• Nie Znaleziono Wyników

Medium effects on transfer enthalpies of electrolytes from water to organic solvents and to water-organic mixtures

N/A
N/A
Protected

Academic year: 2021

Share "Medium effects on transfer enthalpies of electrolytes from water to organic solvents and to water-organic mixtures"

Copied!
12
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FO L IA CH I M I C A 10, 1993

B oż enna Now icka*, Henryk P i e k a r s k i * M E D I U M E F F E C T S O N T R A N S F E R E N T H A L P I E S OF E L E C T R O L Y T E S F R O M W A T E R TO O R G A N I C S O L V E N T S

A N D TO W A T E R - O R G A N I C M I X T U R E S

E n t h a l p i e s of transfer, A trH°° of e l e c t r o l y t e s from w ater to s ev eral or g a n i c s o l vent s were c o r r e l a t e d with p a r a ­ m e t e r s d e s c r i b i n g some p r o p e r t i e s of the solvents. The i n ­ f lu ence of both c at ion and anion kind and size on the r e l ativ e c o n t r i b u t i o n s of the s ol vent p r o p e r t i e s to the o b s e r v e d v a r i a t i o n of the A t r H°° of the salts was analysed. The s im ilar c o r r e l a t i o n s of t r a nsfe r e n t h a l p i e s of salts from water to w a t e r - o r g a n i c m i x t u r e s with a c o m p o s i t i o n c o r ­ r e s p o n d i n g to o b s e r v e d A ^ H 00 m a x i m u m were exa mined.

I N T R O D U C T I O N

T h e r m o c h e m i c a l p r o p e r t i e s of e l e c t r o l y t e s o l u t i o n s in non- - a q ueou s and m i x ed w a t e r - o r g a n i c solvents depend, to large ext ent on p h y s i c o - c h e m i c a l p r o p e r t i e s of the or g a n i c c o m p one nt. In the former case, the d i f f e r e n c e s in dissolution, or b et ter in s o l v a ­ tion e n t h a l p i e s of the sol ute reflect v a r i a t i o n of the o rg anic so l v e n t p r o pert ies. In the latter case, the d i s s o l u t i o n e n ­ t h a lpie s A s o ^ H ® as a fun ctio n of the m i x ed so l v e n t c o m p o s i t i o n often exh i b i t a co m p l e x shape with c h a r a c t e r i s t i c m a x ima w it hin the w a t e r - r i c h region. The a p p e a r a n c e of these m a x i m a in some w a t e r - o r g a n i c m i x t u r e s is g e n e ral ly a t t r i b u t e d to the c h a n g e of the m i x ed s ol vent s t r u c t u r e or to the h y d r o p h o b i c h y d r a t i o n and

*

D e p a r t m e n t of P h y sica l Che mistry, U n i v e r s i t y of Łódź, P o ­ m o r ska 18, 91- 416 Ł ódź, Poland.

(2)

o v e r l a p i n g of the h y d r o p h o b i c cos pher es. Therefore, the m i x ed s ol vent with a c o m p o s i t i o n c o r r e s p o n d i n g to the As o l H°° m a x i m u m has some s pe cial features. The h e i g h t of the m a x i m u m on the A s o l H 0 0 = f (mixed so l v e n t c o m p o s i t i o n ) curve in a g i v en m i x t u r e de p e n d s on the ki n d of d i s s o l v e d salt. On the other hand, for the same e l e c t r o l y t e d i s s o l v e d in d i f f e r e n t m i x ed s o l v e n t s the he i g h t s of the m e n t i o n e d As q 1H°° m a x ima also d if fer s i g n i f i c a n t l y from each other. As an i l l u s t r a t i o n of this b e h a v i o r the e n t h a l p i e s of transfer, of NaBPh^ from water to several w a t e r - o r g a n i c mix ture s, A ^ H 00 de f i n e d as:

A t r H° ° = A s o l H°°(Mixt) ’ A s o l H°°(Water) (1)

are p r e s e n t e d in Fig. 1 as a f u n ctio n of the m i x ed s o l v e n t c o m ­ p os ition.

