• Nie Znaleziono Wyników

Classification of condom lubricants in cyanoacrylate treated fingerprints by desorption electrospray ionization mass spectrometry

N/A
N/A
Protected

Academic year: 2021

Share "Classification of condom lubricants in cyanoacrylate treated fingerprints by desorption electrospray ionization mass spectrometry"

Copied!
11
0
0

Pełen tekst

(1)

Delft University of Technology

Classification of condom lubricants in cyanoacrylate treated fingerprints by desorption

electrospray ionization mass spectrometry

van Helmond, Ward; Begieneman, Mark P.V.; Kniest, Roos; de Puit, Marcel

DOI

10.1016/j.forsciint.2019.110005

Publication date

2019

Document Version

Final published version

Published in

Forensic Science International

Citation (APA)

van Helmond, W., Begieneman, M. P. V., Kniest, R., & de Puit, M. (2019). Classification of condom

lubricants in cyanoacrylate treated fingerprints by desorption electrospray ionization mass spectrometry.

Forensic Science International, 305, [110005]. https://doi.org/10.1016/j.forsciint.2019.110005

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Classi

fication

of

condom

lubricants

in

cyanoacrylate

treated

fingerprints

by

desorption

electrospray

ionization

mass

spectrometry

Ward

van

Helmond

a,b,c,

*

,1

,

Mark

P.V.

Begieneman

a,1

,

Roos

Kniest

a

,

Marcel

de

Puit

a,c,

*

a

NetherlandsForensicInstitute,DigitalTechnologyandBiometrics,LaanvanYpenburg6,2497GB,DenHaag,theNetherlands

b

AmsterdamUniversityofAppliedSciences,ForensicScience,Weesperzijde190,1097DZ,Amsterdam,theNetherlands

c

DelftUniversityofTechnology,FacultyofAppliedSciences,DepartmentofChemicalEngineering,VanderMaasweg9,2629HZ,Delft,theNetherlands

ARTICLE INFO

Articlehistory: Received6August2019

Receivedinrevisedform16October2019 Accepted21October2019

Availableonline23October2019

Keywords:

MassSpectrometryImaging DESI-MSI

Polydimethylsiloxane Polyethyleneglycol Principalcomponentanalysis Lineardiscriminantanalysis

ABSTRACT

Tracesofcondomlubricantsinfingerprintscanbevaluableinformationincasesofsexualassault.Ideally, notonlyconfirmationofthepresenceofthecondombutalsodeterminationofthetypeofcondombrand usedcanberetrieved.Previousstudieshaveshowntobeabletoretrieveinformationaboutthecondom brandandtypefromfingerprintscontaininglubricantsusingvariousanalyticaltechniques.However,in practice fingerprintsoftenappearlatentand needtobe detected first,whichis oftenachievedby cyanoacrylate fuming. In this study, we developed a desorption electrospray ionization mass spectrometry (DESI-MS) method which, combined with principal component analysis and linear discriminantanalysis(PCA-LDA),allowsforhighaccuracyclassificationofcondombrandsandtypesfrom fingerprints containing condom lubricant traces. The developed method is compatible with cyanoacrylate(CA)fuming.Wecollectedandanalyzedarepresentativedataset fortheNetherlands comprising32differentcondoms.Distinctivelubricantcomponentssuchaspolyethyleneglycol(PEG), polydimethylsiloxane(PDMS),octoxynol-9andnonoxynol-9werereadilydetectedusingtheDESI-MS method.Basedontheanalysisoflubricantspots,a99.0%classificationaccuracywasachieved.When analyzinglubricantcontainingfingerprints,anoverallaccuracyof90.9%wasobtained.Fullchemical imagescouldbegeneratedfromfingerprints,showingthedistributionoflubricantcomponentssuchas PEGandPDMSthroughoutthefingerprint,whilestillallowingforclassification.Thedevelopedmethod showspotentialforthedevelopmentofDESI-MSbasedanalysesofCAtreatedexogenouscompounds fromfingerprintsforuseinforensicscience.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

Sexual assault is a major health problem and a violationof human rights [1]. When the identity of the perpetrator is unknown,themostimportanttracesin sexualassaultcasesare oftenofbiologicalorigin,suchasblood,semen,salivaandhair.This isduetothefactthatDNAcanberetrievedand analyzedfrom thesetraces,allowingfortheidentificationofpossiblecriminals. Nowadays,biologicalmaterialbecomesincreasinglyhardertofind incases ofsexual assault,potentiallybecauseawarenessof the importance ofDNA in forensictechniques and evidence in the justicesystem is growing among criminals [2]. Because of this

awareness, as wellas alertnessto sexual transmitted diseases, criminalsarebecomingmorevigilantinleavingbiologicaltraces andtheuseofcondomsinsexualassaultcaseshasincreasedover thepastdecades[3–6].Othertypesoftraceevidencemaythusbe requiredtoestablisha linkbetweenvictimandcriminal.Inthe past,studieshaveshownthatacondomcanbeacriticalpieceof evidenceinsexual assaultcases[4,7,8]. Theanalysisofcondom derived traces can thus be of significant associative evidential importance.Ideally,notonlyconfirmationofthepresenceofthe condombutalsodeterminationofthetypeofcondombrandused canberetrieved.

In thelast decades several studies have beenperformed to

develop methods to detect traces of condoms. Most of these

studiesfocusedonthelubricantsthatareaddedtothecondomsby manufacturers.Indeed,primarycomponentsoflubricantssuchas polydimethylsiloxane(PDMS)andpolyethyleneglycol(PEG)were foundto bedetectable bydesorption chemical ionizationmass spectrometry[9],pyrolysisgaschromatographymass spectrome-try(pyGC-MS),GC–MS[10],Ramanspectroscopy[11]andFourier

* Correspondingauthorsat:NetherlandsForensicInstitute,DigitalTechnology andBiometrics,LaanvanYpenburg6,2497GB,DenHaag,theNetherlands.

E-mailaddresses:w.van.helmond@hva.nl(W.vanHelmond),m.de.puit@nfi.nl

(M.dePuit).

1

Theseauthorscontributedequally.

http://dx.doi.org/10.1016/j.forsciint.2019.110005

0379-0738/©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

ForensicScienceInternational305(2019)110005

ContentslistsavailableatScienceDirect

Forensic

Science

International

(3)

transforminfrared spectroscopy (FT-IR) [9,12]. Another specific componentincaseofspermicidecontainingcondoms, nonoxynol-9(N9),couldalsobeidentifiedbyFT-IR[9],GC–MS[13]andliquid

chromatography mass spectrometry (LC–MS) [12]. Multiple

studiesexamined thepossibilitytodiscriminatedifferenttypes ofcondoms.Maynardetal.describedatwo-stepmethodusing FT-IRasafirstscreeningtool,followedbyeitherGC–MS,pyGC-MSor

LC–MS as a confirmation method, enabling them to uniquely

identify 11 types of condoms [12]. Burger et al. showed that capillaryelectrophoresesmayalsobeapromisingtechniquefor classifying both condom and personal lubricants, although it remainedunclearwhichdiscriminatingconstituentswereusedin theanalysis[14].

