e s p e c t i v e l y th® d im e n s io n s and rank o f th « m a tr ix A,

1

,C - ro - .*p e rtiv o ly th « number o f columns w hich ore the c a r ­ r i e r o f I l l - c o n d i t i o n i n g and p a ra m e te r d e f in in g the d e g re e of t h i s i

11

- c o n d i t i o n i n g ,

Cj .Cj, - c o e f f i c i e n t s of th e l i n e a r co m b in a tio n of the 'o a sis colum ns of A,

|3

_ c o n s ta n t v a lu e used in form in g r o c t a n g u la r m o tric e s in the ‘way d o s c r ib e d in th« t e x t ab o ve , ‘ .

A t f i r s t we con r.id erod th-» m a tr ix o f tho form

A. - A ( l l , 11, 0 , 0 , O. 0 , 1, 0 )

i . e . o s in g u l a r but w u ll- c o n d it io n e d s y m m e tric a l m a tr ix , f o r such d e fin e d rn o trix A o i l a n a ly e e d a lg o r ith m s c h a r a c t e r iz e d the same p r o c is io r i b u t i t e r a t i v e a lg o r it h m A B I appeared the most tlm e- -consum ing and a lg o r it h m AWMEL the f a s t e s t of them. C o n s id e r in g m a tr ic e s A? - A ( U , 11, 0 . 0 . 0 , O .O O O l, 1) and A^ - A ( l l , 1 1 ,0 ,

0

,

3

,

0

. ?X , l ) we

3

to tn d r a t h e r s m a ll changes in the v a lu e s or |j/*H and f; A* |j in com p ariso n w ith the v a lu e o f II A^ II w hich i n d i c a t e s the s t a b le p e rfo rm a n ce o f tho a lg o r it h m s w it h re g a rd to u n s i Q M f J c a n t changes in tho v a lu e s o f e le m e n t» in n o n b a s is colum ns o f the in v e r t e d m a tr ix A. The next group of a n a ly s e d m a tr ic e s c o n s is t e d of the s i n g u l a r s y m m e tric a l m a tr ic e s w hich c h a r a c t e r is e d the v a r i o u s d eg ree o f i l l - c o n d i t i o n i n g , I . e . ma­ t r i c e s o f the form

A (1 1 , 11,

8

, I , C , 2 , 1, O ) -

w h o re :

1

e

1

*

2 ,3

and £ *

0

,

0 1

,

0

.

0 0 1

,

0

.

0001

,

F o r such a d e fln s d group o i in v e r t e d m a tr ic e s we o b se rv e d sub­ s t a n t i a l d i f f e r e n c e s betw een r e s p e c t iv e a lg o r it h m s in dependence

on th e d eg ree o f I l l - c o n d i t i o n i n g o f th e se m a t r ic e s . I n the c a re of s m a ll l e v e l of i l l - c o n d i t i o n i n g (£ <

0

.

0 1

) , d e s p it e the number of colum ns b e in g I t s c a r r i e r ( i - 1 , 2 , 3 ) . the r e s u l t s of io m p u ta tlo n a f o r a l l a lg o r ith m s w e re , f o r each v a lu e o f

1

, v e r y s i m i l a r C !j A + il computed by means of r e s p e c t iv e a lg o r it h m s d i f f e r s o n ly in th e f o u r t h p la c e a f t e r p o i n t ) . The p r e c i s i o n m easure«, we

(9)

had a c c e p te d , i n d i c a t e a b i t le 3 8 p r e c i s i o n o f the conput 'io n ;; «■-•hich w er« done by SVDZ, J u s t in the c<it»d o f £ * 0.0 0 1 ai-J £ ■ 0.0001 C onputptxons done by 'ronm o f GVIJZ 1 ud to quit-: d i f f e ­ r e n t form of I! A*

S

in com p ariso n w it h th e se o b ta in e d by moony o f a lg o r it h m s AlVHEL, ADI and G£XN\V ( c f . T a b le t ) . Tho v o l i > of d e c lin e d from 1 6 4 .<ir.J5 to 2.92117 when tho v a lu e - of tho i l l - c o n d i t i o n i n g porom otwr £ d e c lin e d from

0 .0 1

to

0 .0 0 1

and rem ained s t a b l e d e s p it e f u r t h e r d e c lin e in £ . Y e t , the valur>i.

and « ♦ II GEINW AWMEL propor t i o n a l l y to th e d e c lin e in C . in c r e a s e d a l l the tim e T a b l e