In order to o b t a i n some i n f o r m a t i o n s about the f ac tors that i n f l u e n c e the o b s e r v e d p r o p e r t i e s of the system, the s o - c a l l e d m u l t i p l e linear r e g r e s s i o n a n a l y s i s (MLRA) can be app lied. In this app roach, the a n a lyse d f u n ctio n (for ins tanc e the e n t halp y of tra nsfe r) is c o r r e l a t e d with the p a r a m e t e r s d e s c r i b i n g s e l e c t e d p r o p e r t i e s of the s y s tem com pone nts. H a v i n g at our d is p o s a l a n um ber of data on the d i s s o l u t i o n e n t h a l p i e s of e l e c t r o l y t e s in d i f f e r e n t or g a n i c and m ix ed w a t e r - o r g a n i c s o l v e n t s 1 we d e c i d e d to check whe t h e r the use of the m e n t i o n e d MLRA m e t h o d en a b l e s finding which of the so l v e n t p r o p e r t i e s and to what ext ent i n f l u e n c e the o b s e r v e d t h e r m o c h e m i c a l b e h a v i o r of the sol utio ns. Mor eove r, from obt a i n e d c o r r e l a t i o n e q u a t i o n s r e f e r r i n g to d i f f e r e n t e l e c t r o l y t e s we e x p e c t e d to c o n c l u d e a bout the i n f l u e n c e of the kind of ion on the r e l a t i v e c o n t r i b u t i o n of the so l v e n t p r o p e r t i e s to the total v a r i a t i o n of the a ^ H 00 val ues w i t h i n the e x a m i n e d set of solvents.

N u m e r o u s m u l t i p a r a m e t r i c c o r r e l a t i o n e q u a t i o n s are d e s c r i b e d in the lit erat ure. The K o p p e 1-P a 1 m [2] , K r y g o w- s k i-F a w c e t t [ 3 , 4 ] and A b r a h a m - K a m l e t - T a f t [5-7] ones b e l o n g to the best known. All the m e n t i o n e d e q u a t i o n s

1 The a p p r o p r i a t e data were taken from ref. [l] u n l e s s s ta ted o t h e r w i s e .

(3)

Fig. 1. E n t h a l p i e s of transfer, A ^ H 00 of N a B P h ^ from w a t er to w a t e r - o r g a n i c so l v e n t mix ture s. MeO H - m e t h ano l, EtO H - ethanol, t B uUH t e r t b u t a n o l , THF t e t r a h y d r o f u r a n , D M S O d i m e t h y l s u l f

-oxide, S - s u l f o l a n e

are a linear c o m b i n a t i o n of s e l ecte d p a r a m e t e r s d e s c r i b i n g some p r o p e r t i e s of the s y s t e m com pone nts, but they c o n t a i n d i f f e r e n t n u m b e r and d i f f e r e n t ki n d of the par a m e t e r s . The K o p p e l - P a 1 m [2] e q u a t i o n has a form:

(4)

where A and B are p a r a m e t e r s m e a s u r i n g the acc e p t o r and d on ator p r o p e r t i e s of the solvent, res pectively, while Y and P are n o n - s p e c i f i c p a r a m e t e r s m e a s u r i n g the s ol vent p o l a r i t y and its p o l a r i z a b i l i t y . K r y g o w s k i and F a w c e t t sho wed that in most c a s es it is e no ugh to take into a c c o u n t only s p e c i f i c s o l u t e - s o l v e n t i n t erac tions , d e s c r i b e d by the s ol vent a ci dity and b a s i c i t y [3, 4]. The m e n t i o n e d au t h o r s p r o p o s e d the D i m r o t h - R e i c h a r d t (Ey) p a r a m e t e r as the a ci dity f u n c t i o n and G u t m a n n donor n u m b e r (ON) for the so l v e n t b a s i c i t y i l l u s t r a t i o n and their (KF) e q u a t i o n has a form:

Q = Q 0 + a E T + bDN (3)

The s im ilar e q u a tio n, with K a m l e t - T a f t b a s icit y f u n c t i o n ( (3K y) i ns tead of the DN was used in our rec ent paper [8] for the c o r r e l a t i o n of t r a n s f e r e n t h a l p i e s of Ph^ PCl and N a B P h ^ from w a t er to 10 w a t e r - o r g a n i c sol v e n t m i x t u r e s with the c o m p o s i t i o n c o r r e s p o n d i n g to the p o s i t i o n of the A ^ H 00 m a x i m u m .