However,mostoftheseanalytical techniquesrequiresample preparationand/orextractionwhichmaybetimeconsumingand resultinlossoftheinitialtraceevidence.Additionally,themethod itselfmayalsolimittheamountofinformationretrievedfromthe sample. For instance, analysisof silicone lubricants by GC–MS requirespyrolysisofthelubricant[10],thatcancausedegradation ofminorcomponents.Theseminorcomponentswerefoundtobe an important differentiating factor in distinguishing sexual lubricantsandpersonalhygieneproducts,whichcontainsimilar majorcomponentssuchasPDMSandPEG[15].Also,preservation oftheoriginalevidentialtracecanbeofgreatinterestinforensic science. In this respect, the use of ambient ionization mass spectrometrytechniquesismorefavorable.Apopulartechnique thathasbeenusedinrecentyearsisdirectanalysisinrealtime (DART)MS,thathasbeenshowntobeaveryeffectivetoolforthe

detectionofboth themajorand minorcomponentsof condom

lubricants,withouttheneedtoextensivelypreparethesampleor potentiallossofevidence[16–20].Furthermore,DARTanalysisis highlyeffectiveindiscriminatinglubricants.Baumgartenetal.and Maric et al. successfully discriminated condom and personal lubricantsusing DART-Time-of-Flight (TOF) MSanalysis[19,18]. Using a DART-High Resolution MS (HR-MS) analysistechnique, Coonetal.couldrapidlygeneratediagnosticchemicalfingerprint

signatures of 110 condoms, enabling them to discriminate

condomsof16differentbrands[20].However,adisadvantageof DARTanalysisisthatthistechniqueisunabletoretrievespatial

chemical information from the samples, such as fingerprints

containinglubricants.

Lubricatedfingerprintsarelikelytobefoundatacrimesceneof sexualassault, ashandlingof a condomwill transfertheouter

coating of the condom onto the perpetrator’s fingerprints,

potentiallyleaving condomlubricant contaminated fingerprints behind[21,22].Detectionofalubricantfromafingerprintfoundat asexualassaultscene,wouldgreatlyincreasethestrengthofthe evidence,asitnotonlyestablishescontactwithacondombutalso indicatesthepresence of thecriminal atthe crimescene [21]. Bradshaw et al. developed a method for the visualization of condomlubricantwithinafingerprintbymappingthefingerprint ridgepattern using Matrix AssistedLaser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) [21]. In a follow-up studytheyshowedthatdifferentiationof6differentcondomsin

lubricated fingerprints was possible using MALDI-MSI, Raman

spectroscopyandATR-FTIRimaginginasynergisticmanner[22]. BesidesMALDI-MSI,desorptionelectrosprayionization(DESI)MSI hasalso beenshowntobea powerfulanalytical tool. Whereas MALDIoffersexcellentspatialresolution20

m

m,oneofthemain disadvantagesisthe necessitytoapplymatrix solutiontoyour sample[23].Applyingthematrixsolutionintoolargedropletswill bedetrimentalforthespatial resolutionas diffusionwill occur withinthesedroplets.OneofthemainadvantagesofDESI-MSIis thatsamplesrequire nosamplepreparation andcan bereadily analyzed.UsingDESI,typicallyspatialresolutionsof100

m

mcan beachieved[23].However,thechoiceoftheelectrospraysolvent

compositionisessential,astheinteractionbetweenthe electro-sprayandthesurfacegreatlyinfluencesthesensitivityandspatial resolution [24]. Mirabelliet al. wereable togeneratechemical images of latent lubricated fingerprints deposited on different surfaces and of different ages using DESI-MS [25]. The data

acquired from DESI-MS analysis of lubricated fingerprints,

combinedwithsupervisedpatternrecognitionstatisticalanalysis (lineardiscriminantanalysis(LDA)andsoftindependentmodeling ofclassanalogy(SIMCA)),enabledMirabellietal.todistinguish10 differentcondomtypeswitha94%predictionabilityforbothLDA andSIMCA[26].

However,fingerprintsinpracticeoftenneedtobedetectedfirst,

as they appear latent. One of the most used visualization

techniques for latent fingerprints on non-porous substrates is cyanoacrylate (CA) fuming [27,28]. Fingerprints from a sexual assault scene that have been analyzed at a forensic lab, are potentiallytreatedwithCA.Inthisregard,theaimofourstudywas todevelopamethodtoanalyzelubricatedfingerprints,whichwas compatible with CA fuming and able to differentiate between differenttypesofcondoms.Thedevelopedmethod,basedon DESI-MSanalysis,is capableofgeneratingchemical images,mapping

common lubricant components in a lubricated fingerprint.

Additionally, using this method, combined with a statistical approach, PCA followed by LDA, we were able to differentiate between32typesofcondomsfrom21differentbrands.

2.Materials&methods 2.1.Materials

UPLC-gradeacetonitrileandformicacidwerepurchasedfrom Biosolve(Valkenswaard,Netherlands).UPLC-grademethanolwas

purchased at Merck (Darmstadt, Germany). Cyanoacrylate was

purchasedfromBVDA(Haarlem, Netherlands).Microscopeglass slides were purchased from Thermo Fischer Scientific (Breda,

Netherlands). 24-wells slides were purchased from Prosolia

(Indianapolis, USA). Reference masses purine (5mM) and hex-akis(1H,1H, 3H-tetrafluoropropoxy)phosphazine)(HP-0921, 2.5 mM)werepurchasedfromAgilentTechnologies(SantaClara,USA). Mitramicrosamplertips(10

m

L)werepurchased fromNeoteryx (Torrance,USA).Arangeof32differentcondomswerepurchased atonlinepharmacyandcondomwebsites(Table1).

