• Nie Znaleziono Wyników

Damage accumulation analysis of cfrp cross-ply laminates under different tensile loading rates

N/A
N/A
Protected

Academic year: 2021

Share "Damage accumulation analysis of cfrp cross-ply laminates under different tensile loading rates"

Copied!
15
0
0

Pełen tekst

(1)

Delft University of Technology

Damage accumulation analysis of cfrp cross-ply laminates under different tensile loading

rates

Li, X.; Saeedifar, M.; Benedictus, R.; Zarouchas, D.

DOI

10.1016/j.jcomc.2020.100005

Publication date

2021

Document Version

Final published version

Published in

Composites Part C

Citation (APA)

Li, X., Saeedifar, M., Benedictus, R., & Zarouchas, D. (2021). Damage accumulation analysis of cfrp

cross-ply laminates under different tensile loading rates. Composites Part C, 1, [100005].

https://doi.org/10.1016/j.jcomc.2020.100005

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Composites

Part

C:

Open

Access

journalhomepage:www.elsevier.com/locate/jcomc

Damage

accumulation

analysis

of

cfrp

cross-ply

laminates

under

different

tensile

loading

rates

Xi Li, Milad Saeedifar, Rinze Benedictus, Dimitrios Zarouchas

Structural Integrity & Composites Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HS, The Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Transverse matrix crack Inter-laminar crack Acoustic emission Digital image correlation Cross-ply laminate

a

b

s

t

r

a

c

t

Thispaperinvestigatestheloadingrateeffectonbothmechanicalpropertiesanddamageaccumulationprocess of[0°

2/90°4]Scarbonfiber-polymerlaminatesundertensileloading.In-situedgeobservations,AcousticEmission

andDigitalImageCorrelationtechniqueswereutilizedsimultaneouslytomonitorthestateofdamageinrealtime. Resultsshowedthattheaxialmodulusandstrengthwerelesssensitivetoloadingratesthanfailurestrain,which increasedwiththedecreaseoftheloadingrate.Intheviewpointofdamageaccumulationprocess,highdensity anduniformdistributionoftransversematrixcracks,andH-shapecrackpatterns,incorporatinginter-laminar cracks,weremorelikelytooccuratlowloadingrateswhilevariablecrackspacingoccurredathigherrates. Whenloadingrateswerelowerthanacertainlevel,maximumtransversematrixcrackdensitydecreasedslightly duetotherestrictionofrelativelywidelygeneratedinter-laminarcracks.Furthermore,thecumulativeacoustic emissionenergyoflow-frequencysignalswaslinearlycorrelatedtotransversematrixcrackdensity,providinga promisingwaytoquantifycrackaccumulationinrealtime.Finally,spatialconsistencewasobservedbetween transversematrixcracksatedgesandstressconcentrationsattheexterior0° ply,andthepeaksofaxialstrainat localconcentrationregionslocateeithernearthenewestcracksorattheplacewithminimumcrackspacing.

1. Introduction

Compositestructuresmayexperienceloadingcombinationswhich vary fromstatic loadsinducedby itsown weighttohigh-strain-rate loadslikeimpact.Consideringtheuncertainserviceenvironment,itis importanttoexploreandunderstandtheloadingrateeffectsonthe me-chanicalresponseanddamageaccumulationprocess.

Aplethoraofstudiesexistfordifferenttypesofpolymermaterials thatdealwiththemechanicalresponseunderdifferentloadingrates, mainlycarbonandglassfiberreinforcedpolymers(CFRPandGFRP), andlay-upconfigurations,suchasunidirectional(UD)laminates[1–3] , multi-directionallaminates[2 ,4 ,5] ,wovencomposites[3] .These stud-ies show that CFRPs aregenerally less sensitiveto loadingrates in comparisonwithGFRPs[4 ,5] .Zhangetal.[3] foundthat loading-rate-dependencyofthetensilestrength,Young’smodulusandfailurestrain ofUDCFRPlaminate,wasnotobviousunder20s−1whilearemarkable

increasewasobservedattherateover20s−1.Taniguchietal.[1]

re-portedthatthetensilemodulusandstrengthwereindependentof load-ingratesfor[0°]laminates,butanincreaseofthetensilemodulusand

strengthwiththeincreaseofloadingrateswasobservedfor[90°]and

[45°]specimens.Gilatetal.[2] concludedthattheloading-rate-effect

onthemaximumstressof[45°]and[±45°]

Sspecimenswasmore

sig-nificantthanof[90°]and[10°]specimens.

Correspondingauthor.

E-mailaddress:d.zarouchas@tudelft.nl(D.Zarouchas).

Thefactthatoff-axislaminatesaresensitivetoloadingratesimplies thattheirdamageaccumulationprocess,especiallyformatrix-related damagemechanisms,isdifferentfordifferentloadingrates.Few stud-ies[6–8] dealtwiththeloadingrateeffectsontheevolutionof trans-versematrixcracks,andBertheandRagonet[8] concludedthattherate sensitivityisstrongerforlowstrainratesthanforintermediatestrain rates.Azadietal.[9] foundthattheloadingratedidnotalterthe dom-inantdamagemechanism,butthequantityofeachdamagemechanism changedwithdifferentloadingrates,anobservationthattheauthors believeneedsfurtherresearch.

Forthenon-transparentCFRPcomposites,themainchallengeisto quantitativelyidentifymatrix-relateddamagemechanismsinrealtime [10] .Asthemostdirectway,opticaledgeobservationbycamerasor microscopesiscapabletotrackthecrackaccumulationforthe rectan-gularlaminatedcouponswithoff-axisplies[11–14] .However,inview thathighresolutionandlargeobservationwindowareusuallyhardto beachievedsimultaneously,in-situcrackcharacterizationinthe large-sizeviewwindowremainschallengesfornon-interruptedtests.Inmost cases,specimensneedtoberemovedfromthetestingmachines,ortests needtobeinterruptedforex-situ/in-situdamageinspections,whichcan inducethestressrelaxationandfurtheraffectthecrackingprocess[10] . Choetal.[15] foundthatboththecrackdensityandmaximumstress duringtheloadingandunloadingphaseoftensiletestswerestrongly

https://doi.org/10.1016/j.jcomc.2020.100005

Received22April2020;Receivedinrevisedform13July2020;Accepted15July2020

(3)

Fig.1.Theschematicdiagramofspecimen di-mensions,AEsensors’locations,measurement areaofDICandclampingregions(a); Experi-mentalequipment(b).

dependenton theparticularloadingsequence,andatime-dependent increaseinmatrixcracksoccurredthroughouttheholdperiod.