Both m e n t i o n e d above e q u a t i o n s (KP and KF) do not c o n t a i n any p a r a m e t e r s d e s c r i b i n g , or at least tak ing into ac c o u n t to some ex t ent the so l v e n t str uctu re. One of such st r u c t u r a l p a r a m e t e r s , na m ely c o h e s i v e e n e r g y den sity , 8 (H) is i n c l u d e d into c o r ­ r e l a t i o n e q u a t i o n p r o p o s e d by A b r a h a m , K a m l e t and T a f t [5-7], w h i c h for a s o l ute in several s o l v e n t s has the f o l l o w i n g form:

XYZ = ( X Y Z ) q + S97* + a a x + bfy + mS^(H) (4) *

w he re 37^ is a p a r a m e t e r d e s i g n a t i n g the sol vent d i p o l a r i t y / p o l a - r i z a bil ity, oi^ and (3^ d en ote ac i d i t y and b a s i c i t y p a r a m e t e r of the so l v e n t and S j ( H) is its c o h e s i v e energy density.

R E S U L T S

a. E n t h a l p i e s of t r a n s f e r o f N a l f r o m w a t e r to p u r e o r g a n i c s o l v e n t s .

The a p p l i c a t i o n of the K o p p e l - P a l m e q u a t i o n for tra n s f e r e n t h a l p i e s , a ^ H 00 of Nal from water to 17 org a n i c s o l v e n t s

(5)

T a b l e 1 E n t h a l p i e s of t r a nsfe r A ^ H 00 (kJ • m o l - 1 ) of Nal from w a t er to

or g a n i c s o l vent s at 298 .15 K S ol vent A t r H“ Sol v e n t A t r H ~ Met h a n o l -22.3 F o r m a m i d e -23 .48 E th anol -16.95 DMF -47 .53 P ro p a n o l - I B .7 9 a DMA -44.18 2 - P r o p a n o l - 2 1 . 3 9 a A ce tone -35.93 n - B u t a n o l - 21.7b 2 - B u t a n o n -33.5 i - B u tan ol -25.6 DMSO -40 .63 2-B utan ol -26.14 HMPT -58 .63 Et h y l e n e glycol -24.23 Pyr i d i n e -43.0 A c e t o n i t r i l e -21.63 a R e f e r e n c e [lOj . 13 R e f e r e n c e [ll] . DMF - N,N-dimettiylformamide, DMA - N ,N - d i m e t h y l a c e t a m i d e , DMSO - d i m e t h y l s u l f o x i d e , HMPT - h e x a m e t h y l p h o s p h o r i c triamide.

p r e s e n t e d in Tab. 1 g i v es the c o r r e l a t i o n with the c o r r e l a t i o n c o e f f i c i e n t r = 0.936. A b et ter result is o b t a i n e d w he n we use the A b r a h a m - K a m l e t - T a f t equ ation. For the same set of data we hav e :

A t r H°°= (43.1 + 8.1)31^ + (8.8 + 6 . 0 ) a 1

-- (21.5 + 5.6)i31 + (0.08 + 0 . 0 3 ) s J ( H ) (5)

wit h r = 0.966, disp. = 3.91.

As it is k n o w n the a scale of a ci dity d e s c r i b e s the a bi lity of a m o l e c u l e to d o n a t e a p ro ton in a s o l u t e - t o - s o l v e n t h y d r o ­ gen bond [5-7]. For the ionic s o l u t i o n s the a p p l i c a t i o n of oi scale can be dou btfu l. T h e r e f o r e we have r e p l a c e d this p a r a m e t e r in the AKT e q u a t i o n by E y — D i m r o t h - R e i c h a r d t a ci dity fun ction. This r e p l a c e m e n t p r a c t i c a l l y does not i n f l u e n c e the a c c u r a c y of

