• Nie Znaleziono Wyników

Evaluation of the Probability Content as an Infinite Linear Combination of Wishart Distributions

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of the Probability Content as an Infinite Linear Combination of Wishart Distributions"

Copied!
8
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 152, 2000

H e le n a T. J e le n k o w s k a *

E V A L U A T IO N O F T H E P R O B A B IL IT Y C O N T E N T A S AN IN F IN IT E L IN E A R C O M B IN A T IO N O F W IS IIA R T D IS T R IB U T IO N S

Abstract. The distribution function of the homogeneous generalized quadratic form is represented as an infinite linear combination of the central Wishart distribution functions. The Probability content o f the ellipsoid is expressed as an infinite linear combination of the probability contents of spheres, under a central spherical multivariate normal distributions with unit variance, covariance matrix.

1. INTRODUCTION

Let Xj, x 2, ..., x„ be p-dim ensional ra n d o m vectors. T h en a generalized hom ogeneous q u a d ra tic form is defined as

П

£ w ; = X ' AX, (1)

i = l

w here X' is p x n ran d o m m atrix w hose colum ns are Xj, x„ an d A is a real diagonal n x n m atrix o f co n stan ts w hose d iagon al elem ents are d enoted by a u an. We shall assum e fo r convenience, w ith o u t loss o f generality, th a t 0 < a t ^ a 2 ^ . . . ^ an. W hen p = 1, X'AX reduces to a single

n hom og eneous q u a d ra tic form and it is equal to £ atx f .

i= i

F o r such single hom ogeneous an d n on-hom o gen eo us q u a d ra tic fu n ction s o f n orm al variables R u b e n (1962) expressed th e d istrib u tio n fu n ctio n as an infinite linear co m b in atio n o f chi-square d istrib u tio n fu n ctio n s with a rb itra ry scale param eter. T his result was used by R a j a g o p a l a n and

(2)

B r o e m e l i n g (1983) to find as approxim ations to the posterior distributions o f variances co m p o n en ts in u nivariate m ixed linear m odel. I о solve the abo ve problem in m u ltiv ariate case (see J e l e n k o w s k a , P r e s s , 1995) we need the results o f this paper.

In this p ap e r we shall find th e distrib u tio n fun ction o f generalized hom og eneous non-negative q u a d ra tic form o f a finite nu m b er o f correlated norm al ran d o m variables. T his d istrib u tio n will be expressed as an infinite linear co m b in atio n o f W ishart d istrib u tio n functions with a rb itra ry scale param eter.

2. DEFINITIONS AND PRELIMINARY LEMMAS

L et M be a m a trix w hose row s are p'u ц'„ w here p t = E (x,),

Л x p p X 1

i = l , ..., n and cov(Xj, Xj) = £ . A ssum e

x, ~ N ( / / „ £ ) , i = 1, n, l > 0 and sym m etric (2) p x 1

T hen

X ~ N ( M , I „ ® L ) . n X p

T h e d istrib u tio n (2) m ay be standardized by th e tran sfo rm atio n u, = E 2( x i - n i). T h a t is u , ~ N (0, I p) a nd U ~ N (0, I „ ® l p). Let K = {U: U 'A U ^ T } , T > 0, p x p , sym m etric m atrix and

(3)

I f U and T arc sym m etric m atrices, T > U m eans th a t T — U is n on n eg ativ e definite. O n replacing U = Л 2Z in (3), we o btain

H K;A(T ) = (2 л )~51Л I Í c x p i - ^ tr Z 'A - 1Z JdZ (4)

w here

R* = {Z: Z 'Z < T } .

Let Fn( ) d en o te the non sin g u lar p-dim cnsional W ish art d istrib u tio n w ith scale m atrix Ip and n degrees o f freedom , p < n , i.e.