Advancedin-situ monitoringtechniqueslike DigitalImage Corre-lation(DIC)[10–12 ,16 ,17] ,infraredthermography(IR)[8 ,18 ,19] and AcousticEmission(AE)[9 ,11–13 ,19–22] havealsobeenwidelyapplied forCFRPcompositestohelpdetectdifferentfailuremechanismsand monitorthedamageaccumulationprocess.

ByapplyingDIC,Tessemaetal.[16] investigatedthematrixcrack initiationandgradualpropagationofquasi-isotropiclaminatesusingthe localconcentrationof axialandshearstrainasdamageindicators of intra-laminarandinter-laminarcracks.Mehdikhanietal.[10] quanti-fiedtheevolutionoftransversematrixcracksofcross-plylaminatesby countingthepeaksofthestrainprofileviabothmacro-andmeso‑ scale DICanalysis.However,detectingthedamageaccumulationinthisway ishighlyaffectedbytheplythicknessandthestackingsequenceof lam-inates[11] .

Asfor IR,thevariationof surfacetemperature canrepresent the degradationanddissipativemechanismsofmaterial[18] ,butdifferent damagemechanismsarehardtobepreciselycharacterizedand local-izedaccordingtotheheatsources,especiallyformatrixcrackswhich dissipateslessthermalenergythanfiberdamageandinterfacefailure [19] .Recently,BertheandRagonet[8] haveachievedthemonitoring ofmatrixcrackingappearancebyusingpassiveinfraredthermography measurementsforcross-plylaminateswith41mmfreelengthbetween tabs.

ComparedwithDICandIR,AEprovidesmoreinformative damage-relatedresultsanditis regardedasthemostpromisingtechniqueto uncovertheinitiationandprogressionofdifferentdamagemechanisms [11] .IntensiveeffortshavebeenmadeontheinterpretationsofAE ac-tivitiesbyanalysingmultipleAEfeatureswithclusteringalgorithms in-volved.Arecentreviewonthedamageanalysisofcompositestructures usingAEhighlightsthepotentialofthismonitoringtechnique[25] . Am-plitudeandfrequencyaretreatedasthemostpreferredAEfeaturesto classifydifferentAEactivities[11 ,19 ,20 ,22–24] .TocorrelateAE clus-terstodifferentdamagemechanisms,someresearchershaveexecuted

destructive testson theindividualconstituentmaterials,forexample couponsmadeofpureresinorfiberbundles,toobtaintheAEfeatureof eachdamagemechanismseparately.TheseAEfeatureswerethenused asthereferencepatternstocorrelateeachAEclustertoaspecific dam-agemechanism[9 ,22–24] .Ageneraltrendhasbeenestablishedwhich relatesAEwaveformswithlowpeakfrequencyandamplitudeto matrix-cracking-relateddamagemechanisms[22–24] .However,doubtsexistin viewthatAEfeaturesforeachdamagemechanismmightbedifferentfor compositesampleswithdifferentdimensions[21] orstackingsequences [11] .

Therefore,itisnecessarytocombineAEandothermonitoring sys-temsduringtheteststoprovideareliableinterpretationofAEactivities andcorrespondingfeatures.Ozetal.[11 ,12] correlatedAEclusters ob-tainedfromk-means++algorithmtodifferentdamagemechanisms(e.g. matrixcracksatthesurfaceandinner90°plies,microandmacro

de-lamination,etc.)monitoredfromopticaledgeobservationandDIC.They foundthatthedepthofdamagesourcecanaffectthecorrespondingAE featuresandhighfrequencycouldalsobeinducedbythematrix crack-ingwhen90°pliesapproachtomid-sectionofspecimens.Bakeretal.

[13] concludedthatwaveform-basedAEenergycanbeusedto iden-tify matrixcrack initiationobserved bytheoptical microscopefrom theedge.These observationsindicate AEactivitiescould be compre-hensivelyinterpretedtoidentifydifferentdamagemechanisms,andthe evolutionofAEfeaturesfromdifferentclustersareexpectedtoactas theindicatorstoquantitativelyrepresenttheaccumulationofdifferent damagemechanismsinthefuture.

Theobjectivesofpresentworkweretoinvestigatethe loading-rate-dependencyof bothmechanicalpropertiesanddamageaccumulation processforCFRPcross-plylaminatesundertensileloading,andto ex-plore thecorrelationsofdamage-relatedresultsfrom differentin-situ monitoringsystems.Inthetestcampaign,thick90°blockinthe

mid-dleofcross-plylaminatesweredesignedtoprovidedetectablecracks, andopticaledgeobservation,DICandAEwereappliedsimultaneously tomonitorthecrackaccumulationprocess.Themaincontributionof presentworkistheachievementofin-situcharacterizationoftransverse

(4)

Table1

Thecontrolmode,loadingrate,runningtimeandstrainrateundereachload condition.

Control mode Loading rate Running time (s) Strain rate (s −1 )

Load 0.019 kN/s 1470.25 ± 40.14 9.77 × 10 −6 0.19 kN/s 140.72 ± 1.78 9.98 × 10 −5 1.9 kN/s 14.21 ± 0.03 9.56 × 10 −4 19 kN/s 1.54 ± 0.01 8.52 × 10 −3 Displacement 1 mm/min 196.80 ± 3.05 7.19 × 10 −5 Table2

Mechanicalpropertiesofcross-plylaminatesunderdifferentloadingrates. Loading rate Axial modulus (GPa) Tensile strength (MPa) Failure strain 0.019 kN/s 51.45 ± 0.65 706.81 ± 14.91 0.0144 ± 0.0002 0.19 kN/s 50.54 ± 0.70 684.99 ± 7.82 0.0140 ± 0.0002 1.9 kN/s 51.26 ± 1.01 691.01 ± 15.69 0.0136 ± 0.0001

19 kN/s 51.32 ± 2.18 ± 8.34 0.0131 ± 0.0000

1 mm/min ± 0.32 699.33 ± 6.94 0.0141 ± 0.0002

matrixcracksandinter-laminarcracksinalargeviewwindow(100mm) withoutinterruptingthetensiletests,whichfurtherenrichesthe analy-sisofloading-rate-effectonthestatisticaldistributionoftransverse ma-trixcracksandenhancesourunderstandingonhowinter-laminarcracks constrainthegenerationoftransversematrixcracks.

2. Experimentalmethods

2.1. Materialandspecimens

Thespecimensusedinthepresentstudyweremanufacturedfrom theUDcarbon fiberPrepregnamedHexply○R F6376C–HTS(12K)5– 35%.ThisPrepregsystemcontainshightenacitycarbonfibres(Tenax○R -E-HTS45)andhigh-performancetoughepoxymatrix(Hexply○R 6376). ThenominalfiberweightratioandthicknessofthePregregare65% and0.125mm,respectively.ThematerialpropertiesoftheUD-Prepreg layerincuredconditioncanbefoundin[26] .