(6)

t h e fit. T h e o b t a i n e d e q u a t i o n t h a t c o r r e l a t e s b e s t w i t h the A t r H °° v a l u e s h a s f o l l o w i n g f or m: A t r H°° = _ ( 5 6 -6

t

4.4)ot* + ( 0 . 2 1 + 0 . 1 4 ) E T -- ( 2 1 . 2 + 5 . 1 ) (3j + ( 0 . 1 0 + 0 . 0 2 ) S ^ ( H ) (6) w i t h r = 0 . 9 6 7 , d i s p . = 3 .8 8. A t rH “ (expl)[kJmol 11

Fig 2. C o m p a r i s o n of the Nal t r a nsfe r e n t h a l p i e s from water to or g a n i c s o l v e n t s d e t e r m i n e d e x p e r i m e n t a l l y and c a l c u l a t e d from

e q . 5

1 - water; 2 - m e t h a n o l ; 3 - eth anol; 4 - pro pano l; 5 - 2 - p ropa - nol; 6 - butanol; 7 - i-b utanol; 8 - 2-b utanol; 9 - e t h y l e n e glycol; 10 - a c e t o n i t r i l e ; 11 - for mami de; 12 - N ,N - d i m e t h y I f o r - mamide; 13 - N ,N - d i m e t h y l a c e t a m i d e ; 14 - acetone; 15 - 2-b utan on; 16 - d i m e t h y l s u l f o x i d e ; 17 - h e x a m e t h y l p h o s p h o r i c tri amid e; 18

-p y r i d i n e

A c o m p a r i s o n of the Nal t r a nsfe r e n t h a l p i e s d e t e r m i n e d e x ­ p e r i m e n t a l l y wit h those c a l c u l a t e d from the above e q u a t i o n is gi v en in Fig. 2. The n u m e r i c a l values of the p a r a m e t e r s c h a r a c ­ ter i s i n g the a n a l y s e d s o l v e n t s w er e taken from ref. [9].

(7)

b. E n t h a l p i e s of t r a n s f e r of o t h e r e l e c t r o l y t e s f r o m w a t e r to p u r e o r g a n i c s o l v e n t s .

In order to c o m p a r e the inf luen ce of the c at ion a n d /or the a ni on c ha nge on the p r e s e n t e d c o r r e l a t i o n we p e r f o r m e d the a n a l o g o u s c a l c u l a t i o n s for the t r a nsfe r e n t h a l p i e s of other s al ts h a v i n g the same c a t i o n or the anion. The t r a n s f e r e n t h a l p i e s are k no wn only for lim ited n u m b e r of d i f f e r e n t sol vents. The refo re, we have c o r r e l a t e d the e n t h a l p i e s of t ra nsfer, A ^ H 00 for the salts: Nal, NaBPh^, NaClO^, KI, Ph^AsI from water to the same set of org a n i c s o l v ent s, namely: m e t h ano l, eth anol, n-p r o p a n o l , a c e t o n i t r i l e , ace tone, N,N - d i - m e t h y l f o r m a m i d e , N ,N - d i m e t h y l a c e t a m i d e , d i m e t h y l s u l f o x i d e and h e x a m e t h y l p h o s p h o r i c triamide, using the equ atio n:

A t r H°°= ( A t r H°°)0 + S3T* + a E T + b(3x + mS^(H) (7)

The o b t a i n e d v a l u e s of the c o e f f i c i e n t s : s, a, b, m and the c o r r e l a t i o n c o e f f i c i e n t s , r for each of the salts are p r e s e n t e d in Tab. 2. In the same table we c o l l e c t e d the r e l ativ e c o n t r i b u t i o n s of the so l v e n t pro p e r t i e s , i l l u s t r a t e d by , Ey, (3^, and S ^ (H ) to the a n a l y s e d v a r i a t i o n of A ^ H 00. The two sets of the s, a, b and m v a l ues for Nal s o l u t i o n s g iv en in eq. 6 and in Tab. 2 d if fer each other. This is so since they r e l a t e to two d i f f e r e n t g r o u p s of solvents.

c. E n t h a l p i e s of t r a n s f e r of e l e c t r o l y t e s f r o m w a t e r to w a t e r - o r g a n i c s o l v e n t m i x t u r e s .

