• Nie Znaleziono Wyników

Leszek Starkel

N/A
N/A
Protected

Academic year: 2021

Share "Leszek Starkel"

Copied!
13
0
0

Pełen tekst

(1)

Annales Societatis Geologorum Poloniae (2007), vol. 77: 193–205.

THE DIVERSITY OF FLUVIAL SYSTEM RESPONSE

TO THE HOLOCENE HYDROLOGICAL CHANGES USING

THE VISTULA RIVER CATCH MENT AS AN EX AM PLE

Leszek STARKEL

De part ment of Geo mor phol ogy and Hy drol ogy, In sti tute of Ge og ra phy and Spa tial Or gani za tion, Pol ish Acad emy of Sci ences, œw. Jana 22, 31- 180 Kraków, Po land, e- mail: starkel@zg.pan.kra kow.pl

Starkel, L., 2007. The di ver sity of flu vial sys tem re sponse to the Holo cene hy dro logi cal changes us ing the Vis tula River catch ment as an ex am ple. An nales So cie ta tis Ge olo go rum Po lo niae, 77: 193–205.

Ab stract: Hy dro logi cal changes dur ing the Holo cene are ex pressed in the vari able fre quency of ex treme events and re flected in flu vial sedi ments and land forms. The di ver sity of flu vial sys tem re sponse de pends on rain fall and runoff- sediment load re gime, but is spe cifi cally re lated to the land scape type, size of catch ment, and con nec tivity of val ley reaches in the long pro file, as well as to in creas ing hu man im pact. This di ver sity is ex em pli fied by the Vis tula River catch ment, in ves ti gated in de tail dur ing the last dec ades, pro vid ing a ba sis for dem on strat ing how vari ous flu vial se quences are ex press ing pa laeo hy dro logi cal changes.

Vari ous types of flood events, rang ing from those con nected with heavy down pours to con tinu ous rains and to snow melt floods, play a lead ing role in catch ments of vari ous size and land scape type. Three main mod els of Holo cene trans for ma tion of val ley floors were dis tin guished: an in ci sional one in the moun tain head wa ters, an ag gra da tional one in low- gradient river val leys, and tran si tional one re flect ing phases of vari ous fre quency of ex treme events (and their clus ters) rep re sented in se quences of cuts and fills. This last tran si tional type should char ac ter ise the mid dle val ley courses, but is best de vel oped slightly up stream on the di rect fore land of the Car pa thi ans, where the great est fluc tua tions in the river dis charge, bed load and sus pended load are ob served. The pres ence of many gaps in al lu vial se quences re quires a bet ter rec og ni tion of Holo cene hy dro logi cal changes and it is rec om mended to cor re late flu vial data with other palaeo re cords.

Key words: Holo cene, hy dro logi cal changes, flu vial sys tem re sponse, flood types, Vis tula River, Po land. Manu script re ceived 18 Janu ary 2007, ac cepted 20 July 2007

IN TRO DUC TION

Hy dro logi cal changes of the or der of cen tu ries or mil -len nia are ex pressed in the fluc tua tion of flood fre quency (Starkel, 1983) and ex hibit varia tions in the rainfall- sediment load re gime. This is re flected in sedi ments and land forms of the val ley floors. Es pe cially, the run off and sedi ment load have ac cel er ated in Cen tral Europe af ter de -for es ta tion and the on set of soil cul ti va tion, start ing from the late Neo lithic time (Starkel, 2003b, 2005). Their con -nec tivity in the lon gi tu di nal pro file was dis turbed in the last cen tu ries by chan nel regu la tion and con struc tion of wa ter res er voirs.

The di ver sity of flu vial sys tem re sponse con trolled by changes in the re gime de pends on the re lief of river ba sin, size of catch ment, reach po si tion in the lon gi tu di nal pro -files, as well as on the type and fre quency of floods. The land scape of a ba sin may be ex pressed by slope and river

chan nel gra di ents. These pa rame ters, to gether with li thol -ogy of the sub stra tum (rock re sis tance, type of soil, their per me abil ity, etc.) and vege ta tion cover, de cide on the domi nant type of sedi ment load (dis solved, sus pended and bed load). The char ac ter of the load and its grain- size changes with the size of river catch ment and small tribu tary val leys dif fer from those of the trunk river val ley. There fore, the po si tion of a val ley reach is im por tant for the ex -ami na tion of long- term changes. As it was proved in the last years by sev eral authors (cf. Fryirs and Bri er ley, 2001), in vari ous land scape zones there ex ist char ac ter is tic buff ers and bar ri ers, which de ter mine the type of dis con nec tivity of sub se quent val ley reaches. Their con nec tion in the lon gi tu -di nal val ley pro file may oc cur only dur ing ex treme events, when the pro cesses and fea tures char ac ter is tic for the up per reach may ex tend down stream.

(2)

An ad di tional fac tor dif fer ing the mag ni tude and fre -quency of changes in large catch ments is the type of rain fall and flood. In small catch ments, lo cal heavy down pours play a trig ger ing role (pro duc ing flash floods), while in larger ones con tinu ous rains or snow melt floods pro duce ex ten -sive long- lasting flood ing. Each of these types may pro voke vari ous re sponses of the flu vial sys tem.

The re ac tion of a flu vial sys tem to ex treme events is re -flected in the down cut ting or lat eral ero sional shift of the river chan nel, and in the ver ti cal or lat eral ag gra da tion both in the chan nel and over bank fa cies (Schumm, 1977; Knox, 1995). Changes in a longer time in ter vals may be, there fore, docu mented both in the pa laeo chan nel pa rame ters and in se quences of al lu vial sedi ments. More ac tive phases (with fre -quent floods) in the tem per ate zone are ex pressed best in cuts and fills and re lated chan nel avul sions (Starkel, 1983, 2003a).

THE VISTULA RIVER CATCH MENT

AS AN EX AM PLE

The di ver sity of flu vial re sponse to hy dro logi cal changes dur ing the Holo cene is ex em pli fied by the Vis tula River ba sin (Fig. 1). The Vis tula River catch ment oc cu pies an area of 194,424 sq. km and is drained by the trunk Vis tula River, 1,092 km long, pass ing through sev eral land scape zones: from the moun tains in the south into the low -lands in the north, with vari able rain fall and run off re gime (Fig. 2). Its val ley floor has been in ves ti gated in rela tively

great de tail both in the main val ley, and in vari ous reaches of tribu tar ies, char ac ter is tic for dif fer ent land scape zones. The re sults of stud ies of the Late gla cial and Holo cene sedi -ments and land forms were pub lished in a se ries of vol umes (Starkel ed., 1982, 1987, 1990, 1991, 1995, 1996, Ale-xandrowicz et al., 1981) and in many other mono graphs and pa pers. The docu men ta tion of al ter nate phases of dif fer ent flu vial ac tiv ity is sup ported by age con trol on at least 100 lo cali ties by more than 500 ra dio car bon dates (cf. Starkel et

al., 2006), by about 600 den dro chro no logi cally dated sub

-fos sil oaks (Kr¹piec, 1992, 1998), and by more than 30 paly no logi cal pro files.