Two600×300mm2panelswerelaminatedfollowingthestacking

sequencesof[0°

2/90°4]S.Theywerethencuredinsideanautoclave

ac-cordingtothemanufacturer’srecommendation[27] .Afterwards,the panelswerecut,usingawater-coolingdiamondsaw,intorectangular specimensof250mm×25mmaccordingtoASTMD3039/D3039M-17 standard[28] ,asshowninFig. 1 (a).

Thickpapertabswereglued onbothends ofthespecimen using cyanoacrylateadhesive inorder toincreaseclampinggrip. Addition-ally,bothedgesofthespecimenwerecoveredwiththinwhitepaintto enhancethequalityforthedamagemonitoringwiththeedgecameras. Finally,awhitebasecoatwaspaintedonthefrontsurfaceofspecimen andthendesignedspecklepatternwiththedotsizeof0.18mmwere printedonthesurfaceusingaVICspecklerollertopreparetheDIC in-spectionarea.

2.2. Testset-up 2.2.1. Tensiletest

Tensiletestswerecarriedoutona60kNfatiguemachinewith hy-draulicgrips,asshowninFig. 1 (b).Fivelevelsofloadingrateswere per-formedunderloadanddisplacementcontrolmode,aslistedinTable 1 . Thecorrespondingrunningtimeandstrainrateateachratearealso presentedinTable 1 .Here,thestrainrateequalstothestrainatpeak loadsdividedbytherunningtime.The1mm/minand0.19kN/scan beregardedassimilarloadingratesbasedonthestrain-ratelevel.

Toguaranteetherepeatabilityoftestresults,fivespecimenswere testedundereachloadingratewhilespecimensthatfailattheclamps wereexcludedfromtheanalysis.TheAE,DICandedgedamage moni-toringsystemsweresynchronizedwiththetestingmachinetocreatea synergisticworkenvironmentamongdifferentdevices.

2.2.2. Edgedamagemonitoringsystem

Two 9Megapixelcameras with50 mmlens and150 frames-per-secondwereplacedatleftandrightsideofthetestingmachineto mon-itorcracksoccurredonbothedgesofthespecimen,asshowninFig. 1 (b). Atotallengthof100mmforeachedgewasobservedduringthetest. Aftertesting,thenumberandpositionofcracksatthe90°plieswere

obtainedthroughauser-definedMATLABcode.Initially,theacquired imageswereprocessedusingaBottom-hatfilteringinordertocompute themorphologicalclosingoftheimage.Then,thefilteredimageswere subtracted fromtheoriginalonesallowingthecontrast ofcrack and un-crackedregionsattheedgestobeenhanced.Finally,theprocessed imageswereconvertedtobinaryimagesinordertolabelthecracksas regionsofcontiguouswhitepixels,forbeinglatercountedandlocalized. 2.2.3. AEsystem

TwobroadbandVS900-MAEsensorswithadiameterof20.3mm andafrequencyrangeof100–900kHzwereclampedonthespecimen. Thedistancebetween twosensorswasfixedto100mm forall tests, asshowninFig. 1 (a).Vacuumedsilicongreasewasusedbetweenthe AEsensorandthespecimensurfacetocreategoodacousticalcoupling. TheAMSY-68-channelVallensystemwasusedtorecordtheAEactivity andtwopre-amplifierswithgainof34dBandband-passfilterof20– 1200kHzwereusedtoconnectthesensorstotheAEsystem.Beforeeach test,pencilleadbreakswereperformedtocalibratethedataacquisition system.Inalltests,thesamplingrateandthresholdweresetas2MHz and45dB,respectively.

2.2.4. DICsystem

TheDICwasemployedtomeasurethedisplacementandstrain dis-tributionsoftheexterior0°ply.Inthepresentstudy,twodifferent

po-sitionsofaspecimencan beappliedwithDICsystemtomonitor the strain/displacementdistributionsduringthetest,i.e.theedgeandthe exterior0°ply.Consideringthethicknessofthespecimens(~1.5mm),

itisextremelydifficulttomonitortheentireedgewithaccurate mea-surements.Furthermore,thespecklepattern,appliedontheedges,could affectthecontrastofedgeimagesanddisturbtheidentificationof trans-versematrixcracksduringthepostimageprocessing.Therefore,apair of5Megapixelcameraswith23mmlensand75frames-per-secondwas

Table3

Loadlevelandlocationwhenthetransversematrixcrackinitiatedatdifferentloadingrates.

Loading rate Load level F / F max (%) Location X (mm)

Specimen #1 Specimen #2 Specimen #3 Specimen #1 Specimen #2 Specimen #3

0.019 kN/s 81.88 61.32 85.66 79.49 29.15 88.95

0.19 kN/s 82.43 52.50 66.07 35.42 71.59 24.75

1.9 kN/s 83.24 85.00 78.79 91.33 66.26 38.67

19 kN/s 73.02 75.01 87.12 67.94 44.50 18.77

1 mm/min 76.30 69.51 81.00 61.13 73.07 16.05

(5)

Table4

Matrixcrackdensityandcrackspacingatthe90°pliesunderdifferentloadingrates.

Loading rate Maximum matrix crack density 𝜌max (mm −1 ) Crack spacing d (mm)

daverage dmin dmax dmax - d min

0.019 kN/s 0.24 ± 0.02 3.64 ± 0.15 1.12 ± 0.75 9.07 ± 1.05 7.95 ± 0.30

0.19 kN/s 0.30 ± 0.04 3.33 ± 0.47 0.57 ± 0.26 10.03 ± 3.59 9.46 ± 3.63

1.9 kN/s 0.16 ± 0.01 5.59 ± 0.32 0.63 ± 0.19 16.43 ± 6.03 15.80 ± 6.12

19 kN/s 0.14 ± 0.02 5.84 ± 0.47 0.44 ± 0.06 19.57 ± 7.71 19.13 ± 7.65

1 mm/min 0.25 ± 0.02 3.84 ± 0.37 0.91 ± 0.67 14.24 ± 3.89 13.33 ± 4.56

Fig.2. Histogramofcrack spacingbetweenadjacenttransverse matrixcracksandrelatedtwo-parameterWeibulldistributionsatdifferentloadingrates:(a) 0.019kN/s,(b)0.19kN/s,(c)1.9kN/s,(d)19kN/s,(e)1mm/min.

(6)

placedinthefrontsideofthespecimen,asshowninFig. 1 (b),to mea-suretheglobalaxialdeformationandthestraindistributionscloseto thecrackedregionsof90°plies.Post-processingwasperformedusing

thecommercialsoftwareVIC-3DbyCorrelatedSolutions.Asubsetsize of29pixelsandstepsizeof7pixelswereselectedforcorrelation anal-ysis.Thelengthoftheviewfieldforin-situ strainmeasurementwas approximately70–80mm.