As was m e n t i o n e d ear l i e r we int ende d to an a l y s e the effect of the o r g a n i c c o s o l v e n t p r o p e r t i e s on the h e i g h t of A g yH°°maxima of e l e c t r o l y t e s , c h a r a c t e r i s t i c for many a q u e o u s b i n a r y mix­ tures. The refo re, by the use of the MLRA m e t h o d we c o r r e l a t e d the tra n s f e r e n t h a l p i e s of N a B P h 4 , P h 4 PCl and B u 4NBr from water to the w a t e r - o r g a n i c c o s o l v e n t mix ture s, c o m p o s i t i o n of c o r ­ r e s p o n d i n g to the A s o l H°° (or A ^ H 00) m a x i m u m wit h the p a r a ­ m e t e r s d e s c r i b i n g the c o s o l v e n t features. The same a n a lysi s was p e r f o r m e d also for Nal s o l u t i o n s in the m i x e d sol vents. The A , H 00 f u n c t i o n for Nal has no m a x i m u m in the m i x t u r e s of

sol

w a t er with acetone, s u l f o l a n e and ace t o n i t r i l e . T h e r efo re, the e n t h a l p i e s of tra n s f e r of this salt from w a t er to the m e n t i o n e d

(8)

T a b l e 2 C o e f f i c i e n t s of the e q u a t i o n 5 c o r r e l a t i n g the e n t h a l p i e s of t r a n s f e r of e l e c t r o l y t e s from water to o rg anic s o l v e n t s and p e r ­ c e n t a g e c o n t r i b u t i o n s of s e l e c t e d p r o p e r t i e s of s o l v e n t s to v a r i a t i o n of A ^ 00 C o e f f i c i e n t s of eq. 5 Nal N a C 1 0 4 N a B P h 4 s a b m r d i s p . * %JT % Et %|3 % 5 2(H) n a - 5 6 . 3+8 .9 -0.2 + 0.2 - 2 1 . 3 + 9 . 9 +0. 1 0 + 0 . 0 3 0.967 5.35 33 4 17 39 10 - 7 3 . 6 + 1 3 . 3 ( + 0 .07+ 0.3) - 1 5 . 1 + 1 3 . 4 + 0 . 1 5 + 0 . 0 4 0.969 7.04 32 ( 1) 10 51 10 - 7 4 . 7 + 1 6 . 0 + 0.5 + 0 .4 - 2 9 . 7 + 1 7 . 9 + 0 . 1 0 + 0 . 0 5 0.938 9.97 32 8 17 30 10 C o e f f i c i e n t s of eq. 5 KI P h 4 AsI B u 4 NBr s a b m r d i s p . HJI* %e t %|3 % S 2(H) n a - 6 8 . 4 + 7 . 0 - 5 . 9+5. 3 +0. 1 3 + 0 . 0 1 0.975 4.42 38 4 53 10 - 4 9 . 3+7 .3 + 0 . 3 6 + 0 . 1 6 (-3.1 + 7.3) +0. 0 6 + 0 . 0 2 0.957 4.20 42 10 (3) 36 10 + 8 . 3 + 5 .6 + 0 . 7 5 + 0 . 1 7 -0 .10+ 0.02 0.948 3.53 8 25 65 9 g

W ater and 8 or 9 or g a n i c s o l vent s as m e n t i o n e d in the p a p e r .

(9)