The in f lu e n c e o£ 1 1 1 - c o n d itio n in g on th e v a lu o o f S A*

3

o b ta in e d by means

o f a lg o r it h m s Al/t-iU , A L il,

6

VDZ and GEINW

A lg o ­ The v a lu e of c o o f f i c i e n r f rith m

0 .1

0 .0 1

0.001

0.0001

1

B

1

AWMEL ? 14.93664965 147. 4?73f!999 t 475.11192473 14 406.37441319 A

6

I 14.93065005 147.42794070

1

475.96259026 14 761.67377477 ASV0Z2 14.93865165 147.42873272 3. .51496101 3.31490505 GEINW 14.93865005 147. 4;> 794049 I

1

1

» 4 7 b .06259010 3 14 761.67157197 A.VMEL2 26.71292776 267.03145007

2

679.08125581 27 992.02097376 AOI 26.71292755 267.83201591

2

C0O.O35C5124 26 8 0 2 .172163CS A3VDZ2 26.71292739 26"/. 83226000 1.02713*58 1.82710446 GEINW 26.71292756 267.03201613

2

600.0 3567281 26 802.174054 31

D e s p ite such s u b s t a n t i a l d i f f e r e n c e s betw een the v a lu e o f jA £ V D i;i and the v a lu e s o f I a* q][ | , | . II \ E I N i ; L a c c e p te d m easures o f the c o m p u ta tio n s ' p r o c ie io n In d i c o t e n s i m i l a r and q u it e good p r e c i s i o n o f a l l the a lg o r it h m s ( c f . T a b le 2 ) .

The com p ariso n o f v u lu o o o f the p r e c i s i o n m easures f o r v a ­ r io u s v a lu e s o f £ i n d i c a t e a s n a i l decline- in p r e c i s i o n when the v a lu e o f £ d e c l i n e s . The most s i g n i f i c a n t d e c l i n e ap p eared in tho ca se o f the a lg o r it h m AvVMEL. On the o t h e r hand, th e b eat

(10)

r o b l o a Tho I n f lu e n c e o f i l l - c o n d i t i o n i n g o f the in v e r t e d a o t r i x A on th e c o m p u ta tio n a l p r e c is io n o f th e r e s p e c t iv e a lg o r ith m s P r e c i s i o n m easures A lg o ­

rith m 1 AA+A - A | | A +AA+-A *| 1 ( a a +) t - a a +U l i A +A ) T._A+A l

I A I 1 A+ l| I a a4 I I a +a8

e ■ 0 .1

AVJMEL2 O.OOOOOOOl 0.00000003 0.00000001 0.0000000fi

A B I 0.00000000 0.00000001 0.00000000 0.00000000 ASVDZ2 0.00000001 0.00000011 0.00000000 0.00000011 GEINW 0.00000000 0.00000000 0.00000000 0.00000000 E - 0.0 1 AWMEL2 0.00000634 0.00000379 0.00000102 0.00001191 A B I 0.00000000 0.00000013 0.00000000

0.00000030

ASV0Z2 0.00000174 0.00000532 0.00000073 0.00001077 GEINW 0.00000000 0.00000000

0.00000001

0.00000000 • E • 0.0 0 1 AWHEL

2

0.00027984 0.00057636 0.00013251 0.00045671 A B I O.0OOOOOO2 0.00000118 0.00000004 0.00000712 ASVDZ2 0.00004995 O.OO'OOOOOO 0.00000000 0.00000000 GEINW 0.00000005 0.00000001 0.00000004 0.00000004 E - 0.0001 AWMEL

2

0.01744044 0.02406894 0.00361627 0.04149807 A B I 0.00000012 0.00000987 0.00000027 0.00257619 ASVDZ2 0.00000499 0.00000000 0.00000000 0.00000000 GEXNY7 0.00000032 0.00000014 0.00000050 0.00000028

p r e c i s i o n c h a r a c t e r iz e d a lg o r it h m GEINW. A lg o rith m A B I w as, ae compared vuith o t h e r s , n e a r l y 6-8 tim e s more tim o-consum in g , but i t s p r e c i s i o n was r a t h e r h ig h .

The l a s t group o f in v e r t e d m a tr ic e s c o n s is t s o f r e c t a n g u la r m a tr ic e s w it h d i f f e r e n t degro© o f i l l - c o n d i t i o n i n g . We c o n s id ­ e re d n in e m a tr ic e s o f th e form

(11)

A (

6

, 1 1 ,4 + 1 ,1 ,£ ,2 ,1 ,1 ) » A l iC

w here« I - 1 , 2 , 3 : E - O .O l, 0 .0 0 1 , 0 ,0 0 0 1 .

