• Nie Znaleziono Wyników

Ogólna ocena wpływu wysypiska odpadów komunalnych i czynników środowiskowych na występowanie grzybów keratynolitycznych w glebie

N/A
N/A
Protected

Academic year: 2021

Share "Ogólna ocena wpływu wysypiska odpadów komunalnych i czynników środowiskowych na występowanie grzybów keratynolitycznych w glebie"

Copied!
15
0
0

Pełen tekst

(1)

RO CZN . PZH , 2000, 51, N R 2, 167-181

K R Z Y SZ T O F ULFIG*, G R AŻ Y N A P Ł A Z A * A P O L O N IU SZ S Z T Y L E R * JO ACH IM

BRO N D ER* M ACIEJ TERAKOW SKI* JOSEF GUARRO**

G E N E R A L A S S E SSM E N T O F T H E IN F L U E N C E O F A M U N IC IP A L

L A N D F IL L SIT E A N D E N V IR O N M E N T A L F A C T O R S O N T H E

O C C U R R E N C E O F K E R A T IN O L Y T IC F U N G I IN S O IL

O G Ó L N A O CEN A W PŁYW U WYSYPISKA O D PA D Ó W KO M UNA LN YCH

I CZY N N IK Ó W ŚRO DO W ISK OW Y CH NA W YSTĘPO W A NIE G RZY BÓ W

K ERA TYN O LITY CZN Y CH W G LEB IE

* Institute for the Ecology of Industrial Areas,

40-832 Katowice, Kossutha 6 St., Poland

Head: prof. dr hab. inż. M.J. Łączny

** U nitat de Microbiologia, D epartm ent de Ciencies Mediques Basiques,

Facultat de M edicina i Ciencies de la Salut, Universitat Rovira i Virgili,

43201 Reus, Spain

Head: dr J. Guarro

The study was to generally determine how a municipal landfdl site and

environmental factors influenced the distribution o f keratinolytic fungi in soil. The

landfdl site in Sosnowiec with its surrounding area was selected fo r examination.

Keratinolytic fungi occurred abundantly in the soils examined. Some keratinolytic

fungal species with pathogenic properties were recorded. Results are discussed

from ecological, hygienic and epidemiological points o f view.

IN TR O D U C TIO N

M edically im p o rtan t organism s, which occur in m unicipal solid w aste, can be divided

into five groups: helm inths, p rotozoa, viruses, bacteria and fungi. T he first two groups

are subject to parasitology while the last th ree are subject to m icrobiology. In m unicipal

solid w aste, chiefly saprophytic m icroorganism s of w ater and soil origin are present.

H ow ever, a considerable am o u n t of the total population of w aste m icroorganism s is

of faecal origin. In both groups m icrobial species pathogenic to plants and anim als,

including hum ans are found.

Landfill sites are the places w here m unicipal w aste is disposed. T h ese sites are also

the sources o f m icrobial contam ination and infection. Pathogenic m icroorganism s

spread from landfill sites to their surroundings via air, w ater and animals. M ost studies

have been co n cerned with the sp read o f m icroorganism s via air and have evaluated

the public health risk associated with the airborne contam ination [10, 11, 15]. T he

influence o f landfill sites on the microbiological quality o f soil and the role of

w aste-contam inated soil in the d eterio ra tio n o f hygienic conditions in the surrounding

areas o f landfill sites have not yet been extensively studied.

(2)

168

К. Ulfig i in.

N r 2

T h e occurrence o f m icroscopic fungi in m unicipal w aste and the sp read o f these

m icroorganism s from landfill sites have been the subject of several studies [review in

19]. H ow ever, th e re have been few studies on landfill sites as sources o f keratinolytic

fungi, m icroorganism s highly specialised in decom position o f keratin and with p o ten tial

path o g en ic p ro p erties to anim als including hum ans [18]. It can be assum ed that, due

to high hum idity and te m p eratu re and expected ab undance o f k eratin o u s debris in

m unicipal w aste, keratinolytic fungi find good nutritional conditions fo r grow th in this

environm ent. Fungal pathogenic populations associated with m unicipal w aste and

landfill sites req u ire th ere fo re th orough exam ination. Special a tten tio n should be paid

to th a t how different environm ental factors affect the distribution of path o g en ic fungi

in th e surrounding areas o f landfill sites.

T h e p resen t study was to generally d eterm in e the influence o f a m unicipal landfill

site and environm ental factors on the occurrence o f keratinolytic fungi in soil. T he

m unicipal landfill site in Sosnowiec with its surrounding are a was selected for exam i­

nation.

M A TER IA L AND M ETH OD S

Figure 1 shows the municipal landfill site in Sosnowiec with its surrounding area and sampling

locations. The description of waste disposal technology together with the land use structure of

this area was presented in a previous report [23].

Soil was sampled six times: three times in 1993 (26.04.93; 25.05.93; 12.10.93) and three times

in 1994 (4.05.94; 5.07.94; 22.09.94). A t each sampling, locations were different and selected at

different distances (up to 700 m) from the edge of the landfill site in the downwind and upwind

(background) directions. Four locations were on lawns in the residential area of the Kazimierz

district (Sosnowiec), at the distance of up to 1000 m from the landfill site to Northeast.