The Vis tula River ba sin is get ting an nu ally 500–700 mm of pre cipi ta tion (up to 20% as snow fall) in the north ern and cen tral parts. Only in the Car pa thi ans, the pre cipi ta tion to tals do fluc tu ate from 800 to 1,500 mm per year.

Spe cific run off de clines from >2 m3sec–1km–2 in the moun tains to 0.04 m3sec–1km–2 per month. Two types of floods are char ac ter is tic for the Vis tula River: sum mer rainy floods and spring (or win ter) snow melt floods (Soja & Mro -zek, 1990, Fig. 3). The high est dis charges of the Vis tula River in sum mer time at tain about 7,500 m3sec–1 at the junc tion of all the Car pa thian tribu tar ies in the San dom ierz Ba sin, de cline down stream be low 6,000 m3 and rise again to 7,850 m3 near the mouth. The sum mer rainy floods origi nate in the Car pa thi ans. Their high est dis charges are re corded in the Vis tula River and its tribu tar ies in the Car pa -thian fore land. Most of the snow melt flood dis charges rise gradu ally in the low land part of the ba sin (rarely ex ceed ing 5,000 m3), be ing partly con nected with ice- jams.

Fig. 1. Po si tion of the Vistula River val ley in Cen tral Eu rope on the back ground of mean an nual run off in milli metres (based on var i ous sources)

(3)

The sus pended load reaches the high est val ues (up to 2 × 106 tons km–2yr–1) at the out let of the Vis tula River from the Sub car pa thian San dom ierz Ba sin (Ce in Fig. 2), and the over bank and bed load depo si tion is very high both in this

ba sin and far ther down stream, in a gap across the Polish Up lands (£ajc zak, 1990).

The Vis tula River on its way to the Bal tic Sea passes through six main land scape zones (Fig. 2). The high est part

DI VER SITY OF FLU VIAL SYSTEM

195

Fig. 2. Land scape zones and ar eas of stud ies of Ho lo cene flu vial sed i ments: 1 – rivers, 2 – ex tent of the last ice sheet, 3 – wa ter shed of the Vistula River ba sin, 4 – ar eas of de tailed in ves ti ga tions, 5 – other lo cal i ties stud ied in de tail, 6 – state bound ary, 7 – lim its of land scape zones: A – Carpathian Mts., B – Carpathian foot hills, C – Subcarpathian bas ins, D – South-Pol ish up lands, E – Pol ish Low land (periglacial), F – low land (young re lief in zone of the last gla ci ation). See the list of ref er ences for re spec tive code num bers

(4)

of the Car pa thian Moun tains (zone A), ele vated to 1,000–1,700 m a.s.l. (only Ta tra Mts. with gla cial re lief rise to 2,600 m), is built mainly of flysch strata and dis sected by 300–800- m- deep val leys. To the north, there ex tends a belt of the Car pa thian Foot hills (zone B), which is also built up of flysch rocks. Trunk val leys in cised to 100–200 m have flat bot toms. The Car pa thi ans are the main sedi ment con -trib ut ing area in the whole Vis tula River catch ment. The Sub car pa thian ba sins col lect wa ter and sedi ment load mainly from the right side Car pa thian tribu tar ies. The gra -di ent of wide val ley floors de clines to 0.3‰ and less; this is the belt of natu ral stor age of al lu via (zone C). To the north, a broad up land (zone D) ex tends, which is char ac ter ised by 50–150 m rela tive heights, and built up of vari ous sedi men -tary rocks cov ered in part by a thick loess cover, densely dis sected by gul lies. The up land zone is the sec ond sedi -ment con trib ut ing area in the whole catch -ment. The up lands de cline north wards and are bur ied un der Qua ter nary sedi

-ments of older Scan di na vian gla cia tions. This flat Pol ish Low land with peri gla cial re lief fea tures is drained by gradient riv ers (zone E). Fi nally, the north ern belt left by the last ice sheet (zone F) has again more di verse re lief with hilly mar ginal zones, ex ten sive san dur plains, lati tu di nally di rected ice- marginal stream ways and trans ver sal val ley gaps, and sub gla cial chan nels.

In the up per Vis tula River ba sin in the Car pa thian fore -land, about 45 years ago Starkel (1960) pro posed a con cept of se quence of cuts and fills ex plained as phases with vari -ous fre quency of ex treme events, re flected in the sedi ments and land forms (Starkel, 1983, 2003b; Starkel ed., 1990; Kalicki, 1991; Starkel et al., 1996). These ac tive phases were dated at 8.5–8.0, 6.6–6.0, 5.5–4.9, 4.4–4.1, 3.5–3.0, 2.7–2.6, 2.3–1.8 14C ka BP, and the 5–6th, 10–11th and 16–19th cent. AD (Starkel et al., 1996), and cor re lated with other in di ca tors of higher hu mid ity and ex ten sive rain falls, like: vege ta tion changes, lake level rises, ad vances of Al pine gla ciers, pre cipi ta tion of cal care ous tufa, land slide ac -tiv ity, etc. (Fig. 9) These phases are also re flected in the newly elabo rated fre quency curve of ra dio car bon dates, re -flect ing varia tions in flu vial ac tiv ity (Starkel et al., 2006) and re corded in larger val leys of the Mid dle and South ern Ger many (Schirmer, 1995).

LEAD ING TYPES OF RAIN FALLS AND

FLOODS IN VAR I OUS CATCH MENTS

The types of floods de pend mainly on the char ac ter of rain fall and snow melt (cf. Starkel, 1998; Figs 3 and 4).

Flash floods con nected with lo cal heavy down pours are most char ac ter is tic of small size catch ments in the moun -tains, up lands and also, to some ex tent, in the low lands (Fig. 3a). The rain fall in ten sity ex ceeds 1 mm min–1 and rain fall to tals are 50–150 mm, re sult ing in rapid over land flow and slope wash (Starkel ed., 1997, 1998). The spe cific run off may reach 10–35 m3sec–1km–2 (Cie pie lewski, 1970; Stachy

et al., 1996). The fre quency of such events does not ex ceed

sev eral per cent.

Con tinu ous rains con nected with the fron tal zones oc cupy larger ar eas, es pe cially in the Car pa thi ans, where dur -ing 2–5 days 200–500 mm of rain may fall, and in the trunk val ley a flood wave is formed (Fig. 3b). The most ef fec tive is the su per po si tion of heavy down pour over con tinu ous rain, when si mul ta ne ously the thresh olds of both slope and flu vial pro cesses may be passed, and great masses of col lu -vial and washed ma te rial are de liv ered to the river chan nels and trans ported down stream. It was such a case in July 1997 (Starkel & Grela eds., 1998), when in vari ous reaches of river chan nels the buff ers and bar ri ers were passed and ex -cep tional con nec tivity of land scape zones fol lowed. In the case of riv ers pass ing the Sub car pa thian ba sins, the floods origi nated in the Car pa thi ans are of allochthonous char ac ter and cause mainly ag gra da tion in the over bank fa cies.