I n the caso when o n ly one column wos the c a r r i e r o f I l l - c o n ­ d i t i o n i n g , «11 the a lg o r it h m s w ere c h n r o c t e r lz o d by h ig h p r e c i ­ s io n and a l l o f then le d to M-P g e n e r a liz e d in v e r s e s o f s l n l - U r norms. In th e ca se when two o r th ro e columna wore* th e c a r ­ r i e r s o f i l l - c o n d i t i o n i n g , th e s i t u a t i o n was s i m i l a r to th n t c o n c e rn in g s y m m e tric a l m a t r ic e s . The h ig h e s t p r e c i s i o n was cho- r a c t e r i e t i c of a lg o r it h m GEINIV and th e w or

3

t one o f a lg o r it h m AVJMEL.

4. F l n o l Remarks M g m ~ ri-a x.'.aa

Our i n v e s t i g a t i o n s a llo w u o, d e s p it e t h e i r v e r y l im it e d sc o ­ p e , to fo rm u la te some rem arks c o n c e rn in g th e a n a ly s e d a lg o r it h m s f o r co m p u ta tio n o f M-P in v e r s e s .

1 ° I t I s supposed t h a t from the n u m e ric a l p o in t o f v ie w , mea­ s u re s o f a l g o r i t h m 's p r e c i s i o n boned on f o u r M oore-Penrose con­ d i t i o n s w hich were a c c e p te d In the p a p e r do not a llo w to i n d i c a ­ te u n iq u e ly th e b e s t n u m e r ic a l a p p ro x im a tio n o f th o g e n e r a liz e d M-P in v e r s e o f the I l l - c o n d i t i o n e d m a tr ix .

2 ° A l l a lg o r it h m s w h ich w ere a n a ly s e d e x c e p t SVDZ were cha­ r a c t e r i z e d by s m a ll ro b u s tn e s s on h ig h i l l - c o n d i t i o n i n g o f th ' in v e r t e d m a tr ix .

3 ° From the c o m p u ta tio n s ' p r e c i s i o n p o in t o f v ie w a lg o r it h m GEIN'.*/ was th e b e s t and a lg o r it h m AIVMEL wao th e w o r s t , but a t the same tim e th e f a s t e s t among th e f o u r a lg o r it h m s b oing a n a ly s ­ ed.

4 ° The i l l - c o n d i t i o n i n g o f h ig h d e g re e caused a d e c lin e in the a lg o r it h m s ' p r e c i s i o n , e x c e p t in the c a s e o f SVDZ.

5 ° From T a b lo 1 ,2 I t i s seen t h a t th e SVDZ i s s t a b l e both in th e sense o f II A* I as w o l l as In th e sense o f th e d e g re e o f f u l ­ f ilm e n t o f th e fo u r c o n d it io n s d e f in in g th e M-P g e n e r a liz e d I n ­ v e r s e A+ when the i l l - c o n d i t i o n i n g i s in c r e a s in g ( t h a t i s when E i s d e c l i n i n g from C * 0.0 0 1 to £ ■ 0 .0 0 0 1 ). I t i s co u sed , p r o b a b ly , by th e in h e r e n t p r o p e r t i e s o f D aco b l p ro c e d u re and the

(12)

assu m p tio n th a t U^ ■ AVj/v"* , where U ■ (U^ 5 Ug ) , U 'U * U U ' a l ^ y u ; u i ■ ■<!<„)■v ■ ( v i i v z >- v ' u ■ w ' • • (» )■ v i v i • j ( k o )- F " r d raw in g d e c i s i v e c o n c lu s io n s about i n s t a b i l i t y and I t s c a u s e * we a r e c a r r y in g ou t more s t r u c t u r a l e x p e rim e n ts . BIBLIO G RAPH Y • • [ 1 ] A l b e r t A. (1 9 7 2 ), R e g r e s s io n and th e M ooro-Ponrose P s e u d o in v e r s e , N .Y . , Academ ic P r e s s . [ 2 ] B e n - I a r a e 1 A . (1 9 6 6 ), A Note on an I t e r a t i v e Me­ thod f o r G e n e r a liz e d I n v e r s i o n o f M a t r i c e s , M ath, o f C om p ut., p . 439-440.