3. Resultsanddiscussion

3.1. Mechanicalproperties

Theelasticmodulus,tensilestrengthandfailurestrainofthe speci-mensunderdifferentloadingratesarelistedin

Table 2 .Themoduluswascalculatedbasedondatagatheredwithin theaxialstrainrangelessthan0.5%.Failurestraincorrespondstothe globalstrainofspecimensatthemaximumload.Theglobalstrainwas obtainedbytrackingthedisplacementoftwopointsnearthetopand bottomoftheDICmeasurementregion.Anincreasecanbeobservedfor thefailurestrainwhentheloadingrateisreduced,whichisconsistent withtheresultsreportedbyGilatetal.[2] .Thisfactindicatesthat spec-imensbehavedinamoreductilewayatlowerloadingrates[29] .Asthe matrixisloading-rate-dependent,itsductileresponse,suchasthestress relaxationandplasticdeformation,canbemoreeasilytriggeredatlow loadingrates[30 ,31] .Ontheotherhand,theaxialmodulusand ten-silestrengthfluctuatedatarelativelynarrowbandandtheywereless loading-rate-dependentcomparedwiththefailurestrainresponsedue totheloading-rate-insensitivenatureofcarbonfibres[32] .Therefore,it canbeconcludedthatthematrixdominantlydeterminesthesensitivity ofcross-plylaminatestostrainratesinthepresentstudy[2] .

3.2. Damageontheedge 3.2.1. Transversematrixcracks

Table 3 liststhepositionsandtheloadlevelswhenthefirstmatrix crackoccursatthe90°pliesforthreespecimensateachrate.Forall

specimens,thefirstmatrixcrackoccurredatanarbitrarypositionof theinner90°plies andthecorresponding loadlevel isdistributedin

therangefrom52.50%to87.12%.Thisfactisattributedtotheinherent materialdefectsinsidethespecimenslikemicro-cracksandvoids,which highlyaffecttheoriginsofthetransversematrixcrack[33] .

Thenumberofcracksateachsidewasthesameateachloading mo-ment,indicatingthatthetransversematrixcracksrapidlypropagated throughtheentirewidthdirection.Table 4 liststhemaximummatrix crackdensityandthecrackspacingforthedifferentloadingrates.Here, themaximummatrixcrackdensity𝜌maxequalstoN/2L,whereNisthe

totalnumberoftransversematrixcracksonbothedgesbeforespecimens failedandListhelengthoftheedgeobservationregion.Thematrix crackdensitydecreasedwiththeincreaseofloadingrates,exceptfor the1mm/minand0.019kN/scaseswhereaslightdecreaseofmatrix crackdensityisobserved.Furthermore,crack-spacingrelatedvariables arealsolistedinTable 4 .Crackspacingdmeansthedistancebetween everytwoadjacenttransversematrixcracks.Theaveragecrack spac-ingdaverage,themaximumcrackspacingdmaxandthedifferences

be-tweenthemaximumandminimumcrackspacingdmax-dminwerelarger at1mm/min(7.19×10−5s−1)thanthoseat0.19kN/s(9.98×10−5

s−1).Thisindicatesthattransversematrixcracksdistributedmore

un-evenlyunderdisplacementcontrolmodethanunderloadcontrolmode whenthestrain-ratelevelissimilar.Intheload-controlledcases,dmax

anddmax-dminincreasedwiththeincreaseofloadingrates,reflectingthe

moreuniformdistributionoftransversematrixcracksatlowerloading rates.

Nevertheless,thedeviationsofallcrack-spacingvariableswere sig-nificant,whichhighlightsthespatialstochasticprocessesoftransverse matrixcrack[34] .Choetal.[15] attributedthisphenomenontothe

Fig.3. Thegrowingtrendofmatrixcrackdensitywiththeloadlevel.

factthatthelocationofsubsequentcracksisverysensitivetominor lo-calvariationsinmatrix.Torepresentbetterthestatisticalvariationin crackspacing,variablematerialproperties,i.e.strengthandfracture en-ergy,areusuallyassumedduringcrackevolutionprocesses[15 ,35 ,36] . Fig. 2 presentsthehistogramofcrackspacingbetweenadjacent trans-versematrixcracks.Atwo-parameterWeibulldistributionisutilizedin todescribetheprobabilisticdistributionofcrackspacing.Underlower loadingrate,crackspacingismorelikelytoconcentratebetween2and 4mmwithnarrowerscatterband,whileamoreuniformprobability dis-tributionispresentedunderhigherloadingratewithwiderscatterband. Thisphenomenonfurtherreflectsthelargescatteringincrackspacing athigherloadingrate.

Fig. 3 presentsthematrixcrackevolutionversustheloadforevery loadingrate.TheloadlevelF/Fmaxisrepresentedasthepercentageof thecurrentloadFtothemaximumloadFmax.Underallloadingrates,

matrixcrackdensity remainedconstantorpresenteda slowgrowing trenduptotheloadlevelaround85%andthenincreasedsignificantly uptothefinalfailure.Thehigherloadingrates(1.9kN/sand19kN/s) exhibitedslowerincreaseofmatrixcrackdensitythantheotherthree loadingratesforwhichthecurvesofmatrixcrackdensityweresimilar amongeachother.

Moreover,thelocationXandloadlevelF/Fmaxwheneachtransverse

matrixcrackgenerated,andthelocalcrackdensityatevery20mmedge regionareshowninFig. 4 .Foraclearvisualization,onlyone represen-tativespecimenateachloadingrateisselectedhere.Nexttothestraight transversecracks,fewcurvedcrackswereobservedduringthetests,as markedbytheblackarrowsinFig. 4 andseeninFig. 5 b(specimens 3,4,5for).Grovesetal.[37] reportedthatthecurvedcracksaredriven bythestressstateresultingfromtheadjacentstraightcracksandHu et al.[38] proposedthat theyonlyoccur whenthecrack densityof straight cracksexceedsthecriticalvalue.Inthepresentwork,itwas foundthattheywerepronetooccurunderhighloadlevelandlocate nearonepriorstraightcrackwiththespacinglessthan1mm.

Furthermore,thefirstthreetransversecrackswerealsolabelledin Fig. 4 anditassumedthattheyoccurredattheregionwherethelocal crackdensityisrelativelyhigh.Thenewcracksarelocatedaroundthe priorcracks,whichisdifferentfromwhatsomemodelspropose;that newcracksformmidwaybetweenexistingcracks[39 ,40] .Moreover, amongalllocalcrackregions,aremarkablehighcrackdensitywas pre-sentedwhereboththecurvedcracksandoneofthefirstthreecracks coexisted.Inaddition,whentheloadingrateincreased,mosttransverse matrixcracksinitiatedatthehighloadlevel.Forinstance,at19kN/s, nearlyhalfoftotalcracksformedjustbeforethefinalfailure.