In the larger flat low land ba sins, the flood ing can be re -corded not only dur ing con tinu ous rains but also dur ing long rainy sea sons last ing sev eral weeks. Such a flood is

Fig. 3. Typ i cal hy dro graphs of three var i ous flood types in the Vistula catch ment: a – flash flood in the Kalinka val ley (zone D) on 15 Sept. 1995 (af ter Starkel ed., 1997), b – flood in the Vistula river val ley in July 1997 at Sandomierz (af ter Grela et al., 1999), c – snowmelt flood in the Bug and Narew rivers in March-April 1979 in NE Po land (af ter Stachy et al., 1996)

(5)

com bined with a rise of the ground wa ter level and is char ac -ter ised by very low sedi ment load.

The snow melt floods are re corded in all land scape re -gions of the Vis tula River catch ment, and es pe cially those floods which are com bined with rain fall on fro zen ground cause the al lu via tion over flood plains (Fig. 3c). In the trunk val leys flow ing to wards the north, the ice jam floods are re -corded due to ear lier melt ing of snow and river ice in the south (Soja & Mro zek, 1990).

Con clud ing so far, the im por tance of floods of dif fer ent type de pends on the size of a catch ment (rain fall in ten sity and to tals), char ac ter is tic land scape fea tures, and rate of melt ing of the snow cover (Fig. 4).

Coastal floods in the Vis tula River delta are of to tally dif fer ent char ac ter. These are con nected with sea storms, which block the river out flow.

DIF FER ENT RE SPONSE TO

HY DRO LOG I CAL CHANGES DUR ING

THE HO LO CENE

As it was al ready men tioned, the main dif fer ences in re -sponse should be con nected with the land scape re gion and catch ment size (Fig. 5). In the up per catch ment, dis tinct clus ters of floods are dated at 8.5–8.0, 6.6–6.0, 5.5–4.9, 4.4–4.1, 3.5–3.0, 2.7–2.6, 2.3–1.8 14C ka BP and the 5–6-th and 16–19- th cent.AD (Starkel et al., 1996).

Carpathian Moun tains (Zone A)

In the first or der streams, a higher fre quency of ex treme events is re flected in the ac cel era tion of down cut ting dur ing down pours car ry ing heavy bed load (Froeh lich, 1982). In the catch ments of sev eral tens of square kilo me tres in size (type b–c in Fig. 5), both down pours and con tinu ous rains are fre quent, and small ero sional steps are cut in the bed -rock, proba bly re flect ing phases of high flood fre quency (cf. Zuchiewicz, 1987; Wójcik, 1997). In the trunk val leys drain ing larger catch ments, the se quence of ter race benches and rocky steps with al lu vial coarse grained de pos its proba -bly re flect also al ter nate phases of vari ous flood fre quency (cf. Froeh lich et al., 1972, type d). Dur ing clus ter ings of events, es pe cially af ter de for es ta tion, the for ma tion of braided chan nels with gravel bars fol lowed (Ziêtara, 1968; Baumgart- Kotarba, 1980). There fore, in nar row reaches the older fills have been mainly re moved and only the young est ones have sur vived.

Carpathian foot hills (Zone B)

The first or der streams re act to fre quent ex treme rain -falls by ac tivi sa tion of down cut ting and for ma tion of small al lu vial fans at their out lets (ex em pli fied by an al lu vial fan at Pod grodzie, dated to 8.4–7.8 14C ka BP; cf. Niedzia³kow- ska et al., 1977). In the catch ments of the or der of 5–20 km2, grad ual ag gra da tion in gul lies cut in the late Pleis to cene sedi ments is ob served (type b in Fig. 5). Af ter de for es -ta tion in the last mil len nia, ver ti cal ag gra da tion in over bank

DI VER SITY OF FLU VIAL SYSTEM

197

Fig. 4. Lead ing types of floods in var i ous size catch ments of main land scape re gions in the Vistula River ba sin. Types of floods: 1 – downpour, 2 – con tin u ous rain, 3 – rainy sea son, 4 – allochthonous flood, 5 – snowmelt, 6 – sea storm

(6)

fa cies pre vails (cf. Ku ku lak, 2003). In the larger river val leys pass ing the foot hill zone, 2–3 cuts and fills may be rec og nised, be ing con nected with phases of higher flood fre -quency (Wójcik, 1987; Kalicki, in: Starkel et al., 1999; types c and d). The number of par al lel fills in creases in the root zone of al lu vial fans of large Car pa thian riv ers at the mar gin of the foot hills, where these fills build 3–4 ter race steps (Starkel ed., 1982).

Subcarpathian Bas ins (Zone C)

In this land scape zone, the trans flu ent Car pa thian riv ers domi nate. De pend ing on the catch ment size and fluc tua -tions in the sedi ment load, dis tinct cut- and- fill se quences and chan nel avul sions are re flected in ex ten sive al lu vial fans (type d in Fig. 5). These changes are well docu mented not only in the trunk Vis tula val ley, but also in the Wis³oka, Wis³ok, San (Starkel, 1960, 1995; Al ex androwicz et al., 1981) and Raba (Gêbica, 1995) river val leys. On the con -trary, at the out lets of smaller riv ers (of catch ments rang ing from tens to sev eral hun dred square kilo me tres) ag gra da tion does pre vail (type c). The flood phases are re flected there in fa cies di ver sity and grain size changes (the up per most Vis -tula River – Niedzia³kowska et al., 1985; Wielopolka River – Starkel et al., 1999). At some dis tance from the moun tain front, the river gra di ent de clines to 0.25–0.30‰, and me an der ing pa laeo chan nels of vari ous size re flect well the al ter nate phases with vari ous flood fre quency dur ing the Holo -cene (Vis tula River val ley – Kalicki, 1991; Starkel et al., 1991, 1996; San River val ley – Szu mañski, 1982).

South-Pol ish Up lands (Zone D)

Most of up land river val leys (ex clud ing sev eral kar stic can yons) have a steeper gra di ent in their head wa ters only, es pe cially in loess ar eas, which are densely dis sected by gullies. It is litho logi cal fac tor, which de cides that the sus pended load domi nates and the ma te rial avail able for bed -load is miss ing. The down cut ting should domi nate in these por tions, but due to de for es ta tion their val ley floors have been ag graded (Œni eszko, 1995; Starkel ed., 1997). In the mid dlesize catch ments (up to sev eral tens of square kilo -me tres; type b in Fig. 5), dur ing heavy down pours or rapid snow melts, the depo si tion of sus pended load in creases (Fig. 4). In sedi ment sec tions, a dis tinct turn from or ganic and finegrained min eral depo si tion dur ing the early mid Holo -cene to the ag gra da tion of silty- sandy loams con nected with for est clear ance and till age dur ing the Neo holo cene (Nako-nieczny, 1975; Œni eszko, 1987; Ludwikowska- Kêdzia, 2000) is clearly seen. In larger river val leys with me an der -ing chan nels of the up land zone, the floods con nected with ei ther snow melts or rare con tinu ous rains lead to ver ti cal upbuild ing of flood plains (type c). Phases of higher flood fre quency, and even two sepa rate fills may be rec og nised at in di vid ual ex po sures (Nidzica River val ley – Œnieszko, 1987; Wieprz River val ley – Su per son, 1996, type d in Fig. 5).

Cen tral Pol ish Low land (for mer periglacial Zone E)

The small est river val leys un der natu ral vege ta tion were not trans formed by rare down pours and snow melts.