2.2.Lubricantsamples

Lubricantofeachcondomwascollectedbyswipingtheinterior ofthecondompackageandbothsidesofthecondomwitha10

m

L microsampleruntilsaturation.Themicrosamplerisavolumetric absorptionmicrosamplingdevice(VAMS),thatonlyabsorbs10

m

l of sample. Because of this, it provides more control over the amountoflubricanttobesampled,incomparisontocottonswabs,

that absorbed too much lubricant. The condom lubricant was

carefullytransferredontothe24-wellsslidebyslightlytouching

each well once with the lubricated microsampler tip. Each

lubricantwas spotted 12times (n=12) onseparate wells. Asa control,eachsamplewellwasfollowedbyablankwell.Slideswere left to dry for at least 1h at room temperature (RT). Next, cyanoacrylate(CA,0.5gheatedto120C)fumingwasperformed onallslides,inaMVC1000fumingsystem(FosterandFreeman LTD,Worcestershire,UK)for10minat80%humidity.Slideswere thenlefttodryovernightatRTbeforeanalysis.

2.3.Fingerprintsamples

Fingerprintsweredonatedvoluntarilybya femaleandmale donor, after giving informed consent. No ethical approval was

(4)

obtainedasthematerialwasgatheredinanoninvasivemanner anddidnotinfringeonanyprivacyofthedonors.Allexperiments werecarriedoutfollowinginstitutionalguidelinesandaccording torelevantlaws.Allcondoms(n=32)werehandledbyeachdonor (n=2).Aftertouchingthecondomandtheinsideofthepackaging, thelubricantwasdistributedoverthefinger.After5minofdrying, fingerprintsofeachcondomlubricantweredepositedon micro-scopeslides.Fromeachdonor,ablankfingerprintwasusedasa control(n=2).Slideswerelefttodryforatleast1hatRTfollowed byCAfuming,asdescribedabove.Fingerprintswerethenleftto dryovernightatRT.

2.4.DESI-Q-TOFMS

Desorptionelectrosprayionizationmass spectrometry (DESI-MS)datawereacquiredusinganAgilenttechnologies(SantaClara, USA)6530quadrupoletime-of-flight(TOF) MSequippedwitha Prosolia(Indianapolis,USA)2D-DESI.24-wellssampleslideswere analyzedindwellmodeusingpositivepolaritywiththefollowing parameters:sprayvoltage,5kV;nitrogensheathgaspressure,6.0 bar;dryinggasflow,8L/minute,sourcegastemperature,300C; acquisition time, 200ms; mass range, m/z 100–1200; inlet-to-surface distance, 1mm and tip-to-surface distance, 3mm. Combinationsofseveralsprayincidentangles(52,45 and35) and tip-to-inletdistances(4, 5,6, and8mm)weretested.Best results were achieved with an angle of 45 and a tip-to-inlet distanceof6mm.Alargertip-inletdistanceledtodecreased carry-over,alsodescribedbyMirabellietal.[26].Adwelltimeof20swas used,withapost-acquire-delaytimeof30sinbetweenthewells. Tofurtheravoidcarry-overafteranalysisofeachsamplewell,the nextblankwellwasdwelledfor5minbeforemeasuringthenext sample.Additionally,theMS-inletwascleanedafteranalysisof3– 4slidestoavoidcarry-over,asalsoindicatedbyMirabellietal.[26]. Different spraying solvents were tested, namely a mixture of

acetonitrile and water(90:10 v/v),acetonitrile, methanol anda mixtureofmethanolwithwater(90:10v/v).Allsolventscontained 0.4% formic acid, 0.02mM Purine and 0.025mMHP-0921. Best result were achieved witha mixture of acetonitrileand water (90:10v/v)whensprayedataconstantvolumetricflowrateof3

m

L/minute, delivered by a syringe pump (Fusion 100, Chemyx,

Stafford, USA).The64lubricatedand 2blankfingerprintswere analyzedusingthesamesettings,butinsteadofdwelling,5scans of3mmweremeasuredwithineachfingerprint,usinga150

m

m/ secondscanrate(totalingto20s)andastepsizeof1mm.MSfull scandatawereacquiredwithAgilentMassHunterData Acquisi-tionsoftware(versionB.08.00).Beforedataanalysis,thefirstline of each analyzed fingerprint was removedfrom the results, as theseoftencontainedspectrawithlowintensities.Thiswaslikelya resultofsamplewetting,asdescribedbyBodzon-Kulakowskaetal. [29].Lubricantcomponentswereputativelyannotatedusingthe

online METLIN mass spectral metabolite database [30] and

comparisonwithpreviouslyobtainedresultsfromliterature. 2.5.Fingerprintimaging

Chemicalimages(1220mm)ofacyanoacrylatedblankand EXSlubricatedfingerprintwereacquiredusingthesame

param-eters as described above. The MS-inlet was cleaned after

acquisitionofeachchemicalimage.Imageswereacquiredusing a150

m

m/secondscanrate,resultingina30

m

mpixelwidthand stepsize(totalingto400rows).DatawereconvertedtoimzML, using FireFly (v.3.0.1.1, Prosolia, Indianapolis, USA),and subse-quentlyanalyzedusingMSIReader(v1.01)[31].

2.6.Statistics

DatawereconvertedtomzXMLandthe5000mostabundant

peakswerefilteredusingmsConvert[32].Dataweresubsequently

Table1

The32condomsusedinthisstudy,theabbreviationused,themanufacturerandtheircountryoforigin.

Condoms Abbreviation Manufacturer Country

BillyBoyExtraLubricated BBEL MapaHealthCare Germany

BalanceCondoom BC Condoom-anoniem Netherlands

BeppySoftComfort BSC Beppy Netherlands

DurexClassicalNatural DCN Durex UK

DurexExtraSafe DES Durex UK

DurexFeelingSensitive DFS Durex UK

DurexOrgasmic DO Durex UK

DurexPerforma DP Durex UK

DurexRealFeeling DRF Durex UK

DurexXLPower DXLP Durex UK

Euroglider EU AshaInternational/Euroglider Netherlands

EXSRegular EXS LTCHealthCare UK

FairSquaredOriginal FSO FairSquaredGMBH Germany GlydeUltraNaturelle GUN GlydeHealth Australia

JustSafeStandaard JSS Safe Netherlands

KruidvatClassic KC Kruidvat Netherlands

KruidvatExtra KE Kruidvat Netherlands

KruidvatSensationBanana KSb Kruidvat Netherlands KruidvatSensationChocolate KSc Kruidvat Netherlands KruidvatSensationStrawberry KSs Kruidvat Netherlands

KruidvatUltra KU Kruidvat Netherlands

LELOHEXCondooms LH Lelo Sweden

LevelPopular LP YourLevelsBV Netherlands

MoreAmoreSoftSkin MASS BizzyDiamondBV Netherlands

MySize MS R&SGermany Germany

MatesSKYNOriginal MSO LifestyleHealthcare Australia

ONNaturalFeeling ON R&SGermany Germany

PlayboyLubricated PL Playboy USA

PasanteNaturelle PN PasanteHealthcareLtd/Karex UK

Startex ST ForeSeeline Belgium

UniqPull UP UniqInternational Colombia

Wingman WI Wingman Netherlands

(5)

processedwithR(version3.4.2)usingRstudio(Version1.1.456), usingtheMALDIquantpackage[33].Massspectrawere square-roottransformedandnormalizedusingthetotalioncurrent(TIC). Afteraligning and averaging the spectra, peaks were detected usingthecorrespondingMALDIquantfunctions.Principal

compo-nent analysis (PCA) was then executed to reduce the data

dimensionality. After splitting the data in a 75% training and 25%testset,thefirst12PCs (explaining90% ofthecumulative proportionofvariance)wereusedtogeneratealineardiscriminant analysis(LDA)model,usingtheMASSpackage[34].Classification accuracywasevaluatedbygeneratingconfusionmatricesusingthe caretpackage[35].