(7)

Fig.4. Thelocationandloadlevelwheneachtransversematrixcrackoccurred(scatterplot),andthelocalcrackdensityatevery20mmedgeregion(batchart) underdifferentloadingrates.

3.2.2. Inter-laminarcracks

Similartotransversematrixcracks,inter-laminarcrackslocatedat 0°/90°interfacesweremorelikelytooccuratlowloadingrates.The

inter-laminarcrackspromote energyabsorptionandstress redistribu-tion,butontheotherhandtheyrestricttheoccurrenceofnewtransverse matrixcracksnearby wheninter-laminarcracksarerelativelywidely distributedalongtheedge[40] .

Duringthetests,inter-laminarcracksalwaysoriginatedatthetips oftransversematrixcracks.Fig. 5 presentstwolocalregionsalongthe loadingdirection(i.e.0≤X≤25mmand50≤X≤75mm),wheretypical morphologiesoftheco-existingoftransverseandinter-laminarcracks atthepeakloadarehighlighted,shapingH,LandTforms.Thecrack patternHmainlyoccurredatthelowloadingrates.Thisisbecause spec-imenshavemoretimetoredistributetheloadandabsorbenergyatlow

(8)

Fig.5.Thedistributionpatternsofco-existing transverseandinter-laminarcracksattwo lo-calregionsofthespecimenedgewhenreaching thepeakloadforeachloadingrate.

rates,andasaresultinter-laminarcracksaremoreprobablytooccurat bothtipsofthetransversematrixcrackandpropagatealongbothsides ofthecracktip.

3.3. AEactivityanalysis

Inthepresentwork,peakfrequencywasappliedasarepresentative featuretointerpretAEactivities,becauseitislessaffectedbythe attenu-ationhappenedduringthewavepropagationincomparisonwith ampli-tude,duration,etc.[41] .Fig. 6 presentsthreebandsofpeakfrequency (i.e.100–200kHz,300–400kHzand>400kHz)amongAEactivitiesat eachrate,andthecorrespondinggrowingtrendsofcumulativeenergy Ecumwiththeincreaseoftheloadlevel.Here,Ecumrepresentsthe

sum-mationofenergiesofeachAEactivity,astheyarerecordedbythedata acquisitionsystem-VallenSysteme[42] .TheAEdataat19kN/swere notfurtheranalysedbecausealmost95%ofthenumberofAEactivities occurredatthefailureandpostfailurephases.Theformationofdistinct frequencybands,asaresultofdamageaccumulation,isdeterminedby materialproperties,plyconfigurationsandloadconditionsgiventhe samesensorsandacquisitionsystem.

ThefirstAEactivitywasrecordedataround10%to30%ofthe fail-ureloadunderalltheloadingrates,whilethecumulativeenergystarted toincreaseatloadlevelsaround60%to80%.TheoriginoftheearlyAE activitieswithnegligiblecumulativeenergyindicatesthedevelopment ofmicro-cracksbeforetransversematrixcracksinitiated.Thehighest cumulativeenergyduringthetestswasprovidedbyAEactivitiesinthe peakfrequencyrangefrom100kHzto200kHz,whichalsopresented slowergrowingtrendsofcumulativeenergyinmostcasesthanotherAE activitieswithhighfrequency.

AmongthethreegroupsofAEactivitiesclassifiedbypeakfrequency, similargrowingtrendsofmatrixcrackdensityandcumulativeenergy asafunctionoftheloadlevelF/Fmaxwereobservedforthelow

fre-quencyband(100–200kHz),aspresentedinFig. 7 .Here,bothcrack densityandcumulativeenergywerenormalizedbytheirvaluesatthe peakload,asexpressedas𝜌/𝜌maxand𝐸𝑐𝑢𝑚𝐸𝑐𝑢𝑚_𝑚𝑎𝑥respectively.Each

jumpon𝜌/𝜌maxcansufficientlycorrelatetocertainsteppingincreaseof

𝐸𝑐𝑢𝑚𝐸𝑐𝑢𝑚_𝑚𝑎𝑥.Therefore,AEactivitiesinthelowfrequencylevelwere

dominantlyrelatedtotransversematrixcracks.Thisconclusionisin co-incidencewiththemajorityfindingsinliterature[22–24] ,butitdoes notmatchwithwhatOzetal.reported[11] .Theauthorsobservedthat matrixcracksattheinner90° pliesusuallygenerateAEactivitywith

peak-frequencyofhigherrangesandtheyexplainedthatthedepthof thedamagesourcecanaffecttheAEcharacteristics.Inourstudy,the thicknessofexterior0°pliesisonly0.25mm,thusthethroughthickness

distanceofamatrixcracktoAEsensorscanbarelyaffectthe correspond-ingAEcharacteristics.

Furthermore, thenormalizedmatrixcrack density𝜌/𝜌max is

plot-tedagainstthenormalizedcumulativeAEenergy𝐸𝑐𝑢𝑚𝐸𝑐𝑢𝑚_𝑚𝑎𝑥of

low-frequencyAEactivities(i.e.100–200kHz),wherealinearcorrelationis found,seeFig. 8 .Thisplotdemonstratesthatthecumulativeenergyof low-frequencyAEactivitiescandescribetheaccumulationoftransverse matrixcracksforcross-plylaminates,whichfurtherpavesapromising wayforthereal-timequantificationoftransversematrixcrackevolution basedonAEfeature.

3.4. Axialstraindistributions

Fig. 9 showstheaxialstraindistributionsattheexterior0°plyforall

testedloadingratesunderfourdifferentloadinglevels(i.e.85%,90%, 95%and100%ofthemaximumload).Forthesameloadlevel,itis ob-servedthatthelocalstrainatlowloadingrateswasgreaterthanthatat highloadingrates.Whenthetransversematrixcracksstartedtoinitiate, strainconcentrationswithnarrowstrips(2.8mmto5.2mm)occurred throughthewidthofthespecimens.Astheloadincreased,someofthese stripsexpandedorconnectedwiththeirneighbourstoformlargestrain concentrations.Atmaximumload,thelargeststrainconcentrationarea attheloadingdirection,38mm,wasfoundfor0.019kN/s.