(7)

The swampy soil or peat has been de vel oped there. Later, in the cul ti vated ar eas, the depo si tion of sus pended load fol -lowed (Twardy, 2002). In sev eral catch ments of tens of square kilo me tres in area, two to three al lu vial fills in the low est sec tions have been re corded (Tur kowska, 1988). The larger val ley floors with an as to mos ing chan nels are char ac ter ised by peat bogs and mixed or ganic – min eral ag gra da -tion (mid dle course of the Narew River val ley – Gradzi ñski

et al., 2000). Only along river banks the depo si tion of

grained levee sedi ments had fol lowed. In the larg est river val leys, like Bug or lower Narew and Bzura (type d), with

well de vel oped me an der ing pat tern, two to three gen era -tions of cut- and- fill ter races with dated pa laeo me an ders were rec og nised (Falkowski, 1975; Andrze jewski, 1991).

Ice – mar ginal streamways

The mar ginal stream ways de vel oped in the fore land of mar ginal zones of the last Scan di na vian gla cia tion. These land forms are up to sev eral kilo me tres wide, and they used to carry gla cial melt wa ters to wards the west. Their long reaches, now un der fit, be came drained dur ing the Holo cene by small riv ers, like No teæ or Bie brza (type G in Fig. 5). In

DI VER SITY OF FLU VIAL SYSTEM

199

Fig. 6. Lon gi tu di nal pro file and sche matic transversal pro files of the Vistula River val ley (partly af ter Starkel ed., 1990): 1 – lon gi tu di -nal chan nel pro file, 2 – flu vial ter races, 3 – glacifluvial ter races, 4 – Vistulian ter race with dunes, 5 – Vistulian ter race with loess cover, 6 – chan nel fa cies, 7 – overbank fa cies, 8 – or ganic de pos its, 9 – ma rine de pos its, 10 – bed rock. Ab bre vi a tions: V – Vistulian, LV – late Vistulian, H1–H3 – Ho lo cene mem bers, Res. – wa ter res er voir

(8)

these sec tions, peat bogs de vel oped dur ing the last 10–12 ka, and only along an as to moz ing chan nels depo si tion of over -bank clays with rare in ter ca la tions of silts and sands of chan nel fa cies have taken place (cf. ¯urek, 1984; Ko zar ski, 1993). The fluc tua tions in hy dro logi cal re gime con nected with flood ing dur ing rainy sea sons or snow melts are re flected in the type of peat and in the in ter ca la tions of min -eral mat ter.

Val leys in the zone of young morainic land scape (Zone F)

Af ter the de gla cia tion, in the young land scape of mo -rainic pla teaus and san dur plains with dead- ice de pres sions and sub gla cial chan nels, the for ma tion of a new val ley net -work was ini ti ated (cf. Starkel, 2003b). The creeks drain ing small de pres sions and gul lies cut in the steeper slopes are mod elled dur ing heavy down pours, con tinu ous rains or snow melts, and usu ally join larger river val leys. These val -leys are com posed of al ter nate reaches: the wid en ings in dead ice de pres sions filled by or ganic or min eral de pos its, and trans flu ent lakes with del tas and nar row gaps across the mo rainic pla teaus (types b and c in Fig. 5). Fi nally, such val -leys join the trunk Vis tula River (Kouta niemi & Ra chocki, 1981; B³asz kiewicz, 1998). Only in their lower courses, the ter race sys tems with pre served pa laeo chan nels did de velop (type d), be ing partly con nected with the Late gla cial low er ing of the Vis tu la’s base level (Fig. 6), and partly with fluc -tua tions in hy dro logi cal re gime dur ing the Holo cene (cf. Niewia rowski, 1968; Andrze jewski, 1995). The wet ter phases co in cide mainly with epi sodes of lake level rise (Ralska- Jasiewiczowa et al., 1998).

CHANGE OF RE SPONSE IN THE

LON GI TU DI NAL PRO FILE OF THE

VISTULA RIVER VAL LEY

The Vis tula River and its tribu tar ies cross all land scape zones on their way to the Bal tic Sea. A mixed hy dro logi cal re gime pro tects the con nec tivity be tween val ley reaches dur ing sum mer rainy floods, origi nat ing usu ally every dec ade in the moun tains, and snow melt floods formed in vari -ous parts of the catch ment (Figs 3, 6). There fore, most of floods pass ing the zone of Sub car pa thian ba sins is of al lochthonous ori gin (Fig. 4). The di ver sity of re sponse to hy -dro logi cal changes dur ing the Holo cene is also in flu enced by other fac tors in vari ous seg ments of the lon gi tu di nal pro -file (Starkel ed., 1990; Figs 6, 7). In the up per moun tain zone, be side cli matic fac tor, tec tonic up lift is re spon si ble for chan nel deep en ing in the bed rock, down to 1–3 m. In the Sub car pa thian ba sins, sev eral cuts and fills re flect fluc tua tions in the fre quency of ex treme events with dis tinct ac cel -era tion of over bank ag gra da tion dur ing the last mil len nium. In the val ley wid en ings, chan nel avul sions and cre vasses are also fre quent. The over deep en ing of chan nels of the Car pa thian riv ers dur ing the last cen tury, caused by regu la -tion works and ex ploi ta -tion of gravel and sand from river beds, in flu enced the shift of ag gra da tion zone from the di rect Car pa thian fore land sev eral tens of kilo me tres down -stream, caus ing chan nel braid ing in a gap across the up lands (£ajc zak, 1997).

In this nar row gap across the South- Polish Up lands, ver ti cal ac cre tion in stead of lat eral one pre vails (Po¿aryski & Kalicki, 1995). The re flec tion of hy dro logi cal fea tures is

Fig. 7. Var i ous fac tors in flu enc ing the di verse trends in the late Vistulian and Ho lo cene evo lu tion of the Vistula River val ley. 1 – in ci -sion con trolled by up lift and cli mate, 2 – cli mat i cally con trolled in ci -sion, 3 – al ter nate cuts and fills con trolled by cli mate, 4 – gen eral trend to ag gra va tion, 5 – aggradation con trolled by sea level changes, 6 – downcutting con trolled by low er ing of the base level, 7 – Bal tic Sea, 8 – ice-dam lake, 9 – ice sheet

(9)

ex pressed mainly in lat eral shift of the chan nel, and less in cuts and fills in the mid dle river course in the low lands. Fre -quent buff ers and bar ri ers in the chan nel- flood plain sys tem are re spo si ble for the dis con nec tivity of reaches. Down -stream of the War saw Ba sin, the Late gla cial low er ing of the base level led to for ma tion of a ter race flight (Figs 6, 7; Wiœniewski, 1987). The Vis tula River val ley in its lower course be came deeply in cised in the mo rainic pla teaus due to rapid low er ing of the base level dur ing de gla cia tion. The sub se quent ag gra da tion was con nected in part with a grad -ual sea level rise up to the Lit to rina trans gres sion, and the for ma tion of a delta (Mo jski, 1990).

A com pari son of al lu vial se quences along vari ous sec tions of the Vis tula River val ley shows that, be sides the cli -matic sig nal of wet ter phases, also an an thro po genic sig nal con nected with de for es ta tion has been re corded even in the lower val ley course (Tomc zak, 1982; Starkel ed., 1990). This ten dency has been ob served start ing from the Ro man pe riod (1–2 cent. AD), in di cat ing the con nec tivity of reaches dur ing ex treme floods that origi nated in the up per Vis tula River catch ment and car ried high sedi ment load.