3.Results

3.1.Detectionofcondomlubricants

As a firstscreening of thechemical components of condom lubricants,adetectionmethodwasdevelopedbasedontheanalyses of the 24-wells cyanoacrylated sample slides. Typical scans of lubricantsfrom4differentcondomsareshowninFigs.1–4.Ascanbe deducedfromthesespectra,distinctivepatterns,originatingfrom polymersthatmakeupalargepartofthelubricants,werefound. Closeranalysisofthedetectedm/zvaluesthatformtheseionseries leadtotheputativeannotationofthemajorcomponentsofthe condomlubricants(Table2).Alargecomponentofmanylubricants

appearedtobepoly(ethyleneglycol)(PEG),whereas m/zvalues correspondingtopolydimethylsiloxane(PDMS)weredetectedas well. In some lubricants, the polyethoxylated phenol nonionic surfactants octoxynol-9ornonoxynol-9, servingasspermicides, were observed (Table 2). Next to these chemical components, multipleionseriescorrespondingtothefattyalcoholethoxylates PEGdecyletherandPEGdodecyletherwerefound,oftenusedas non-ionicsurfactants(Table2)[36].Poly(propyleneglycol)(PPG) was putatively annotatedin someof the lubricants as well.In addition to the ion series resulting from the polymers largely presentincondomlubricants,afewmolecularionspecieswerealso detectedandputativelyannotated.Anexampleisthedetectionof benzocaine,alocalanestheticusedintwooftheDurexcondoms (Performa and Orgasmic) (Table 2). Furthermore, masses corre-spondingtoundecylamineanddodecylaminewereobserved.Asall samplesweresubjectedtocyanoacrylatefuming,acommonlyused detection technique for latent fingerprints within the forensic setting,amasscorrespondingtoacyanoacrylate(CA)fragmentwas alsofound(Table2).Finally,incontrols,exceptCA,noneoftheabove mentionedchemicalcomponentswerefound(datanotshown). 3.2.Differentiationofcondomlubricants

Todifferentiatebetweenthe32condoms,principalcomponent

analysis (PCA) and linear discriminant analysis (LDA) were

performed,as both areshown tobeeffectivein discriminating

Fig.1.SpectrumobtainedfromDESI-MSanalysisofspotsoflubricantfromBSCcondom,showingionseriescorrespondingtoPDMS()andnonoxynol-9[M+Na]+(*)and

[M+K]+

().

Fig.2.SpectrumobtainedfromDESI-MSanalysisofspotsoflubricantfromMSOcondom,showingionseriescorrespondingtopoly(ethyleneglycol)decylether(*), octoxynol-9[M+K]+()

and[M+Na]+

(6)

condom lubricants based on mass spectra [26,18,19]. PCA was performedtoreducedatadimensionality,usingthemassspectra acquiredfromthe32differentcondomlubricants(Fig.5).Using only the first two principal components (PCs), a distinction betweenmajorlubricantclassescouldalreadybemade.Togain moreinsight inwhichcomponentscan beusedtodifferentiate condomlubricants,theloadingsofthefirst5PCswereanalyzed (Fig.6).ThefirstPCcontainsm/zvaluescorrespondingtothe[M +Na]+and[M+K]+ionseriesofPEG,whereasinthesecondPCm/z

valuesofnonoxynol-9(both[M+Na]+and[M+K]+)are

incorpo-rated.InthethirdPC,putatively,octoxynol-9(both[M+Na]+and

[M+K]+)wasfoundtobethemajorcomponent.Undecylamineand

anunidentifiedm/zof848.6672arethemajorcontributorstothe

fourth PC. In the fifth PC, dodecylamine, PEG, PPG and an

unidentified m/zof 125.9863werethestrongest differentiating factors.

Next,lineardiscriminantanalysis(LDA)wasusedtogeneratea classificationmodelusingthefirst12PCs(explaining90%ofthe cumulativeproportionofvariance(Fig.S1)),basedonthetraining data(75%oflubricantdataobtainedfromanalysisofthe24-wells

slides). The generated model was subsequently evaluated by

classificationofthetestdata(25%oflubricantdataobtainedfrom analysisofthe24-wellsslides).Analysisoftheresultingconfusion matrixshowsthatthemodelisabletoclassifycondomlubricants withhighaccuracy(99.0%)(TableS1).Only1samplewaspredicted

incorrectly;asamplecontainingKSbwas predictedbythe PCA-LDAmodelasKSs(TableS1),whichbothoriginatefromthesame brandofflavoredcondoms(KruidvatSensations).Theselubricants likely contain the same basis, while different colorants and

flavorings are added. The fact that many components of the

lubricantarelikelytobeidentical,couldexplainthe missclassi-ficationofthegeneratedmodel.Subsequently,wegeneratedthe

PCA-LDA classification model based on the data from the

lubricatedcyanoacrylatedfingerprintsinthesamemanner.Using thisdata,anoverallaccuracyof90.9%wasachieved(TableS2).A fewmissclassificationwerepresentbutseemtobe comprehensi-ble,suchasthepredictionofDESasDCN(bothDurexcondoms)and the prediction of DP as DO (both Durex condoms that contain benzocaine).However,themodelperformedpoorforonespecific condomlubricant,namelyPL(sensitivityof40%).Furtheranalysis ofthePLdatarevealedthelowintensityofmanyofthechemical components, possibly explaining the poor performance of the modelinthiscase.

3.3.Imagingofcondomlubricantsinfingerprints

Visualisationofthepresenceofcondomtraceswithin finger-printswouldgreatlyenhancethestrengthof theevidence,asit bothestablishesthepresenceofthesuspectatthecrimesceneand contact with a condom. Therefore, full chemical images were

Fig.3.SpectrumobtainedfromDESI-MSanalysisofspotsoflubricantfromKCcondom,showingionseriescorrespondingtopoly(ethyleneglycol)dodecylether[M+Na]+

(*) andpoly(ethyleneglycol)decylether[M+Na]+().