Tofurtherinvestigatethedevelopmentofstrainconcentrations,the distributionoftransversematrixcracks,obtainedfromedge observa-tions,wascomparedwithaxialstraindistributionsasmeasuredbyDIC. Agoodcorrelationofmatrixcracksattheinner90°pliesandstrain

con-centrationsattheexterior0°plyunderdifferentloadingratesisshown

inFig. 10 .Thereddashboxesatthefrontsurfaceofspecimenswere usedtolabelthestrainconcentrationregionswithmorethanone

(9)

trans-Fig.6.ThreebandsofpeakfrequencyamongAE activitiesandthecorrespondingcumulative en-ergyplottedwiththeincreaseofloadlevel un-derdifferentloadingrates:(a)0.019kN/s,(b) 0.19kN/s,(c)1.9kN/s,(d)1mm/min.

versematrixcracks,generatedfromtheedgethicknessandtherelated transversematrixcracksatthelocalregionwithstrainconcentration, weremarkedbythecurlybracketsatedges.Thesemarkedregionswere alsotheplaceswhereexpansionsorconnectionsofstrainconcentration withnarrowstripsoccurredateachloadingrates.Asobserved,the ma-trixcracksat90°pliescauseunevendistributionofstrainatthe0°plies.

Inviewthattheinter-laminarcrackswerenotwidelydistributedalong theedgeandtheydidnotpropagatebroadlyinsidethespecimensunder tensileloading,theireffectsonthedistributionspatternofaxialstrain arenegligibleinthepresentstudy.

The strain profile of a line slice along the loading direction (as markedwiththewhitesolidlineinFig. 10 )andrelatedglobalstrain (asplottedwiththedashline)atthreedifferentmoments(i.e.t1,t2and

t3)werealsopresentedinFig. 11 .Here,t1isthemomentthatno

ex-pansionsorconnectionsamongindividualstrainconcentrationsoccur; t2isthemomentthatlocalstrainconcentrationsstarttoexpandor

con-nectwiththeirneighbours;t3isthemomentofthemaximumload.The

firstexpandingdirectionoflocalstrainconcentrationsismarkedwith redarrowatt2andthenumberedstrainconcentrationregionsatt3(red dashboxesatthefrontsurfaceofspecimens)inFig. 10 werealsoshown

(10)

Fig.7. ThenormalizedmatrixcrackdensityandnormalizedcumulativeenergyofAEactivitieslocatedatdifferentfrequencybandsasafunctionoftheloadlevel underdifferentloadingrates:(a)0.019kN/s,(b)0.19kN/s,(c)1.9kN/s,(d)1mm/min.

Fig.8. Therelationshipbetweennormalizedmatrixcrackdensityand normal-izedcumulativeenergyoflow-frequencyAEactivitiesatdifferentloadingrates.

inthestrainprofileforeachloadingrateinFig. 11 .Beforet1,strain

concentrationsappearedasthenarrowstripsatthecracklocation. Af-terwards,thenewcracksaffecttheearly-emergedstrainconcentrations, andthisisdeterminedbythedistancebetweenthenewcracksandtheir

neighbours.Ifthecrackspacingissmallenough,lessthan4mm,the originalstrainconcentrationexpandstocovertheregionwiththehigh localcrackdensity.Otherwise,onlynewstrainconcentrationstripsare induced.Thisfurtherexplainswhythelargeststrainconcentration re-gionwasgeneratedatthelowestloadingratebecausethereexiststhe widest localregionwithhighmatrixcrackdensityat0.019 kN/s,as showninFig. 10 .

Asforthepeaksoflocalstrainateachlabelledconcentrationregion, theirnumbersandlocationsarerelatedtoboththeoccurringsequences andpositionsoftransversematrixcracks.Bothsinglepeakandmultiple peaksoflocalstrainprofilesexistinthelabelledstrainconcentration regions duringthetests,asFig. 11 presents.Inthesingle-peakcase, thelocationofthepeakstrainalmoststaysattheinitialplace(asshown fromt1tot2inFig. 11 (a)-(c),(e))iftheupdatedminimumcrackspacing

isalwayslocatedaroundthefirstcrackgeneratedatthelabelled concen-trationregion.Otherwise,itshiftstothepositionnearthenewestcrack (asshownfromt1tot2inFig. 11 (d)),orturnstomulti-peakcases(as

shownfromt2tot3inFig. 11 ).Inthemulti-peakcases,valleysusually existamongneighborpeaksateachstrainconcentrationregionandthe straindifferencesofeachpairofvalleyandpeakaredeterminedbythe relatedcrackspacing.Thelargerthecrackspacingis,higherstrain dif-ferencesoccur.Furthermore,similartothelocationofthesingle-peak case,thehighestpeakinthemulti-peakregionispositionedateither thelocationofthenewestcrackorneartheplacewiththeminimum crackspacing.

(11)

Fig.9. Axialstraindistributionsattheouter0°plyunderfourdifferent

(12)

Fig.10. Correlationbetweenstrain concentra-tionsattheexterior0°plyandtransversematrix

cracksgeneratedfromtheedgethicknessatthe maximumloadunderdifferentloadingrates.

(13)

Fig.11. Strainprofileofalineslicealongtheloadingdirectionatthreedifferentmoments:(a)0.019kN/s,(b)0.19kN/s,(c)1.9kN/s,(d)19kN/s,(e)1mm/min.

4. Conclusion

This paper investigated the loadingrate effectson the mechani-cal properties and the damage accumulation process of [0°

2/90°4]S

carbon fiber-polymer laminatesunder tensile loading.Emphasis was givenoncharacterizingthedistributionoftransversematrixcracksand howtheoccurrenceofinter-laminarcrackscouldinfluencethe trans-versematrixdensity.Threein-situmonitoringtechniques,edge-camera, DICandAEwereemployedtomonitorsimultaneouslyand

synergisti-callythedamageaccumulationprocess.Themainconclusionsarelisted hereafter:

1) Theaxialmodulusandstrengtharelesssensitivetodifferentloading ratesthanthefailurestrain,whichdecreaseswiththeincreaseofthe loadingrate.

2) At low loading rate, the maximum density of transverse matrix cracksishigh,andinter-laminarcracksatthe0°/90°interfacesare

(14)

localdamagepattern hasa H-shapewheretransversematrixand inter-laminarcracks coexist.Whentheloadingrateis lowerthan 0.19kN/s,thedensityoftransversematrixcracksslightlydecreases duetotheconstrainsimposedbytheinter-laminarcracks. 3) Transversematrixcracksdistributedmoreuniformly underlower

loadingrates,accompaniedwithsmallerscatterofcrackspacingat localregions,whileamorerandomdistributionpatternisfound un-derhigherloadingrates.

4) ThecumulativeenergyofAEactivityintherangeof100–200kHz waslinearlycorrelatedtothedensityoftransversematrixcracks. Thisobservationpavesapromisingwayforthereal-time quantifi-cationofcrackevolutionbasedsolelyontheAEactivity.