REG U LAR I TIES OF RE SPONSE

TO HO LO CENE CHANGES IN THE

VISTULA RIVER BA SIN

The di ver sity of re sponse to hy dro logi cal changes in river catch ments of vari able size and in dif fer ent land scape zones is closely con nected with the fre quency of pre vail ing flood types of both rain fall and snow melt ori gin (Figs 3, 4). As rec og nised in other hilly ar eas (Har vey, 2002; Fryirs & Bri er ley, 2001) in small catch ments, heavy down pours cause a si mul ta ne ous dis tur bance of equi lib rium of both the slope and chan nel sys tems. This trans for ma tion does not pro ceed too far down stream, be ing re flected in the depo si tion ei ther in chan nel fa cies or (more fre quently) in over -bank one. In larger hilly catch ments, the lead ing role is played by con tinu ous rains, but the si mul ta ne ous re sponse of slopes and val ley bot toms is ob served only when con -tinu ous rains are pre ceded by down pours. In the low land catch ments, very rare pro longed rains or rapid snow melts may cause changes over flood plains.

The trans for ma tion of val ley floors dur ing the Holo cene phases of high flood fre quency had a pul sat ing char ac -ter and pro ceeded in three prin ci pal di rec tions (Fig. 8):

a) Ero sional trend to wards down cut ting is ob served in the moun tain ous up per reaches, be ing ex pressed in sev eral ero sional steps, and in the shift ing of buff ers and bar ri ers ex ist ing in the chan nels and flood plains.

b) Ver ti cal ag gra da tional trend is char ac ter is tic for low- gradient riv ers of both the up land and low land zones (D and E zones), car ry ing high sus pended load, es pe cially af ter de for es ta tion. The cli matic varia tions are re flected there in vari ous rates of depo si tion, changes of grain size, and by breaks of depo si tion marked by pa laeo sols or ganic ho ri -zons.

c) Par al lel cuts and fills are cre ated mainly by me an der ing riv ers dur ing the clus ters of floods, lead ing to straight -en ing, wid -en ing and braid ing of river chan nels and th-en, fre quently, to avul sions (Starkel, 1983). The most dis tinct changes of this type dur ing the Holo cene were rec og nised in the moun tain fore land, where the con nec tivity of neigh -bour ing val ley reaches is re vived dur ing ex treme floods, when both the in ci sion and depo si tion oc curs.

Pro gress ing down stream in the lon gi tu di nal pro file of the Vis tula River, we ob serve a nor mal, grad ual shift from ero sional (a) to de po si tional (b) model (Schumm, 1977). In the lower course, this is dis turbed by low er ing of the base level be fore the Holo cene (Fig. 6). In the tran si tional mid dle course, the hy dro logi cal changes are ex pressed in the al ter -na tion of phases with domi -nant ei ther ero sion or depo si tion. In the case of the Vis tula River val ley, this zone has been shifted up stream to the Sub car pa thian ba sin, marked by the great est fluc tua tions in river dis charge and sedi ment load due to rapid de cline in the river gra di ent, as well as due to in fil tra tion of wa ter in the un der ly ing al lu via, caus ing a drop in the dis charge.

In the Holo cene al lu vial rec ords of the Vis tula River catch ment, an in com plete se quence of changes has been rec og nised in par ticu lar val ley reaches espe cially in greater river val leys, that show a ten dency to the lat eral shift of chan nels, and where sin gle sedi ment mem bers have been eroded and are miss ing. There fore, it is nec es sary to study not only the main river val ley, but also the tribu tary val leys of vari ous size, both in trans ver sal sec tions across the val ley

DI VER SITY OF FLU VIAL SYSTEM

201

Fig. 8. Main di rec tions of val ley floor evo lu tion re flect ing rhyth mic hy dro log i cal changes dur ing the Ho lo cene: a – ten dency to downcutting, b – ten dency to aggradation, c – cutandfill se -quences; 1 – chan nel fa cies, 2 – coarser overbank de pos its, 3 – finer overbank de pos its, 4 – fos sil soil, 5 – or ganic de pos its

(10)

floor and in lon gi tu di nal pro files. It is also rec om mended to com pare flu vial rec ords with other fa cies and en vi ron ments, which pre served more un dis turbed and com plete se quences, namely: la cus trine sedi ments, peat bogs, cal care ous tu fas, land slides, etc., at those lo cali ties where the in ter fin ger ing with al lu via was rec og nised, as well as out side of them (Fig. 9; Ralska- Jasiewiczowa & Starkel, 1988). There fore, so fruit ful were in de pend ent, par al lel stud ies car ried out un der the IGCP Pro ject No. 158 in the 1980s, cov er ing both flu -vial and lake and bog en vi ron ments (Starkel ed., 1990; Ralska- Jasiewiczowa & Lata³owa, 1996; RalskaJasiewiczowa et al., 1998). The main phases show ing high fre -quency of flu vial ex treme events, rec og nised in the Vis tula River val ley, have been iden ti fied in other fa cies of con ti -nen tal de pos its (Starkel et al., 1996; Starkel, 2003 a, b).

Ac knowl edge ments

I would like to ex press my cor dial thanks to Prof. Ken Gregory for his valu able com ments and to Prof. Witold Zuchie-wicz for cor rec ting my Eng lish manu script, and es pe cially to Prof. Ger ald Nanson for his crit i cal re marks.

REF ER ENCES

Alexandrowicz, S. W., Klimek, K., Kowalkowski, A., Mama-kowa, K., Niedzia³kowska, E., Pazdur, M. & Starkel, L., 1981. The evo lu tion of the Wis³oka val ley near Dêbica dur ing the Lateglacial and Ho lo cene Folia Quaternaria, 53: 1–91. [cd4]

Fig. 9. Hy dro log i cal changes dur ing the Ho lo cene, re flected in al lu vial se quences and other en vi ron men tal changes in Po land (with a com par i son to Al pine gla ciers) (af ter Starkel ed., 1990; mod i fied): 1 – ad vances of Al pine gla ciers (Patzelt, 1977 and oth ers), 2 – abrupt changes in veg e ta tion (Ralska-Jasiewiczowa ed., 1989), 3 – phases of higher wa ter level (af ter Ralska-Jasiewiczowa ed., 1989 and oth ers), 4 – cal car e ous tufas in spring peat bogs (Dobrowolski, 1998), 5 – rate of sta lag mite growth (Pazdur et al., 1999), 6 – phases of high flood fre quency (Starkel et al., 1991, 1999; Kalicki, 1991), 7 – phases of high land slide ac tiv ity in the Carpathians (Margielewski, 2000)

(11)

Andrzejewski, L., 1991. The course of flu vial pro cesses in the lower Bzura river val ley dur ing the last 15 000 years. Geo -graph ical Stud ies, Spe cial Is sue, 6: 147–154. [Ed4]

Andrzejewski, L., 1995, Gen e sis of the flu vial sys tem of the Lower Vistula river based on the se lected side val leys. Geo -graph ical Studies, Spe cial Is sue, 8: 139–156. [Fc 1–4] Baumgart-Kotarba, M., 1983. Chan nel and ter race for ma tion due

to dif fer en tial tec tonic move ments (with the east ern Podhale Ba sin as ex am ple). (In Pol ish, Eng lish sum mary). Prace Geo- graficzne IGiPZ PAN, 145: 1–145. [Ac2]

B³aszkiewicz, M., 1998. The Wierzyca, its gen e sis and de vel op ment in late Pleis to cene and early Ho lo cene. (In Pol ish, Eng -lish sum mary). Dokumentacja Geograficzna, 10. [Fb8, Fc 6–7]

Ciepielowski, A., 1970. The high est dis charges dur ing heavy rain -falls. (In Pol ish, Eng lish sum mary). Przegl¹d Geofizycz- ny, 15: 179–193.