Fig.4.SpectrumobtainedfromDESI-MSanalysisofspotsoflubricantfromDOcondom,showingionseriescorrespondingtopoly(ethyleneglycol)[M+H]+

(*),[M+K]+()

and [M+Na]+

().

(7)

obtainedfromfingerprintsthat handledan EXS condomand a blank(natural)fingerprint,bothtreatedwithCAfuming(Fig.7).As expected,CA(m/z556.1794)waspresentinbothfingerprints,and revealsthefrictionridgepatternofthefingerprintinbothcases

(Fig.7CandD).WhenrenderingthechemicaldistributionofPDMS (m/z 445.1200) for both fingerprints, only in the lubricated fingerprintadistinctiveimagewasacquired,thatwas absentin theblank(Fig.7AandB).A similarresultwasobtainedforthe

Table2

Detectedm/zvalues,theirputativeannotationandcorrespondingformula.

Putativeannotation Experimentalm/zvalues Formula n Ref

Benzocaine 166.0862 C9H11NO2 [M+H]+ – [30,37,18] Undecylamine 172.2058 C11H25N [M+H]+ – [30] Dodecylamine 186.2217 C12H27N [M+H]+ – [30] Ethylcyanoacrylate 556.1794 (C6H7NO2)n [M+H-C4H8N]+ n=5 – Poly(ethyleneglycol) 195.1226,239.1489,283.1753,327.1017,371.2279,415.2540, 459.2808,503.3059 H(C2H4O)nOH [M+H]+ n=4...11 [38,12] 217.1046,261.1308,305.1572,349.1836,393.2098,437.2359, 481.2622,525.2883,569.3160,613.3404,701.4077 H(C2H4O)nOH [M+Na]+ n=4...14 233.0785,277.1041,321.1298,365.1567,409.1832,453.2097, 497.2360,541.2620,585.2889,629.3150 H(C2H4O)nOH [M+K]+ n=4...13 Poly(ethyleneglycol) decylether 313.2348,357.2611,401.2873,445.3135,489.3393,533.3649, 577.3712 C10H21(C2H4O)nOH [M+Na]+ n=3...9 – Poly(ethyleneglycol) dodecylether 341.2662,385.2923,429.3183,473.3441,517.3681,561.3913, 605.4167 C12H25(C2H4O)nOH [M+Na]+ n=3...9 [39] Poly(propyleneglycol) 273.1674,331.2093,389.2514 H(C3H6O)nOH [M+Na]+ n=4...6 [38] 347.1857 H(C3H6O)nOH [M+K]+ n=5 Poly(dimethylsiloxane) 371.1013,445.1200,519.1382 (C2H6SiO)n [M+H]+ n=5...7 [38] 429.0882 (C2H6SiO)n [M+H-CH4]+ n=6 Octoxynol-9 449.2877,493.3136,537.3400,581.3661,625.3919,669.4184, 713.4439,757.4698 C14H21(C2H4O)nOH [M+Na]+ n=5....12 [38,40] 509.2876,553.3138,597.3399,641.3662,685.3925,729.4182, 773.4447,817.4707 C14H21(C2H4O)nOH [M+K]+ n=6...13 Nonoxynol-9 419.2772,463.3031,507.3291,551.3552,595.3811,639.4076 C15H23(C2H4O)nOH [M+Na]+ n=4...9 [38,40,12,21] 347.1982,391.2244,435.2509,479.2771,523.3033,567.3295, 611.3555,655.3815,699.4078,743.4352,787.4599 C15H23(C2H4O)nOH [M+K]+ n=2...12

Fig.5. Principalcomponentanalysisscoreplotbasedontheanalysisof32condomsandblank(n=12)usingthefirsttwoprincipalcomponents.Separateclusteringofseveral lubricantgroupsisobserved.

(8)

majorlubricantcomponentPEG(m/z585.2889,Fig.7EandF).PEG was foundto behighly abundantin the lubricatedfingerprint, whileonlyminorabundancewasfoundintheblank.Importantly, incaseofthelubricatedfingerprint,classificationusingasubsetof thedata(to getthesamenumber ofaveraged scans),correctly predictsthesourceofthelubricantasEXS(TableS3).

4.Discussion

Tothebestofourknowledge,thisisthefirststudydescribinga method for the differentiation of condom lubricants from CA

treated fingerprints using DESI-MS combined with a PCA-LDA

classificationmodel.Thegeneratedmodelshowedhighaccuracy forbothdirectanalysisofcondomlubricantspots(99.0%),aswell aslubricatedfingerprints(90.9%).Moreover,sincealargerangeof differentbrands and types of condoms, commonly soldin the

Netherlands, were analyzed, a representative database was

collected.

The detection, discrimination and visualization of condom derived traces from fingerprints is of significant evidential

importance in sexual assault cases, as it provides crucial

information onthe presence of a criminal at a crimescene as wellascontactwithacondomandtypeofcondomused,thereby greatlyincreasingthestrengthoftheevidence.Inpreviousstudies, ithasalreadybeenshownthatcondomlubricantscanbedetected anddiscriminated,solelyorwithinfingerprints,usingseveralMS techniques, includingDART-MS [18–20], MALDI-MS [21,22] and DESI-MS[25,26].However,inthesestudiestheeffectof cyanoac-rylate (CA)was not examined, while in forensics CAfuming is frequentlyperformedtovisualizefingerprintsastheyoftenappear

latent. We now show that the current described method is

compatiblewithcyanoacrylatefuming,renderingitmoresuitable for applicationto forensic casework.Additionally, full chemical imagescouldbeacquiredfromCAtreatedlubricatedfingerprints, showingthespatialdistributionoflubricantcomponentssuchas PEGandPDMSthroughoutthefingerprint,whichcanbecombined withclassificationofcondomlubricants.Thespatialinformation provided bychemical imaging, confirms thatthe lubricantwas

transferred by fingerprint contact as it links the presence of condomlubricanttothefingerprintridgedetail,makingitofmore evidentialvaluethanthesoleanalysisandcomparisonofcondom components.

MALDI-MS was previously shown to have the potential to

discriminatebetweendifferentcondombrandsortypes,combined withchemicalimaginginamultidisciplinaryanalyticalapproach, byBradshawetal.[22].However,theadvantageofusingDESI-MS ascomparedtoMALDI-MStechniques,isthatnomatrixorsample preparationisneededandanalysiscanbeperformedatambient pressure.DART-MSanalysisoffersstraightforwardanalysis with-outtheneedforsamplepreparation,andwasshowntobeableto achievehighclassificationaccuraciesbasedoncondomlubricant spectra [18–20], but lacks the capability to generate chemical images.WenowfoundthatDESI-MScombinestheeasyanddirect analysisofcondomlubricantsampleswiththeabilitytoperform

chemical imaging resulting in high accuracy detection and

discriminationofcondomtraces.AlthoughMALDI-MSiscapable of achieving higher spatial resolutions, the chemical images generatedusingDESI-MSshowclearridgedetail,whichwefound tobesufficientforthepurposeofthismethod.