5) Narrowstripsofstrainconcentrationoccurredattheexterior0°ply

oncetransversmatrixcracksinitiatedandacorrelationbetweenthe numberofstripsandthenumberofcrackswasfound.Thestrips,at alaterstage,expandedorconnectedwithoneanothertoformwide concentrationregions.Thelargeststrainconcentrationregionwas presentedatthelowestrate(0.019kN/s)wherelocalcrackdensity ishighenoughtoinducetheexpansionsandconnectionsofnarrow stripsofstrainconcentration.

6) Spatialconsistencewasobservedbetweentransversematrixcracks atedgesandstressconcentrationsattheexterior0°plyfromDIC.The

peaksofaxialstrainwerelocatedeithernearthenewestdeveloped cracksorattheplacewiththeminimumcrackspacing.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowledgments

Theauthors would like tothank thefinancial supports of China ScholarshipCouncil(No.201706290028).

References

[1] N. Taniguchi, T. Nishiwaki, H. Kawada, Tensile strength of unidirectional CFRP lam- inate under high strain rate, Adv. Compos. Mater. Off. J. Jpn. Soc. Compos. Mater. 16 (2007) 167–180, doi: 10.1163/156855107780918937 .

[2] A. Gilat, R.K. Goldberg, G.D. Roberts, Experimental study of strain-rate-dependent behavior of carbon/epoxy composite, Compos. Sci. Technol. 62 (2002) 1469–1476, doi: 10.1016/S0266-3538(02)00100-8 .

[3] X. Zhang, Y. Shi, Z.X. Li, Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates, Compos. Part B Eng. 164 (2019) 524–536, doi: 10.1016/j.compositesb.2019.01.067 .

[4] K. Naresh, K. Shankar, B.S. Rao, R. Velmurugan, Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites, Compos. Part B Eng. 100 (2016) 125–135, doi: 10.1016/j.compositesb.2016.06.007 .

[5] D. Ma, A. Manes, S.C. Amico, M. Giglio, Ballistic strain-rate-dependent ma- terial modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach, Compos. Struct. 216 (2019) 187–200, doi: 10.1016/j.compstruct.2019.02.102 .

[6] J. Raghavan, M. Meshii, Time-dependent damage in carbon rein- forced polymer composites ∗ , Compos. Part A 27 (1996) 1223–1227, doi: 10.1016/1359-835X(96)00073-5 .

[7] T.H. Nguyen, D. Gamby, Effects of nonlinear viscoelastic behaviour and loading rate on transverse cracking in CFRP laminates, Compos. Sci. Technol. 67 (2007) 438–452, doi: 10.1016/j.compscitech.2006.08.027 .

[8] J. Berthe, M. Ragonet, Passive infrared thermography measurement of transverse cracking evolution in cross-ply laminates. Strain 2018:1–15. doi: 10.1111/str.12293 . [9] M. Azadi, H. Sayar, A. Ghasemi-Ghalebahman, S.M. Jafari, Tensile loading rate ef- fect on mechanical properties and failure mechanisms in open-hole carbon fiber reinforced polymer composites by acoustic emission approach, Compos. Part B Eng. 158 (2019) 448–458, doi: 10.1016/j.compositesb.2018.09.103 .

[10] M. Mehdikhani, E. Steensels, A. Standaert, K.A.M. Vallons, L. Gorbatikh, S.V. Lo- mov, Multi-scale digital image correlation for detection and quantification of ma- trix cracks in carbon fiber composite laminates in the absence and presence of voids controlled by the cure cycle, Compos. Part B Eng. 154 (2018) 138–147, doi: 10.1016/j.compositesb.2018.07.006 .

[11] F.E. Oz, N. Ersoy, M. Mehdikhani, S.V. Lomov, Multi-instrument in-situ damage mon- itoring in quasi-isotropic CFRP laminates under tension, Compos. Struct. 196 (2018) 163–180, doi: 10.1016/j.compstruct.2018.05.006 .

[12] F.E. Oz, N. Ersoy, S.V. Lomov, Do high frequency acoustic emission events always represent fibre failure in CFRP laminates? Compos. Part A Appl. Sci. Manuf. 103 (2017) 230–235, doi: 10.1016/j.compositesa.2017.10.013 .

[13] C. Baker, G.N. Morscher, V.V. Pujar, J.R. Lemanski, Transverse cracking in carbon fiber reinforced polymer composites: modal acoustic emission and peak frequency analysis, Compos. Sci. Technol. 116 (2015) 26–32, doi: 10.1016/j.compscitech.2015.05.005 .

[14] L. Zubillaga, A. Turon, J. Renart, J. Costa, P. Linde, An experimental study on matrix crack induced delamination in composite laminates, Compos. Struct. 127 (2015) 10– 17, doi: 10.1016/j.compstruct.2015.02.077 .

[15] Cho C., Holmes J.W., Barber J.R., Arbor A. Distribution of matrix cracks in a uniaxial ceramic composite. J. Am. Ceram. Soc. 1992:316–24. doi: 10.1111/j.1151-2916.1992.tb08181.x .

[16] A. Tessema, S. Ravindran, A. Kidane, Gradual damage evolution and propagation in quasi-isotropic CFRC under quasi-static loading, Compos. Struct. 185 (2018) 186– 192, doi: 10.1016/j.compstruct.2017.11.013 .

[17] Z. Zhao, P. Liu, C. Chen, C. Zhang, Y. Li, Modeling the transverse tensile and com- pressive failure behavior of triaxially braided composites, Compos. Sci. Technol. 172 (2019) 96–107, doi: 10.1016/j.compscitech.2019.01.008 .

[18] J. Huang, M.L. Pastor, C. Garnier, X.J. Gong, A new model for fatigue life predic- tion based on infrared thermography and degradation process for CFRP composite laminates, Int. J. Fatigue 120 (2019) 87–95, doi: 10.1016/j.ijfatigue.2018.11.002 . [19] V. Munoz, B. Valès, M. Perrin, M.L. Pastor, H. Welemane, A. Cantarel, et al., Dam-

age detection in CFRP by coupling acoustic emission and infrared thermography, Compos. Part B Eng. 85 (2016) 68–75, doi: 10.1016/j.compositesb.2015.09.011 . [20] M. Saeedifar, M.A. Najafabadi, D. Zarouchas, H.H. Toudeshky, M. Jalalvand, Cluster-

ing of interlaminar and intralaminar damages in laminated composites under inden- tation loading using acoustic emission, Compos. Part B Eng. 144 (2018) 206–219, doi: 10.1016/j.compositesb.2018.02.028 .

[21] M.G.R. Sause, S. Schmitt, S. Kalafat, Failure load prediction for fiber-reinforced composites based on acoustic emission, Compos. Sci. Technol. 164 (2018) 24–33, doi: 10.1016/j.compscitech.2018.04.033 .