Dobrowolski, R., 1998. Struc tural con di tions of re cent karst re lief de vel op ment in the mid dle Wieprz and Bug interfluve. (In Pol -ish, Eng lish sum mary). Wyd. UMCS, Lublin: 1–88.

Falkowski, E., 1975. Vari abil ity of chan nel pro cesses of low land rivers in Po land and changes of the val ley floors dur ing the Ho lo cene. Biuletyn Geologiczny Uniwersytetu Warszaw-skiego, 19: 45–78. [Ed5]

Froehlich, W., 1982. The mech a nism of flu vial trans port and waste sup ply into stream chan nel in a moun tain ous flysch catch ment. (In Pol ish, Eng lish sum mary). Prace Geogra-ficzne IGiPZ PAN, 143.

Froehlich, W., Klimek, K. & Starkel, L., 1972. The Ho lo cene for -ma tion of the Dunajec val ley floor within the Beskid S¹decki in the light of flood trans port and sed i men ta tion. Studia Geo-morphologica Carpatho-Balcanica, 6: 63–83. [Ad1] Fryirs, K. & Brierley, G. J., 2001. Vari abil ity in sed i ment de liv ery

and stor age along river courses in Bega catch ment, NSW Aus tra lia: implication of geomorphic river re cov ery. Geo -mor phol ogy, 38: 237–265.

Gêbica, P., 1995. Evo lu tion of the Vistula val ley and al lu vial fans of the Raba and Uszwica rivers be tween Uœcie Solne and Szczurowa in the Vistulian and Ho lo cene. Geo graph ical Stu-dies, Spe cial Is sue, 8: 31–50. [Cc2, Vd2]

Gradziñski, R., Bary³a, J., Danowski, W., Doktor, M., Gmur, D., Kêdzior, A., Gradziñski, M., Soja, R., Zieliñski, T. & ¯urek, S., 2000. Anastomosing sys tem of the up per Narew river, NE Po land. Annales Societatis Geologorum Poloniae, 70: 249– 259. [Ed6]

Grela, J., S³ota, H. & Zieliñski, J., 1999. Dorzecze Wis³y, mono-grafia powodzi, lipiec 1997. (In Pol ish). Instytut Meteorologii i Gospodarki Wodnej, Warszawa.

Harvey, A. M., 2002. Ef fec tive timescale of cou pling within flu -vial sys tems. Geo mor phol ogy, 44: 175–200.

Kalicki, T., 1991. The evo lu tion of the Vistula river val ley be tween Cra cow and Niepo³omice in Late Vistulian and Ho lo -cene times. Geo graph ical Stud ies, Spe cial Is sue, 6: 11–37. [Vd4, Cb1]

Knox, J. C., 1995. Flu vial sys tems since 20 000 years BP. In: Greg ory, K. J., Starkel, L. & Baker, V. R (eds), Global Palaeohydrology. J. Wiley, Chichester: 87–108.

Koutaniemi, L. & Rachocki, A., 1981. Palaeohydrology and land -scape de vel op ment in the mid dle course of the Radunia ba sin, North Po land. Fennia, 159 (2): 335–342. [Fc9]

Kozarski, S., 1993. Late Vistulian deglaciation and the ex pan sion of the periglacial zone in NW Po land. Geologie en Mijnbouw, 72: 143–157. [Gd3]

Kr¹piec, M., 1992. Late Ho lo cene tree-ring chro nol ogy of South and Cen tral Po land (In Pol ish, Eng lish sum mary). Kwart. AGH, Geologia, 18 (3): 37–119.

Kr¹piec, M., 1998. Oak dendrochronology of the Neoholocene in Po land. Folia Quaternaria, 69: 5–134.

Kukulak, J., 2003. Im pact of mediaeval ag ri cul ture on the al lu -vium in the San river head wa ters (Pol ish East ern Carpa-thians). Catena, 51: 255–266. [Ab6]

Ludwikowska-Kêdzia, M., 2000. Ewolucja œrodkowego odcinka doliny rzeki Belnianki w póŸnym glacjale i holocenie. (In Pol -ish). Wyd. Akademickie Di a log, Warszawa, 1–181. [Db4, Dc5]

£ajczak, A., 1990. Sed i ment yield within up per Vistula catch ment. In: Starkel, L. (ed.), Evo lu tion of the Vistula river val ley dur ing the last 15 000 years, part III. Geo graph ical Stud ies, Spe -cial Is sue, 5: 90–95.

£ajczak, A., 1997. Anthropogenic changes in the sus pended load trans por ta tion and sed i men ta tion rates of the River Vistula, Po land. Geographia Polonica, 68: 7–30.

Margielewski, W., 2000. Land slide phases in the Pol ish Outer Carpathians, In: Bromhead, E. E., Dixon, N. & Ib sen, M. L. (eds), Land slides in Re search, The ory and Prac tice 2. T. Tel -ford Publs., Lon don: 1010–1016.

Mojski, J. E., 1990. The Vistula river delta. In: Starkel, L. (ed.), Evo lu tion of the Vistula river val ley dur ing the last 15000 years. Geo graph ical Stud ies, Spe cial Is sue, 5: 126–141. [Vd13, Gc4]

Nakonieczny, S., 1975. The de vel op ment of river val leys of the Lublin up land dur ing the Ho lo cene. Biuletyn Geologiczny Uniwersytetu Warszawskiego, 19: 219–222. [Db10, Dc8, Dd11]

Niedzia³kowska, E., Gilot, E., Pazdur, M. & Szczepanek, K., 1985. The evo lu tion of the Up per Vistula val ley in the re gion of Drogomyœl in the up per Vistulian and Ho lo cene. Folia Quaternaria, 56: 101–132. [Vc1].

Niedzia³kowska, E., Skubisz, A. & Starkel, L., 1977. Li thol ogy of the Eo- and Mesoholocene al lu via in Podgrodzie upon Wis³oka river. Studia Geomorphologica Carpatho-Balca-nica, 11: 89–100.

Niewiarowski, W., 1968. Geo mor phol ogy and evo lu tion of the ice mar ginal streamway of Drwêca river val ley. (In Pol ish, Eng -lish sum mary). Studia Soc. Sci. Toruniensis, 6, 6, Sec. C, [Fd5].

Patzelt, G., 1977. Der zeitlische Ablauf und das Ausmass post-glazialer Klimaschwankungen in den Alpen. In: Frenzel, B. (ed.), Dendrochronologie und postglaziale Klimaschwan-kungen in Europa. Erdwissenschaftliche Forschung, 13: 249– 259.