Using the developed DESI-MS method, we found multiple

condom lubricant components. Among the most commonly

encountered compoundswereion seriescorrespondingtoPEG, PDMS,nonoxynol-9,octoxynol-9andPEGdodecylether.Basedon theloadingsofthefirstPCs,PEG,nonoxynol-9andoctoxynol-9 seemtobethemostdiscriminatorylubricantcomponents.Being

an essential part of many lubricant bases, PDMS, PEG and

nonoxynol-9 havebeenanalyzed fromcondomlubricanttraces using various analytical techniques, and have, not surprisingly, been included in many recent condom lubricant classification studies [18–20,25,26]. The detection of octoxynol-9in condom lubricantsislesscommonlyencountered,buthasbeendescribed by Thomas et al. [40] and Bradshaw et al. [21]. The putative annotationoftwofattyalcoholethoxylates(PEGdecyletherand PEGdodecylether),thatpossibleserveasethoxylate lubricants, are inagreementwithfindingsbyMirabelliet al.,whoalready mentionedthepossiblepresenceofethoxylatelubricantincertain

Fig.6.PlotoftheabsolutevaluesofcomponentloadingsoftheDESI-MSspectrafromcondomlubricantforthefirst5principalcomponents.

(9)

types of condoms [26]. The m/z values used for the putative annotationof poly(ethyleneglycol) dodecylether in ourstudy, correspondtopreviously describedpolymer fragmentsfroman unknownethoxylated polymer species by Mirabelli et al. [26]. Additionally,Musahetal.reportedthedetectionofoctylalcohol ethoxylatefromSkyncondoms,afterDART-MSanalysis[16].We

also detected m/z values corresponding to undecylamine and

dodecylamine, which, to our knowledge, are not commonly

detectedincondomlubricants,althoughoctylaminewasidentified in many of the previous studies, mainly used as emulsifier, dispersantorlubricant[16,25,18–20].

There are numerous alternative approaches available to

generateclassification models based onanalytical data. In our approach,weusedPCAasafirststep,toreducedata dimensional-ity,making the data easier to perceive. LDA was subsequently chosenasclassificationmethodasitshowedtobeaneasyandfast classificationmethod,whichhadalreadyproventobeeffectivein

discriminating condom lubricants based on mass spectra in

previousstudiesbyMaricetal.,Baumgartenetal.,andMirabelli

et al. [18,19,26]. In terms of classification accuracy based on lubricantspectra using DART-MS,Maricet al.achieved a98.7% accuracy based on classification of 90 lubricants to one of 12 distinctive groups [18], Baumgarten et al. acquired a 88.9% accuracywhenclassifying18differentlubricants[19],whileCoon etal. discriminated110condomtypesfrom16differentbrands witha 97.4% accuracy [20]. Classification of lubricants from10 differentcondomsusingDESI-MSbyMirabellietal.resultedina 94% accuracy [26]. Our results are largely in line with these previousstudies,aswegaineda99.0%accuracywhenanalyzing condomlubricantspots,anda90.9%accuracybasedonanalysisof lubricantcontainingfingerprints.Additionally,theseresultsshow thatthepresenceofCAdoesnotinterferewiththedetectionand discriminationofcondomlubricants,andhighaccuracyclassi fica-tion of CAfumed lubricanttraces using DESI-MSand PCA-LDA analysisisattainable.

Someofthemisclassificationsinourstudyseemtobecaused duetolubricantsoriginatingfromthesamecondombrand.When analyzinglubricantspots,asamplecontainingKSbwaspredicted

Fig.7.Chemicalimages(1220mm)showingthedistrubutionofPDMS(m/z445.1200,AandB),cyanoacrylate(m/z556.1794,CandD)andPEG(m/z585.2889,EandF) throughoutafingerprintcontainingEXSlubricant(A,CandE)andanaturalblank(B,DandF)fingerprint.

(10)

asKSs(bothKruidvatcondoms),whileinfingerprintscontaining lubricants,DESwaspredictedasDCN(bothDurexcondoms)and

DP was predicted as DO (both Durex condoms that contain

benzocaine).Themisclassificationofcondomlubricantoriginating fromtwo differentDurex sources was also experienced in one occasion by Mirabelli et al. [26], likely being the result of similaritiesbetweencondomlubricantsoriginatingfromthesame

brand. This was shown by Maric et al. and Coon et al., who

classifiedcondomlubricantstoamajorlubricantgroup/brandwith highaccuracy[18,20].Predictingthecondomlubricanttracesby brandonly,insteadofbrandandtype,wouldpresumablyleadtoan increased classification accuracy in our study as well. For one particular condom (PL), we found a low sensitivity (40%) in lubricatedfingerprints,whichseemedtobetheresultoflowion intensities, possibly explaining the poor performance of the statisticalmodelinthiscase.

As the majorcomponents of condom lubricants are known

contaminantsinmassspectrometry[38],weencountered carry-overproblemsduringmethoddevelopmentandoptimization,that weresimilartotheeffectsdescribedbyMirabellietal.[26].Intheir study,itwasfoundthatthemostrelevantparametersdetermining the‘memoryeffect’werethedistancebetweenthespraytipand iontransferlineandbetweentheiontransferlineandsample.Too shortdistancesresultedincontaminationoftheiontransferline, assamplematerialcouldbesuckedintotheMSinlet[26].Indeed, we also found that increasing the ion transfer line-to-surface distanceandspraytip-to-iontransferlinedistance,togetherwith cleaningtheMSinletafter3–4samples,resultedinavoidanceof samplecarry-over,indicatingthatthesearecrucialsettingsand actionsforreliableresultswhenanalyzingcondomlubricanttraces withDESI-MS.Also,whenimaging lubricatedfingerprintsusing DESI-MS,wefoundthathighamountsofcondomlubricantinthe fingerprintsdidnotgeneratehighqualitychemicalimages,dueto

a decrease in clear ridge detail as a consequence of high

abundances of PDMS and PEG ion signals. However, the

classification model still predicted the source of the lubricant correctly,indicatingthatadiscriminationcouldstillbemade.