T a b l e 3 C o e f f i c i e n t s of the e q u a t i o n 5 c o r r e l a t i n g the e n t h a l p i e s of t r a n s f e r of e l e c t r o l y t e s from water to w a t e r - o r g a n i c m i x t u r e s with the c o m p o s i t i o n c o r r e s p o n d i n g to the Atr.H°° m a x i m a of o r g a ­ nic s a l ts and p e r c e n t a g e c o n t r i b u t i o n s of s e l e c t e d p r o p e r t i e s of s o l v e n t s to v a r i a t i o n of H œ tr C o e f f i ­ c i e nts of eq. 5 Na I P h 4PCl NaBPh. 4 Bu^ NBr ( A t r H°°>o ( - 5 . 2 + 6 . 8 ) 3 4 . 4 + 1 0 . 6 1 0 8 . 8 + 2 4 . 3 ( - 4 2 . 2 + 4 8 . 1 ) s - 1 1 . 4 + 3 . 2 - 4 0 . 1 + 5 . 0 - 5 0 . 5 + 1 1 . 5 1 0 . 6 + 1 3 . 5 a (- 0 . 1 0 + 0 . 1 4 ) (0 . 13+0 .22) - 1 . 9 + 0 . 5 1.4+1.0 b 10 . 4+2. 2 2 0 . 2+3. 5 57 . 6+8. 0 3 4 . 7 + 9 . 6 m 0 .02+ 0.01 ( - 0 .01+ 0 .02) 0. 1 0 + 0 . 0 4 - 0 . 1 2 + 0 . 0 6 r 0.965 0.992 0.985 0.972 d i s p . 1.43 2.22 5.11 5.02 n l l a lla l l a 9 b %3T* 27 53 20 (6) % E T (8) ( 6) 25 24 %(i 33 35 30 22 % S 2(h) 25 (5) 23 43 n - n um ber of solvents. g

Water and m i x t u r e s of water with: m e t h ano l, eth anol, n- -pr opanol, iso pro p a n o l , t e r t - b u t a n o l , acetone, t e t r a h y d r o f u r a n , h e x a m e t h y l o p h o s p h o r i c tri amide, sul fola ne, a c e t o n i t r i l e .

b Water and m i x t u r e s of water with: eth anol , ter t - b u t a n o l , ace tone, sul fola ne, ace t o n i t r i l e , d i m e t h y l s u l f o x i d e , N , N - d i m e - t h y l f o r m a m i d e , N , N - d i m e t h y l a c e t a m i d e .

The v al ues given in p a r e n t h e s e s are s t a t i s t i c a l l y u n s i g n i f i ­ cant.

m i x t u r e s wit h the c o m p o s i t i o n c o r r e s p o n d i n g to the At r H°° m ax ima of o r g a n i c s a l ts w er e used for this a n a l y s i s ( w a t e r - a c e t o n e : 10 m o l % , w a t e r - s u l f o l a n e : 2 m ol % and w a t e r - a c e t o n i t r i l e : 6 mol% of the o r g a n i c cos o l v e n t ) . S i m i l a r l y as for the e l e c t r o l y t e s o ­ lu t i o n s in pure o r g a n i c solvents, the m o d i f i e d AKT equ a t i o n (eq. 7) was a p p l i e d here. S in ce the o r g a n i c c o m p o n e n t of the

(10)

m i x e d s ol vent w i t h i n the high water con t e n t can be as s u m e d as one of the sol u t e s (an e l e c t r o l y t e is the other one), the values

* 2

of the , Ej, (3^ and 5j(H) p a r a m e t e r s were taken the same as for pure o r g a n i c c o m p oun ds. The o b t a i n e d values of s, a, b and m c o e f f i c i e n t s , the r e g r e s s i o n c o e f f i c i e n t , r and the rel a t i v e c o n t r i b u t i o n s of the sol v e n t p r o p e r t i e s to the e x a m i n e d v a r i a ­ tion of A ^ H 00 are p r e s e n t e d in Tab. 3.

C O N C L U S I O N S

It is p o s s i b l e to c o r r e l a t e the t r a nsfe r e n t h a l p i e s of e l e c t r o l y t e s from w a t er to di f f e r e n t or g a n i c s o l v e n t s with the p a r a m e t e r s c h a r a c t e r i s i n g these solvents. Also the e n t h a l p i e s of tra n s f e r of salts from w at er to the w a t e r - o r g a n i c mix ture s, c o m p o s i t i o n of c o r r e s p o n d i n g to the Atl.H°° m a x i m u m a p p e a r e d to be a linear c o m b i n a t i o n of p a r a m e t e r s d e s c r i b i n g the o rg anic c o s o l v e n t .