Pazdur, A, Pazdur, M. F. & Pawlyta, J., 1995. Paleoclimatic im pli ca tion of ra dio car bon dat ing of speleothems from the Cra -cow-Wieluñ Up land, South ern Po land. Ra dio car bon, 37: 103–110.

Po¿aryski, W. & Kalicki, T., 1995. Evo lu tion of the gap sec tion of the Vistula val ley in the Late Gla cial and Ho lo cene. Geo -graph ical Stud ies, Spe cial Is sue, 8: 111–137. [Vd5]

RalskaJasiewiczowa, M. (ed.), 1989. En vi ron men tal changes re -corded in lakes and mires in Po land dur ing the last 13 000 years, III. Acta Palaeobotanica, 29.

Ralska-Jasiewiczowa, M., Goslar, T., Madeyska, T. & Starkel, L. (eds), 1998. Lake Goœci¹¿, Cen tral Po land. A mono graphic study. Szafer In sti tute of Bot any, Pol ish Acad emy of Sci -ences, Kraków.

Ralska-Jasiewiczowa, M. & Lata³owa, M., 1996. Po land. In:

(12)

Berglund, B. E., Birks, H. J., Ralska-Jasiewiczowa, M. & Wright, H. E. (eds), Palaeohydrological events dur ing the last 15 000 years., J. Wiley, Chichester: 403–472.

RalskaJasiewiczowa, M. & Starkel, L., 1988. Re cord of the hy -dro log i cal changes dur ing the Ho lo cene in the lake, mire and flu vial de pos its of Po land. Folia Quaternaria, 57: 91–127. [Ac5, Bc3]

Schirmer, W., 1995. Val ley bot toms in the Late Qua ter nary. In: Hagedorn, J. (ed.), Late Qua ter nary and pres ent-day flu vial pro cesses in Cen tral Eu rope. Zeitschrift für Geomorphologie, Suppl.-Bd., 100: 27–51.

Schumm, S., 1977. The flu vial sys tem. Wiley-Interscience Publs., New York, 338 pp.

Soja, R. & Mrozek, R., 1990. Hy dro log i cal char ac ter is tics of the Vistula river. In: Starkel, L. (ed.), Evo lu tion of the Vistula river val ley dur ing the last 15 000 years. Geo graph ical Stud -ies, Spe cial Is sue, 5: 45–62.

Stachy, J., Fal, B., Dobrzyñska, I. & Ho³dakowska, J., 1996. Floods of Pol ish rivers in the pe riod 1951–1960. (In Pol ish, Eng lish sum mary). Materia³y Badawcze IMGW, seria Hy dro- logia i Oceanologia, 20: 1–80.

Starkel, L., 1960. The de vel op ment of the flysch Carpathians re lief dur ing the Ho lo cene (In Pol ish, Eng lish sum mary). Prace Geograficzne IG PAN, 22: 1–239, [Bd4, Cc5, Cd6, Cd7] Starkel, L. (ed.), 1982. Evo lu tion of the Vistula river val ley dur ing

the last 15 000 years, part I. Geo graph ical Stud ies, Spe cial Is -sue, 1.

Starkel, L., 1983. The re flec tion of hy dro log i cal changes in the flu vial en vi ron ment of the tem per ate zone dur ing the last 15 000 years. In: Greg ory, K. J. (ed.), Back ground to Palaeo-hy drol ogy. J. Wiley, Chichester: 213–237.

Starkel, L. (ed.), 1987. Evo lu tion of the Vistula river val ley dur ing the last 15 000 years, part II. Geo graph ical Stud ies, Spe cial Is sue, 4.

Starkel, L. (ed.), 1990. Evo lu tion of the Vistula river val ley dur ing the last 15 000 years, part III. Geo graph ical Stud ies, Spe cial Is sue, 5.

Starkel, L. (ed.), 1991. Evo lu tion of the Vistula river val ley dur ing the last 15 000 years, part IV. Geo graph ical Stud ies, Spe cial Is sue, 6.

Starkel, L. (ed.), 1995. Evo lu tion of the Vistula river val ley dur ing the last 15 000 years, part V. Geo graph ical Stud ies, Spe cial Is sue, 8.

Starkel, L., 1995. New data on the late Vistulian and Ho lo cene evo lu tion of the Wis³oka val ley near Dêbica. Geo graph ical Stud ies, Spe cial Is sue, 8: 73–90. [Cd5]

Starkel, L. (ed.), 1996. Evo lu tion of the Vistula river val ley dur ing the last 15 000 years, part VI. Geo graph ical Stud ies, Spe cial Is sue, 9.

Starkel, L. (ed.), 1997. Role of heavy down pours in the evo lu tion of the Miechów Up land (with down pour of 15 Sep tem ber 1995 as the ex am ple). (In Pol ish, Eng lish sum mary). Doku-mentacja Geograficzna, 8: 1–108.

Starkel L., 1998. Fre quency of ex treme hydroclimatically-in duced events as a key to un der stand ing en vi ron men tal changes in the Ho lo cene. In: Issar, A. S. & Brown, N. (eds), Wa ter, En vi -ron ment and So ci ety in Time of Cli ma tic Changes. Kluwer Ac a demic Press, Dordrecht: 273–288.

Starkel, L., 2003a. Short-term hy dro log i cal changes. In: Greg ory, K. J. & Benito, G. (eds), Paleohydrology, Un der stand ing Global Change, 20: J. Wiley, Chichester: 337–356.

Starkel, L., 2003b. Palaeohydrology of Cen tral Eu rope. In: Gregory, K. J. & Benito, G. (eds), Palaeohydrology, Un der stand

-ing Global Change 7. J. Wiley, Chichester: 77–104. Starkel, L., 2005. Anthropogenic soil ero sion since the Neo lithic

in Po land. Zeitschrift für Geomorphologie, Suppl.-Bd., 139: 189–201.

Starkel, L., Gêbica, P., Kalicki, T., Ludwikowska, M. & Niedzia³-kowska, E., 1999. Chronostratigraphy of flu vial sed i ments and forms in South ern Po land. (In Pol ish, Eng lish sum mary). In: Pazdur, A., Bluszcz, A., Stankowski, W. & Starkel, L. (eds.), Geochronologia górnego czwartorzêdu Polski. WIND-Wojewoda, Wroc³aw: 133–155. [Bc5, Cc5, Dc5] Starkel, L., Gêbica, P., Niedzia³kowska, E. & Podgórska-Tkacz,

A., 1991. Evo lu tion of both the Vistula floodplain and late-gla cial – early Ho lo cene paleochannel sys tems in the Grobla for est (Sandomierz Ba sin). Geo graph ical Stud ies, Spe cial Is -sue, 6: 87–99. [Vd3]

Starkel, L. & Grela, J. (eds), 1998. PowódŸ w dorzeczu górnej Wis³y w lipcu 1997 roku. (In Pol ish). Konferencja naukowa, Kraków, 7-9 maja 1998 r. Wydawnictwo Oddzia³u Polskiej Akademii Nauk, Kraków.