[ 3 ] L u e c k e G. (1 9 7 9 ), A N u m e ric a l P ro c e d u re f o r Comput­ in g th e M o ore-Penrose I n v e r s e , Numer. M ath. 32, p . 129-137. [ 4 ] M a r c u s M. , M i n c H. (1 9 6 4 ), A S u rv o y o f M a t r ix

T h e o ry and M a t r ix I n e q u a l i t i e s , B o s to n , A l l y n and Bacon I n c , [ 5 ] M i 1 o W ., W a s i l e w s k i 2. ( i 9 6 0 ) , G e n e r a liz e d In v e r s e A lg o rith m s and T h e ir A p p l i c a t i o n s . P a r t I , G ra n t R. I I I . 9 . 5 . 7 , u n p u b lis h e d m a n u s c rip t, [ 6 ] M l t r a S . , R a o C. (1 9 7 1 ), G e n e r a liz e d In v e r s e o f M a t r ic e s and I t a A p p l i c a t i o n s , N . Y . , W i le y . [ 7 } W a r m u s M. (1 9 7 2 ), U o g ó ln io n e o d w ro tn o ó c i m a c ie rz y . W arszaw a, PWN. . [O ] W i l k i n s o n J . , R a i n s c h 3. ( l 9 7 l ) . Handbook f o r A u to m a tic C o m p u ta tio n . V o l. I I I : L in e a r A lg e b r a , B e r l i n , S p r in g e r - V e r la g . [ 9 ] W i 1 1 n e r L . (1 9 6 7 ), An E l i m i n a t i o n Method f o r Com­ p u tin g the G e n e r a liz e d I n v e r s e , M ath. C om p ut., p . 227-229.

(13)

Jó z e f B i a ł a » , Włady M i lo , Z b ig n ie w Wsailews!< 1

O WŁASNOŚCIACH NUMERYCZNYCH ALGORYTMÓW MOO«E'A-Pł.NRPSH'A UOGÓLNIONYCH ODWROTNOŚCI MACIERZY

P r a c a z a w ie ra k r ó t k i o o la t r z e c h n l e i t o r a c y j n y c h i je d n e yo 1- t e r a c y jn e g o a lg o ry tm u o b l ic z a n ia u o g ó ln io n y c h o d w ró tn o fici "d a n e j m a c ie rz y o ra z r e z u lt a t ó w eksperym entów num erycznych z m ie rz a ­ ją c y c h do u s t a l e n i a n ie k t ó r y c h num erycznych w ła s n o ś c i ty c h a lg o ­ rytm ów. u tw ie rd z o n o , iż

a ) w e z y s tk io a n a liz o w a n o a lg o r y tm y , op rócz b a z u ją c e g o na zm°~ d y fik o w a rte j d e k o m p o zycji w a r t o ś c i w łn i;n a j, w yk a z yw a ły mołsj od­ p o rn o ść na z ł « uw arunkow anie o d w ra c a n e j m a c ie rz y ;

b ) n a js z y b s z y a lg o ry tm W l lln a r o b v ł n a jm n ie j p r e c y z y jn y ; c ) a lg o ry tm GEINW Warmuaa b y ł n a j b a r d z ie j p r e c y z y jn y pod względem s p o h n ie n ia c z te r e c h warunków o k r e ś la ją c y c h u o g ó ln io n y od w rotność m a c ie rz y A*-;

d ) w przyp ad ku w z r a s ta ją c e g o z łe g o uwarunkow ania n a j b a r d z ie j s t a b i l n y o k a z a ł Bi<j (w e s n i i e <£ 1 s p e ł n i a n i a d o f l n l c j i A ) a lg o ­ rytm o p a r t y na zm o d yflko w anej d e k o m p o zycji w a r t o ś c i w ła s n e j.

Cytaty

Powiązane dokumenty

The positive semi-definitness of the computed Hermitian factors was tested by attempting to compute a Cholesky decomposition of Ii. Cholesky’s tests were

Next we have to apply appropriate transformations of the (/-plane to arrive at a (p*, M*)~system satisfying the conditions of the lemma... W., Generalized solutions of a system

Asymptotic normal structure, Day norm, local uniform con- vexity, normal structure, Opial property, strict convexity, uniform convexity in every direction.... We state

Z dziejów bankowości – bankowość centralna  w Polsce i na świecie, zorganizowana przez Katedrę Historii Ustroju i Prawa Wydziału Prawa, Prawa Kanonicznego i

When Chromatius refers to the Jews, he intends for the absence of their faith; the heretics, for the false faith that contradicts to the true one; and the pagans, for their

This papers addressed the problem of optimal synthesis of inverse kinematics algorithms for robotic manipula- tors and mobile robots, focusing on devising an extended Jacobian

In the following we assume that measurable functions taking their values in a Banach space X are strongly measurable... The proof for the Luxemburg norm is

Following the singularity theory methods (cf. [1, 10]) and using the group of symplectomorphisms preserving the product structure as an equivalence group the generic properties