The r e l a t i v e c o n t r i b u t i o n of so l v e n t b a s icit y d o m i n a t e s over the c o n t r i b u t i o n of the s o l v e n t a ci dity (Tab. 2, 3). The o b s e r v e d d e p e n d e n c e is true for all ana l y s e d s o l v e n t s (both s i n gle and m i x ed ones) and for all but Bu^NBr of the e x a m i n e d salts. This o b s e r v a t i o n seems to p o i nt at the d o m i n a n t role of c a t i o n s o l v a t i o n w i t h i n the a n a l y s e d set of sol vents. The o r g a n i c anion, that is h y d r o p h o b i c a l l y h y d r a t e d in w a t e r and in w a t e r - o r g a n i c m i x t u r e s does not c h a n g e the o b s e r v e d seq uence.

In the case of the t r a n s f e r e n t h a l p y of the salts from water to s i n g l e or g a n i c s o l v e n t s the i n c reas e of the o r g a n i c c at ion size d e c r e a s e s the r e l a t i v e c o n t r i b u t i o n of ac i d - b a s e i n t e r a c t i o n s in the total v a r i a t i o n of the A, H00. The

+ + tr

r e p l a c e m e n t of Na or K c a t i o n by an or g a n i c one r e v e r s e s the s e q u e n c e of a ci dity and b a s i c i t y con t r i b u t i o n s .

The bi g g e s t c o n t r i b u t i o n s in the A -trH°° v a r i a t i o n w i t h i n the set of the a n a l y s e d o r g a n i c sol vents, for all i n v e s t i g a t e d salts are g i v en by (Tab. 2):

*

- 37 - so l v e n t p o l a r i z a b i l i t y / d i p o l a r i t y , what was e x p e c t e d due to the p r e s e n c e of the ionic c ha rge as well as the s i g n i f i c a n c e of the i o n - d i p o l e i n t erac tions ,

(11)

o

- 8 (H) - c o h e s i v e ene rgy density, as a p a r a m e t e r c o n n e c t e d with the s ol vent s t r u c t u r e c h a nge under i n f l u e n c e of the ions, and i n c l udi ng both the h y d r o g e n bond c o n t r i b u t i o n and the di- p o l e - d i p o l e i n t erac tions .

However, it s h o u l d be n o t ed that the s t a t i s t i c a l a n a l y s i s m e t h o d a pp lied in this work m a k es it p o s s i b l e to d e t e r m i n e the c o n t r i b u t i o n s of s e l e c t e d p r o p e r t i e s of the s o l v e n t s to the total v a r i a t i o n of the A trH°° values w h i ch are true only w it hin a given set of solvents. The inc reas e of n u m ber of e x a m i n e d s o l v e n t s h a v ing d i f f e r e n t p r o p e r t i e s w o u ld s o m e w h a t c h a n g e the c a l c u l a t i o n results. Unf or t u n a t e l y , the t r a n s f e r e n t h a l p i e s of e l e c t r o l y t e s n e c e s s a r y for that a n a l y s i s are k n o w n only for a l im ited n u m ber of s in gle s o l v e n t s and their m i x t u r e s with water.

R E F E R E N C E S

[1] G. M. P o 1 t o r a c k i i , T e r m o d i n a m i c h e s k i e k h a r a k t e r i - stiki n i e v o d n y k h r a s t v o r o v e l e k t r o l i t o v , [Thermodynamic cha­ r a c t e r i s t i c s of n o n a q u e o u s e l e c t r o l y t e s o l u t i o n s ] , Khi miya, L e n i n g r a d 1984.

[2] I . A . K o p p e 1, V . A . P a 1 m, [in:] A d v a n c e s in linear free e ne rgy r e l a t i o n s h i p s , Ed. by N. B. C h a p m a n , 3. S h o r t e r , P l e n u m Publ. Co., New York 1972, Chapt. 5. [3] T . M . K r y g o w s k i , W . R . F a w c e t t , J . Am. Chem.

Soc., 97, 2143 (1975).

[4] W. R. F a w c e t t , T . M . K r y g o w s k i , Aust. J. Chem., 20, 2115 (1975).

[5] M. J. K a m 1 e t, J.-L. M. A b b o u d, R. W. T a f t , Prog. Phys. Org. Chem., _13.> (1981).