Starkel, L., Kalicki, T., Kr¹piec M., Soja, R., Gêbica, P. & Czy-¿owska, E., 1996. Hy dro log i cal changes of val ley floors in the up per Vistula ba sin dur ing Late Gla cial and Ho lo cene. Geo graph ical Stud ies, Spe cial Is sue, 9: 7–128. [Vd3] Starkel, L., Soja, R. & Michczyñska, D. J., 2006. Past hy dro log i cal

events re flected in Ho lo cene his tory of Pol ish rivers. Catena, 66: 24–33.

Superson, J., 1996. De vel op ment of the flu vial sys tem of the Wieprz river up land part drain age ba sin in the Vistulian. (In Pol ish, Eng lish sum mary). Wydzia³ Biologii i Nauk o Ziemi UMCS, Lublin, Rozprawy habilitacyjne, 53: 1–280. [Dd9] Szumañski, A., 1982. The evo lu tion of the lower San river val ley

dur ing the late gla cial and the Ho lo cene. Geo graph ical Stud -ies, Spe cial Is sue, 1: 57–78. [Cd9]

Œnieszko, Z., 1987. The late Vistulian and Ho lo cene flu vial de pos -its of the mid dle Nidzica river in the area of Dzia³oszyce. In: Starkel, L. (ed.), Evo lu tion of the Vistula river val ley dur ing the last 15 000 years, part II. Geo graph ical Stud ies, Spe cial Is sue, 4: 87–94. [Dc3]

Œnieszko, Z., 1995. Evo lu tion of loess ar eas of the Pol ish Up lands in last 15 000 years (in Pol ish, Eng lish sum mary). Prace Naukowe Uniw. Œl¹skiego, 1496: 7–122. [Db2, Db6, Da7] Tomczak, A., 1982. The evo lu tion of the Vistula river val ley be

tween Toruñ and Solec Kujawski in the Lateglacial and Ho lo -cene. Geo graph ical Stud ies, Spe cial Is sue, 1: 109–129. [Vd10]

Turkowska, K., 1988. Evo lu tion des vallées fluviatiles sur le Pla -teau de £ódŸ au cours du quaternaire tardif. (In Pol ish, French sum mary). Acta Geographica Lodziensia, 57: 1–157. [Ec3] Twardy, J., 2002. Stages of the Ho lo cene evo lu tion of the dry val

leys in the £ódŸ Pla teau based on sed i ment anal y sis. (In Pol -ish, Eng lish sum mary). Acta Universitatis N. Copernici, Geo- grafia, 32: 127–137. [Ea1]

Wiœniewski, E., 1987. The evo lu tion of the Vistula river val ley be -tween War saw and P³ock bas ins dur ing the last 15 000 years. Geo graph ical Stud ies, Spe cial Is sue, 4: 171–187. [Vd9] Wójcik, A., 1987. Lateglacial lac us trine sed i ments from Roztoki

and Tarnowiec near Jas³o. Acta Palaeobotanica, 27 (1): 27– 41. [Bc2]

Wójcik, A., 1997. Late gla cial de pos its in the Ropa val ley floor in Wysowa, Beskid Niski Mts., Carpathians. Studia Geomor-phologica Carpatho-Balcanica, 31: 101–109. [Ab3] Ziêtara, T., 1968. Part played by tor ren tial rains and floods on the

(13)

-mary). Prace Geograficzne IG PAN, 60: 1–116.

Zuchiewicz, W., 1987. Evo lu tion of the Beskid Niski Mts. and mor pho tec tonics of the Pol ish Carpathians. Zeszyty Naukowe AGH, Geologia, 13 (3-4): 3–167. [Ac4]

¯urek, S., 1984. Re lief, geo log i cal struc ture and hydrography of the Biebrza ice-mar ginal val ley. Pol ish Eco log i cal Stud ies, 10 (3-4): 239–251. [Gd1–2]

Streszczenie

Z£O¯ONOŒÆ REAGOWANIA SYSTEMU FLUWIALNEGO NA ZMIANY HYDROLOGICZNE

W HOLOCENIE (NA PRZYK£ADZIE DORZECZA WIS£Y)

Leszek Starkel

Zmiany hydrologiczne w holocenie wyra¿one s¹ w ró¿nej czêstotliwoœci powodzi i zapisane w osadach i formach

fluwial-nych. Ró¿na reakcja systemu fluwialnego zale¿y od re¿imu opadu, odp³ywu i transportu rumowiska, które wi¹¿¹ siê z typem krajo-brazu, wielkoœci¹ zlewni, po³o¿eniem w profilu pod³u¿nym rzeki, jak i narastaj¹c¹ ingerencj¹ cz³owieka. Szczegó³owe badania dolin dorzecza Wis³y w ostatnich dziesiêcioleciach stanowi³y podstawê okreœlenia, jak ró¿ne sekwencje osadów rzecznych odzwierciedla- j¹ zmiany paleohydrologiczne.

W ró¿nych typach rzeŸby i zlewniach ró¿nej wielkoœci istotn¹ rolê odgrywaj¹ lokalne ulewy, albo opady rozlewne lub wezbrania roztopowe. Wyró¿niono trzy zasadnicze modele przekszta³ceñ den dolin w holocenie: pog³êbiania erozyjnego w zlewniach górs-kich, agradacyjny w dolinach o ma³ym spadku i przejœciowy, zapisany w szeregu rozciêæ i w³o¿eñ, odzwierciedlaj¹cych fazy o ró¿nej czêstotliwoœci wezbrañ. Ten ostatni winien charakteryzo-waæ œrodkowe biegi rzek, ale jest najlepiej rozwiniêty na bezpo-œrednim przedpolu Karpat o najwiêkszych wahaniach przep³ywów i transportu rumowiska. Czêste wystêpowanie wielu przerw w se-kwencjach aluwialnych wymaga spojrzenia ca³oœciowego na zmiany hydrologiczne i korelacji œrodowisk fluwialnych z za-pisem zmian w ewolucji szaty roœlinnej, osadach jeziornych, stokowych i innych.

Cytaty

Powiązane dokumenty

Now, for a real number r ­ 2 primitive unitary totient r-abundent and primitive unitary totient r-deficient numbers have been defined as-.. A positive integer n is called

Structure of fish communities of five small water reservoirs located near the Chodelka river was investigated during the years 2002, 2008 and 2016.. In the analyzed water bodies seven

(2013) assessed morpho- logical changes of the Ganges river using satellite images within Bangladesh, results indicated that both the left and the right banks of Ganges have

On the basis of the Scheffe’s test of multiple comparisons for the image gathered on 13 June 2000 (Table 9) it was assumed that the land surface temperature at for-

Using the top row as ex- ample again, the low weight of the glutamic acid feature (column E) indicates that a substitu- tion from aspartic acid to glutamic acid is relatively

The de gree of di ver sity of hydrogeochemical pa ram e ters in lakes is con sid er able and de pends (to vary ing de grees) on var i ous fac tors, e.g.: hy dro dy namic type of

According to the present investigation, the vast deep depressions near Surai, infilled with lake and marsh deposits (lake clay, gyttja, muds and peats; the peatbog

In the situation of increased demand pressure and growing prices, it becomes particularly important for the country’s agricultural policy to facilitate access to