[22] C. Huang, S. Ju, M. He, Q. Zheng, Y. He, J. Xiao, et al., Identification of failure modes of composite thin-ply laminates containing circular hole un- der tension by acoustic emission signals, Compos. Struct. 206 (2018) 70–79, doi: 10.1016/j.compstruct.2018.08.019 .

[23] R. Mohammadi, M.A. Najafabadi, M. Saeedifar, J. Yousefi, G. Minak, Corre- lation of acoustic emission with finite element predicted damages in open- hole tensile laminated composites, Compos. Part B Eng. 108 (2016) 427–435, doi: 10.1016/j.compositesb.2016.09.101 .

[24] V. Arumugam, K. Saravanakumar, C. Santulli, Damage characterization of stiff- ened glass-epoxy laminates under tensile loading with acoustic emission monitoring, Compos. Part B Eng. 147 (2018) 22–32, doi: 10.1016/j.compositesb.2018.04.031 . [25] M. Saeedifar, D. Zarouchas, Damage characterization of laminated composites

using acoustic emission: a review, Compos. Part B Eng. 175 (2020) 108039, doi: 10.1016/j.compositesb.2020.108039 .

[26] J. Kupski, S. Teixeira de Freitas, D. Zarouchas, P.P. Camanho, R. Benedictus, Com- posite layup effect on the failure mechanism of single lap bonded joints, Compos. Struct. 217 (2019) 14–26, doi: 10.1016/j.compstruct.2019.02.093 .

[27] Hexcel. HexPly ○ 6376 - Product Data Sheet - EU Version 2016:1–2. R

[28] ASTM-American Society for Testing and Materials. ASTM D3039/D3039M: standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. Annu. B ASTM Stand.2014:1–13. doi: 10.1520/D3039 .

[29] R.O. Ochola, K. Marcus, G.N. Nurick, T. Franz, Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates, Compos. Struct. 63 (2004) 455–467, doi: 10.1016/S0263-8223(03)00194-6 .

[30] Y. Zhang, P.-.Y. Ben Jar, S. Xue, L. Li, L. Han, Damage evolution in high density polyethylene under tensile, compressive, creep and fatigue loading conditions, Eng. Fract. Mech. (2019), doi: 10.1016/j.engfracmech.2019.05.008 .

[31] A. Gilat , R.K. Goldberg , G.D. Roberts , Strain rate sensitivity of epoxy resin in tensile and shear loading, J. Aerosp. Eng. 20 (2007) 75–89 doi:10.1061/(asce)0893-1321(2007)20:2(75) .

[32] Y. Zhou, Y. Wang, Y. Xia, S. Jeelani, Tensile behavior of carbon fiber bundles at different strain rates, Mater. Lett. 64 (2010) 246–248, doi: 10.1016/j.matlet.2009.10.045 .

[33] J.-.M. Berthelot, P. Leblond, A. El Mahi, J.-.F. Le Corre, Transverse cracking of cross- ply laminates: part 1. Analysis, Compos. Part A Appl. Sci. Manuf. 27 (1996) 989– 1001, doi: 10.1016/1359-835X(96)80002-A .

[34] V.V. Silberschmidt, Matrix cracking in cross-ply laminates: effect of randomness, Compos. Part A Appl. Sci. Manuf. 36 (2005) 129–135, doi: 10.1016/j.compositesa.2004.06.008 .

[35] P. Maimí, P.P. Camanho, J.A. Mayugo, A. Turon, Mechanics of Materials Matrix cracking and delamination in laminated composites. Part II : evolu- tion of crack density and delamination, Mech. Mater. 43 (2011) 194–211, doi: 10.1016/j.mechmat.2011.01.002 .

[36] V. Vinogradov, Z. Hashin, Probabilistic energy based model for prediction of trans- verse cracking in cross-ply laminates, Int. J. Solids Struct. 42 (2005) 365–392, doi: 10.1016/j.ijsolstr.2004.06.043 .

[37] Groves S.E., Harris C.E., Highsmith A.L., Allen D.H., Norvell R.G. An experimen- tal and analytical treatment of matrix cracking in cross-ply laminates. Exp. Mech. 1987:73–9.

(15)

[38] S. Hu, J.S. Bark, J.A. Nairn, On the phenomenon of curved microcracks in [(S)/90n] s laminates: their shapes, initiation angles and locations, Compos. Sci. Technol. 47 (1993) 321–329, doi: 10.1016/0266-3538(93)90001-W .

[39] C.V. Singh, R. Talreja, Evolution of ply cracks in multidirectional composite laminates, Int. J. Solids Struct. 47 (2010) 1338–1349, doi: 10.1016/j.ijsolstr.2010.01.016 .

[40] N.A. Petrov, L. Gorbatikh, S.V. Lomov, A parametric study assessing perfor- mance of eXtended Finite Element Method in application to the cracking pro- cess in cross-ply composite laminates, Compos. Struct. 187 (2018) 489–497, doi: 10.1016/j.compstruct.2017.12.014 .

[41] Q.Q. Ni, M. Iwamoto, Wavelet transform of acoustic emission signals in failure of model composites, Eng. Fract. Mech. 69 (2002) 717–728, doi: 10.1016/S0013-7944(01)00105-9 .

[42] Vallen Systeme GmbH. Verification of the AE signal processor, parametric input channels and system performance according to EN 13477-2:2010 2019:26.

Cytaty

Powiązane dokumenty

From the preceding accounts, four drivers can be identified as the main triggers for the RC formation in the Themi sub-catchment: (a) increased frequency of low flows in the

information on this can be found in the literature we set up a study to identify the minimum amount of space users of electric wheelchairs or scooters need to ride indoors, turn

W Meklemburgii-Strelitz szczyt kryzysu przypada na wybory krajowe 29 stycznia, po czym 20 maja 1928 zaznacza się ponowne wzmocnienie ruchu, zresztą jeszcze

Ukazała się niedawno książka Ryszarda Ergetowskiego, w pewnym stopniu li- kwidująca tę lukę, stanowiąca zbiór artykułów o ludziach kultury i nauki związanych ze Śląskiem

Wreszcie dodaje: „to dążenie niech was pokrzepia, ono też było w Jezusie Chrystusie, On , istniejąc w postaci Boga, wiedział, że Jego bycie równym Bogu nie jest

Both men studied various cities in Europe and took study trips to many locations, and Van Eesteren in particular assigned many students to work on small towns and villages in

Middels deze enquête is onder andere ge- tracht te achterhalen op welke terreinen ontwikkelaars innoveren, welke strategieën hiertoe worden ingezet, welke concrete in- novaties

in de utiliteitsbouw. Deze sectoren omvatten onder andere uit gebouwen voor de handel, de horeca, de transportsector en de communicatiebedrijven. Van Miltenburg &