In this paper, we solely focused on theanalysis of condom lubricant traces in CA treated fingerprints. However, the main componentsofthesecondomlubricants,suchasPEGandPDMS, canalsobefoundinmanypersonalcareproducts[15].Asaresult, analysisoffingerprintsthatpossiblycontaintracesofanyofthese personalcareproducts,mayleadtomisclassifications.Although theability todiscriminatebetweenpersonal careproductsand condomlubricantsinfingerprintswasnotanalyzedinthepresent study,arecentstudyperformedbyMoustafaandBridgeshowed thatdiscriminationbetweentheseclassesofproductsispossible using DART-MS and LDA [15]. The addition of discriminating factorsfromotherclassesofpersonalcareproductstothecurrent developedmodelwouldfurtherincreasetheforensicapplicability

of the generated method. Furthermore, we only measured

fingerprintswithcondomlubricanttracesfromglasssubstrates, while in practice, fingerprints can be found on all available substrates. Furtheroptimization of the analysis of fingerprints containingcondomlubricanttracesonseveraldifferentsubstrates wouldalsobenefitthedevelopedmethod.Indeed,Mirabellietal.

showed that chemical analysis and imaging of fingerprints

containing condom lubricant is possible on metal and paper

surfaces[25,26].However,spectraobtainedfrompapersurfaces hadlowersignalintensitiesduetosorptioneffects,andawash-out effectwasencounteredwhenanalyzingonmetalsurfaces[25,26]. 5.Conclusion

We developed a DESI-MS method for the detection and

discriminationofcondomlubricanttracesfromfingerprintsthat,

combined with a PCA-LDA classification model, has an overall accuracyof 90.9%andis compatiblewithCAfuming,making it moreapplicableforforensiccasework.Additionally,fullchemical imagesoffingerprintscontainingcondomlubricanttracescouldbe acquired,visualizingthespatialdistributionofcondomlubricant compounds,suchasPDMSandPEG.Thisconfirmsthatthecondom lubricantisoriginatingfromthefingerprintandnotthesubstrate, therebyincreasingevidentialstrength.Theseresultsarepromising leadsforfurtherdevelopmentofDESI-MSmethodstoqualitatively

analyze exogenous compounds from fingerprints for use in

forensicscience.

CRediTauthorshipcontributionstatement

WardvanHelmond:Conceptualization,Methodology,Formal analysis,Investigation,Writing-originaldraft,Visualization.Mark P.V.Begieneman:Conceptualization,Methodology,Investigation, Writing - original draft. Roos Kniest: Investigation, Writing -review&editing.MarceldePuit:Conceptualization,Methodology, Writing - review & editing, Project administration, Funding acquisition.

DeclarationofCompetingInterest Therearenoconflictstodeclare. Acknowledgement

WvHacknowledgesaRAAK-PROresearchgrant(no. 2014-01-124PRO),theNetherlands.

AppendixA.Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,in theonline version,at doi:https://doi.org/10.1016/j.forsciint.2019. 110005.

References

[1]WorldHealthOrganization,GlobalandRegionalEstimatesofViolenceagainst Women:PrevalenceandHealthEffectsofIntimatePartnerViolenceand Non-PartnerSexualViolence,WorldHealthOrganization,2013.

[2]R.D.Blackledge,ForensicAnalysisontheCuttingEdge:NewMethodsforTrace EvidenceAnalysis,JohnWiley&Sons,2007.

[3]K.C.Davis,T.J.Schraufnagel,W.H.George,J.Norris,Theuseofalcoholand condomsduringsexualassault,Am.J.MensHealth2(3)(2008)281–290. [4]R.D. Blackledge, Condom traceevidence: a newfactor insexual assault

investigations,FBILEnforcementBull.65(12)(1996).

[5]A.Raj,E.Reed,E.Miller,M.R.Decker,E.F.Rothman,J.G.Silverman,Contextsof condomuseandnon-condomuseamongyoungadolescentmaleperpetrators ofdatingviolence,AIDSCare19(8)(2007)970–973.

[6]E.N.O’Neal,S.H.Decker,C.Spohn,K.Tellis,Condomuseduringsexualassault,J. ForensicLeg.Med.20(6)(2013)605–609.

[7]P.Brauner,N.Gallili,Acondom—thecriticallinkinarape,J.ForensicSci.38(5) (1993)1233–1236.

[8]R.Blackledge,Collectionandidentificationguidelinesfortracesfromlatex condomsinsexualassaultcases,CrimeLab.Digest21(4)(1994)57–61. [9]R.Blackledge,M.Vincenti,Identificationofpolydimethylsiloxanelubricant

tracesfromlatexcondomsincasesofsexualassault,J.ForensicSci.Soc.34(4) (1994)245–256.

[10]G.P. Campbell, A.L. Gordon, Analysis of condom lubricants for forensic casework,J.ForensicSci.52(3)(2007)630–642.

[11]T.Coyle,N.Anwar,Anovelapproachtocondomlubricantanalysis:in-situ analysisofswabsbyFT-RamanspectroscopyanditseffectsonDNAanalysis, Sci.Justice49(1)(2009)32–40.

[12]P.Maynard,K.Allwell,C.Roux,M.Dawson,D.Royds,Aprotocolfortheforensic analysisofcondomandpersonallubricantsfoundinsexualassaultcases, ForensicSci.Int.124(2-3)(2001)140–156.

[13]R.A.Musah,A.L.Vuong,C.Henck,J.R.Shepard,Detectionofthespermicide nonoxynol-9viaGC-MS,J. Am.Soc.Mass Spectrom.23(5) (2012)996– 999.

[14]F.Burger,M.Dawson,C.Roux,P.Maynard,P.Doble,P.Kirkbride,Forensic analysis of condom andpersonal lubricants bycapillary electrophoresis, Talanta67(2)(2005)368–376.

(11)

[15]Y. Moustafa,C.M. Bridge,Distinguishing sexuallubricants from personal hygieneproductsforsexualassaultcases,ForensicChem.5(2017)58–71. [16]R.A.Musah,R.B.Cody,A.J.Dane,A.L.Vuong,J.R.Shepard,Directanalysisinreal

time mass spectrometry for analysis of sexual assault evidence, Rapid Commun.MassSpectrom.26(9)(2012)1039–1046.

[17]G.Proni,P.Cohen,L.-A.Huggins,N.Nesnas,Comparativeanalysisofcondom lubricantsonpre&post-coitalvaginalswabsusingAccuTOF-DART,Forensic Sci.Int.280(2017)87–94.