J = i J

W ) = P

so th at

F J J ) = y _1X |T |^ " " ‘,cxp f - 2trT ) ííT’ T > 0 (5) T

an d F„(T) = 0 otherw ise, w here у is a num erical co n stan t defined as "P tíJ Ľ i) P / « 4 - 1 _ A

-

22 * д р Н

-T h en

F J J = T ) (6)

w here I is the un it n x n dim ensional m atrix.

П

W e shall show , th a t th e d istrib u tio n fu n c tio n o f £ fljUjUj m a y be i= i

expressed as a linear com b in atio n o f infinitely m an y W ish art d istrib u tio n functio ns, i.e.

Hn,A ( T = 1 с Д +2/ - т ) (7)

)=0 \a>

w here Cj = Cj„:A(cu), and со is an a rb itra ry positive c o n sta n t. G e n eratin g fu nctions for the coefficients Cj will be derived.

(4)

N ow we shall define the norm o f m atrix U as

IUI! = I Ui«'i

/ = i (S)

Let Ľ = ( I, , I„ ) be a m atrix fo r th a t Ľ L = I (o rth o g o n a l m atrix ). p x n p x l p x l

I f L is a uniform ly d istrib u ted on Q, E<D(L) will be w ritten as M - o p e ra to r 00

Af<D(L). I f £<1>j(L) converges uniform ly on П, we note th at j =о

M £ Ф/ L ) = £ М Ф/ L ) (9)

j=0 J =0

N ext we ad o p t the convention th a t МФ( Ь) will be w ritten as М Ф and ЕФ(1!) as ЕФ. T h u s the arg u m en t o f Ф will be L if the expectation o p e ra to r is M and U if the expectation o p e ra to r is E. W e shall also define th a t L is induced by U if L = U ||U||_1 fo r U ^ O , we say th a t U has centered spherical d istrib u tio n if the d istrib u tio n o f P U is the sam e as th a t o f U for every o rth o g o n a l m a trix P . Im m ediately from th e ab o v e d e fin itio n it follow s th at: I f U has a centered spherical d istrib u tio n and L is induced by U, then L and || U || are independent. L is uniform ly distrib u ted o n Q.

Lem m a 1. I f U has a centered spherical d istrib u tio n , L is induced by U, Ф (и ) is a generalized hom ogeneous q u ad ratic form o f degree к and £ II Ф и II < o o , then

£ Ф (и ) = £ D U II кМФ( Ь) (10)

P roof. U sing prop erty o f hom ogeneous fun ctio n an d independence o f L and IIUII we have

Е Ф (и ) = Е[Ф( IIU II L)] = E[ IIU II кФ(Ц] = E[ || U || к]ЕФ(Ь).

ЕФ(Е) can be replaced by МФ(1.) since L is uniform ly distrib u ted on Q. I t yields the result.

L em m a 2. I f th e m a trix U: n x p has a m u ltiv a ria te s ta n d a rd iz e d spherical n o rm al d istrib u tio n then

(5)

M Ф =

- I P f ] ■) Proof. T h e density function o f U is p(U) = (2k) 2 ex p j - ^ t r U U >. Let v = £ u iU; 1=1 T hen where £ | | U | | ‘ = £ | V | ‘ = C J | V | 5 (‘ +"~p" 1)e x p ( - J t r v W k>o (. 2 j eLizA) p / „ ± i _ r\ •

n r ( 5 ± H }

Since f IVI2(" + * - ' - 1) f К г г л ж/ i*ĽA-) Л . / n + k + l - r J IV|2 exp< — trVdV = 2 2 n “ Г [ г --- ^---v>o r = i \ 2 we o b tain 2*‘ 1 1 r ( í ± A ± J j l T ) E |U ||‘ --- Л

(6)

3. MAIN RESULTS

In this section we prove the follow ing fu n dam ental theorem :

Theorem 1. T h e d istrib u tio n function o f the h om ogeneous generalized q u a d ra tic form (3) is represented as an infinite linear co m b in atio n o f central W ish art d istrib u tio n functions, i.e.

where at is an a rb itra ry positive co n stan t,

2 +J - 1

" 2 IAI 2E [ - ( t r Q ) ']

(13)

and

P roof. Let

Z = A2 X and Z = IIZ IIL.