[6] M. H. A b r a h a m, M. J. K a m 1 e t, R. W. T a f t , 3. Chem. Soc., P e r k i n Trans. 2, 2_, 923 (1982).

[7] M. J. K a m 1 e t, J.-L. A b b o u d , M. H. A b r a h a m , R. W. T a f t, J. Org. Chem., 48., 2877 (1983).

[8] S. T a n i e w s k a-0 s i ń s k a, B. N o w i c k a, A. P i e ­ t r z a k , T h e r moc him. Acta, in press.

[9] Y. M a r c u s, Ion sol vation, Ed. by Wiley, New York 1985. [10] S. T a n i e w s k a-0 s i ń s k a , A. P i e k a r s k a ,

A. B a 1 d, A. S z e j g i s, Phys. Chenr. Liq., 2.1, 217 (1990).

(12)

[li] S. T a n i e w s k a-0 s i ń s k a , A. P i e k a r s k a , A . B a 1 d , A . S z e j g i s , J. Chem. Soc. F a r a d a y Trans. 1, 85., 3709 ( 1989).

B oż enna Now icka, H en ryk P i e k ars ki W PŁ YW W Ł A S N O Ś C I R O Z P U S Z C Z A L N I K A NA ENT A L P I Ę P R Z E N I E S I E N I A E L E K T R O L I T Ó W Z WODY DO R O Z P U S Z C Z A L N I K Ó W O R G A N I C Z N Y C H I M I E S Z A N I N W O D N O - O R G A N I C Z N Y C H E n t a l p i e p r z e n i e s i e n i a ( A ^ H 00) e l e k t r o l i t ó w z wody do s z e r e ­ gu r o z p u s z c z a l n i k ó w o r g a n i c z n y c h zo s t a ł y s k o r e l o w a n e z p a r a m e ­ trami o p i s u j ą c y m i w y b r a n e w ł a s n o ś c i r o z p u s z c z a l n i k ó w . P r z e a n a l i ­ z o w ano w p ł yw ro d z a j u i w i e l k o ś c i za r ó w n o kat ionó w, jak i a ni onów na w z g l ę d n e ud z i a ł y w y b r a n y c h w ł a s n o ś c i r o z p u s z c z a l n i k a w c a ł k o ­ witej z m i e n n o ś c i A ^ H 00 b a d a n y c h soli. A n a l o g i c z n e k o r e l a c j e o d n o s z ą c e się do e n t a l p i i p r z e n i e s i e n i a soli z wody do m i e s z a n i n w o d n o - o r g a n i c z n y c h o s k ł a d z i e o d p o w i a d a j ą c y m m a k s i m u m A. H 00 z o ­ stały r ów nież z n a l e z i o n e i p r z e d y s k u t o w a n e . r

Cytaty

Powiązane dokumenty

Ilosc ciepta oddawanego przez konwekcja jest proporcjo- nalna do powierzchni ciata A , czasu t oraz roznicy temperatur ciata i otoczenia AT:?. Q

Dans la description de toutes les sphragides on relève le même schéma: (1) numéro, (2) localisation de la sphragis par rapport à la précédente, (3) ca- tégorie de terre,

For small flyers (short wing lengths, high flapping frequencies), this contribution is negligible; however, the role of vibrational stabilization becomes notable in larger flyers

Jeżeli zaś na podstawie w yników teleturnieju wolno wyciągać jakieś wnioski o charakterze uogólniającym, wysunęłabym przede wszystkim sugestię następu­ jącą:

Reprint from European Shipbuilding No.. TESTS WITH AN OSCILLATING PLUNGER TYPE MODEL

Forma rodziny zawodowej jest wprowadzoną przez ustawodawcę nowością (poza formą pogotowia rodzinnego). Kolejne przepisy art. 74 ustawy precyzują charakter określonych

Ogłoszone listy nie przynoszą wprawdzie ważnych szczegółów do charakterystyki umysłowości Krasińskiego, ani nie zmie­ niają w niczem zasadniczych etapów w

W obrębie gleby kopalnej materiału krzemiennego było wyraźnie mniej niż w sezonie 1997; wystąpiły również pojedyncze przepalone kości i fragmenty narzędzi kamiennych.. W