[18]M.Maric,L.Harvey,M.Tomcsak,A.Solano,C.Bridge,Chemicaldiscriminationof lubricantmarketingtypesusingdirectanalysisinrealtimetime-of-flightmass spectrometry,RapidCommun.MassSpectrom.31(12)(2017)1014–1022. [19]B.Baumgarten,M.Maric,L.Harvey,C.M.Bridge,Preliminaryclassification

schemeofsiliconebasedlubricantsusingDART-TOFMS,ForensicChem.8 (2018)28–39.

[20]A.M.Coon,S.Beyramysoltan,R.A.Musah,Achemometricstrategyforforensic analysisofcondomresidues:identificationandmarkerprofilingofcondom brandsfromdirectanalysisinrealtime-highresolutionmassspectrometric chemicalsignatures,Talanta194(2019)563–575.

[21]R.Bradshaw,R.Wolstenholme,R.D.Blackledge,M.R.Clench,L.S.Ferguson,S. Francese,Anovelmatrix-assistedlaserdesorption/ionisationmass spectrom-etry imaging based methodology forthe identification of sexualassault suspects,RapidCommun.MassSpectrom.25(3)(2011)415–422.

[22]R.Bradshaw,R.Wolstenholme,L.S.Ferguson,C.Sammon,K.Mader,E.Claude, R.D. Blackledge, M.R. Clench, S. Francese, Spectroscopic imaging based approachforcondomidentificationincondomcontaminatedfingermarks, Analyst138(9)(2013)2546–2557.

[23]A.Bodzon-Kulakowska,P.Suder,Imagingmassspectrometry: instrumenta-tion,applications,andcombinationwithothervisualizationtechniques,Mass Spectrom.Rev.35(1)(2016)147–169.

[24]F.Green,T.Salter,I.Gilmore,P.Stokes,G.O’connor,Theeffectofelectrospray solventcompositionondesorptionelectrosprayionisation(DESI)efficiency andspatialresolution,Analyst135(4)(2010)731–737.

[25]M.F.Mirabelli,A.Chramow,E.C.Cabral,D.R.Ifa,Analysisofsexualassault evidencebydesorptionelectrosprayionizationmassspectrometry,J.Mass Spectrom.48(7)(2013)774–778.

[26]M.F. Mirabelli,D.R.Ifa,G.Sindona, A.Tagarelli,Analysisofsexualassault evidence:statisticalclassificationofcondomsbyambientmassspectrometry, J.MassSpectrom.50(5)(2015)749–755.

[27]C.Champod,C.J.Lennard,P.Margot,M.Stoilovic,FingerprintsandOtherRidge SkinImpressions,CRCPress,2016.

[28]S.M.Bleay,R.S.Croxton,M.DePuit,FingerprintDevelopmentTechniques, WileyOnlineLibrary,2018.

[29]A.Bodzon-Kulakowska,A.Drabik,J.Ner,J.H.Kotlinska,P.Suder,Desorption electrosprayionisation(DESI)forbeginners–howtoadjustsettingsfortissue imaging,RapidCommun.MassSpectrom.28(1)(2014)1–9.

[30]C.A.Smith,G.O’Maille, E.J.Want,C. Qin,S.A.Trauger,T.R.Brandon,D.E. Custodio, R. Abagyan, G. Siuzdak, METLIN: a metabolite mass spectral database,Ther.DrugMonit.27(6)(2005)747–751.

[31]M.T. Bokhart, M. Nazari, K.P. Garrard, D.C. Muddiman, MSiReader v1.0: evolvingopen-sourcemassspectrometryimagingsoftwarefortargetedand untargetedanalyses,J.Am.Soc.MassSpectrom.29(1)(2018)8–16. [32]M.C.Chambers,B.Maclean,R.Burke,D.Amodei,D.L.Ruderman,S.Neumann,

L.Gatto,B.Fischer,B.Pratt,J.Egertson,Across-platformtoolkitformass spectrometryandproteomics,Nat.Biotechnol.30(10)(2012)918. [33]S.Gibb,K.Strimmer,MALDIquant:aversatileRpackagefortheanalysisof

massspectrometrydata,Bioinformatics28(17)(2012)2270–2271. [34]B.D.Ripley,W.N.Venables,ModernAppliedStatisticswithS,vol.537,Springer,

NewYork,2002.

[35]M.Kuhn,BuildingPredictiveModelsinRUsingtheCaretPackage28(5):26, (2008),doi:http://dx.doi.org/10.18637/jss.v028.i05.

[36]S.S.Talmage,EnvironmentalandHumanSafetyofMajorSurfactants:Alcohol EthoxylatesandAlkylphenolEthoxylates,CRCPress,1994.

[37]S.E.Spencer,S.Y.Kim,S.B.Kim,K.A.Schug,Matrix-assistedlaserdesorption/ ionization–timeofflight-massspectrometryprofilingoftraceconstituentsof condomlubricantsinthepresenceofbiologicalfluids,ForensicSci.Int.207(1– 3)(2011)19–26.

[38]B.O.Keller,J.Sui,A.B.Young,R.M.Whittal,Interferencesandcontaminants encounteredinmodernmassspectrometry,Anal.Chim.Acta627(1)(2008) 71–81.

[39]R.M.Facino,M.Carini,P.Minghetti,G.Moneti,E.Arlandini,S.Melis,Direct analysisofdifferentclassesofsurfactantsinrawmaterialsandinfinished detergent formulations by fast atom bombardment mass spectrometry, Biomed.Environ.MassSpectrom.18(9)(1989)673–689.

[40]J.J.Thomas,Z.Shen,R.Blackledge,G.Siuzdak,Desorption–ionizationonsilicon massspectrometry:anapplicationinforensics,Anal.Chim.Acta442(2) (2001)183–190.

Cytaty

Powiązane dokumenty

Temperature programmed desorption mass spectrometric (TPD MS) and infrared (IR) spectroscopic experiments were conducted in this work to clarify the details o f

In view of the importance of an ionization potential in the study of molecular structure, the method of surface ionization is applied to Guaiazulene molecule in the

Fig. Variation of the ion current with temperature for triethylamine.. The obtained values are summarized in the Table in addition to the previous data. Our data for

More specifically, by analysing individual sub-spectra and combining results afterwards, we account for differences in noise lev- els between spot positions, decreasing the chance

Aerosol mass spectra of Bacillus atrophaeus spores, with the ma- trix sinapinic acid and produced with the crushed-crystal method; a) summed aerosol mass spectrum of 500

Normalized helium desorption spectra of a 100 Å Cu film deposited on polycrystalline Mo at room temperature and annealed to the indicated temperatures in Kelvins for 10 s, cooled

Tests are performed on all possible pairings of normalisation methods, to assess whether rankings are significantly different between methods, irrespective of the used

357 КК України у відповідність до Закону України «Про запобігання коруп- ції» видається доцільним передбачити для складу