(7)

D e n o tin g by

Q = Q(L) = L ' (a- 1 - ^ L (15)

we can expand exp

j

^

trQ || Z ||

2|

as a pow er series in ||Z ||, i.e.

exp { - 1 t r ö IIZ II21 = £ ( - 1)"( - t r Q Ý II Z m/m! (16)

I Z J m = 0

U sing (9) we can write

M ^ex p ^ - 2 t r ß ^ IIZ II2 J = £ ( - 1 )"M[ - ( t r o f i ] IIZ II “ /m!

By sym m etry fo r odd m

M ^ - ( t r Q ) i J = 0 m = 1, 3, ... an d (16) reduces to

M ^ exp ( - ^ t r ö ^ ) | | Z | | 2J ^ £ M [ - (trfiV ] IIZ II2J/(2j')! (17) N ext, using L em m a 2 wc obtain

(

18

)

P u ttin g (18) in (14)

©

h u t ) - [ Ä ^ r ( ? ) ň r ( ^ ) ] - i x f v L Д

(8)

T h e result follows by noting th at

r n i z r - ' - =xP { - l , r > Z ' Z ^ = Í J * ^ ^ . r ( ^ > ) F „ 2/ ( Í T ) .

T heorem 1 represents the d istrib u tio n function o f the ho m ogeneous generalized q u ad ratic form in term s o f central W ishart d istrib u tio n functions.

T he scries in (12) converges uniform ly on every finite m atrix space o f T for each t ö >0. In A d d itio n to the fo rm u la (13) for Cj o f T heo rem 1 explicit form ulae is expressed as the expectation o f a certain h om ogeneous function o f degree 2j in independent standardized n o rm al variables x ,, ..., x„.

RKKKRKNCICS

J e l e n k o w s k a 'Г. H., P r e s s S. J. (1995), Bayesian Mixed Linear Models, [in:] Bayesian

Analysis in Statistics and Econometrics: Essays in Honor o f Arnold Zellner, John Willey

and Sons, Inc. New York, 311-321.

R a j a g o p a l a n M., B r o e m e l i n g L. (1983), Bayesian Inference for the Variance Components

o f the GeneraI M ixed Models, “ Communications in Statistics” , 12 (6), 701-724.

R u b e n H. (1962), Probability Contents of Regions under Spherical Normal Distributions IV:

the Distribution oj Homogeneous and Non-homogeneous Quadratic Function o f Normal Variables, Annals of Math. Statistics, 33, 542-570.

Cytaty

Powiązane dokumenty

N ie bez znaczenia przy tym d'a pracy radcy prawnego jest to, że ma on do czynienia z działaczam i spółdzielczym i środowiska w iejskiego, najczęściej

[r]

F e­ lipe Trigo i inni przedstaw iciele hiszpańskiej powieści

Skutnabb-Kangas (2000: 502) maintains that a universal covenant of Linguistic Human Rights should guarantee, among other things, that “any change of mother tongue is

O dm iany pism a, które jeszcze nie odnosiły się do dźwięków języka, a jedynie do idei czy pojęć, określane są jako proto-pism a (piktogram y, ideogram y), n

Examples of spectra estimated in the mixed sea states: (a) bimodal with negligible swell contribution; (b) bimodal swell dominated; (c) bimodal with equivalent sea-swell energies;

Because of the random variation of the main parameters affecting the shape and area under the statical stability curve, thn characteristics of the latter should be treated as

Nakładem Naukowego Wydawnictwa Piotrkowskiego ukazała się w końcu 2003 roku monografia miasta Wielunia, obejmująca lata od drugiego rozbioru Polski (1793) do wyzwolenia spod