A ltogether, soil samples from forty-one locations were collected. The locations represented

different m anm ade habitats, i.e., meadows, idle arable soils, sandy wastelands, industrial areas

(including a coal ash heap and carbon rock heap) and young self-sown birch and pine forests.

Soil was sampled from the superficial layer (up to 5 cm of depth) to plastic bags disinfected

with 80% ethyl alcohol solution and U V lamps. A t each location and sampling, ca. 3 kg of soil

was collected from 50 points within the regular square sampling net ( 5 x 5 m). This m ethod of

sampling covered a wide surface of soil (25 m 2) for examination. Samples were delivered to the

laboratory within 3-4 hours, first cleaned from municipal waste particles, fresh plant rem nants

and stones, then crumbled and thoroughly mixed. The mixed samples w ere examined for

microbiological and physico-chemical properties.

The children’s hair baiting m ethod was employed for examination of keratinolytic fungi in

soil samples. For each sample, 10-20 Petri dishes were set up. The m ethod was described in

a previous paper [22]. The isolated fungi were identified from their macro- and microscopic

characteristics and using selected taxonomic monographs [2-4, 13, 16]. The keratinolytic abilities

o f the fungi were tested in vitro by putting sterilised children’s hair onto Petri dishes with

Sabouraud 1:10 + salts medium, inoculating them with fungal strains and incubating for one

m onth at 25°C.

T he occurrence of keratinolytic fungi in soils was characterised by the following indices:

frequency of isolation o f keratinolytic fungi (FI; the num ber of Petri dishes positive for

keratinolytic fungi divided by the total num ber of Petri dishes set up x 100%), num ber of species

isolated (NS), num ber of fungal strains (NA), frequency of isolation o f predom inating fungal

species (num ber of strains of a given species divided by the total num ber of fungal strains x

100%) and L index (num ber of strains divided by the num ber of Petri dishes set up).

(3)
(4)

170

К. Ulfig i in.

N r 2

The following physico-chemical param eters were determ ined for each soil sample: humidity

(H U M ) by gravimetric m ethod; particle size distribution (PSD) analysis by Casagrande’s aero-

metric m ethod in Prószyński’.? modification; pH in H

2

O and pH in 1 M KC1 by potentiom etric

m ethod; conductivity (C O N D ) by electrical method; hydrolytic acidity (ACI) by Kapen’s method;

ignition losses at 600 С (IG N L) by gravimetric method; organic carbon

( Co r g)

by Walklay-

B lack’s m ethod; total nitrogen

( Nt o t)

by Kjeldahl method; total sulphur

( St o t)

by Eschka

method; sulphate sulphur

( S - S O 4 )

by Barnsley and Lancaster’s m ethod; total phosphorus

(P

2

O

5

TOT) by colorimetric m ethod; available phosphorus (P

2

O

5

) and available potassium (K

2

O)

by Egner-Riehm’s m ethod. The C:N ratios were calculated.

The following microbiological param eters were determ ined in each soil sample: total num ber

o f microscopic fungi (TN M F) on malt extract agar (M EA) with chloramphenicol (100 mg/l) at

25 C, num ber o f mesophilic fungi (M F) on YpSs agar with chloramphenicol (100 mg/l) at 37°C,

num ber of therm ophilic fungi (TF) on YpSs agar with chloramphenicol (100 mg/l) at 45 C, total

num ber of bacteria (TNB), num ber of mesophilic bacteria (MB), Clostridium perfringens (CP),

total coliforms (TC), faecal coliforms (FC), and faecal streptococci (FS). The FC:FS ratios were

calculated. The term s “mesophilic” and “therm ophilic” are used in the sense of incubation

tem peratures. Results are presented as the most probable num ber of bacterial cells in 1 o r 100

g of soil dry weight. The m ethods recommended by the Countryside Hygiene Institute in Lublin,

Poland [8] were used to perform the analyses.

In addition to the above-mentioned microbiological and physico-chemical param eters, the

Ww index was calculated. This index displays the long-term influence of climatic conditions on

soil humidity [19]. It is the value of w ater deficit (or excess) in the near-surface level of soil at

the end of a given period (e.g. a decade), calculated with the following formula:

Ww = l/(l+ Z i)* [(P i-E ,)+ Ii(P i-E i)]

where:

Pi, Ei - daily sums of precipitation and potential evaporation respectively on the first day of a

given period;

i (1, 2,...., n) - consecutive day in a n-day period.

Negative values of W w index mean the deficit of water in soil w hereas positive values show

the overabundance of water in this environment.

The “STATISTICA” for Windows program was used for statistical analyses (descriptive

statistics, simple linear correlation, stepwise forward regression, range analysis) of the data

obtained. Adding one and logarithming first transformed the microbiological data, due to their

original asymmetric distribution.

RESULTS

O f 495 soil sam ples (Petri

dishes) exam ined, 379 (76.56% ) w ere positive for kera-

tinolytic fungi. T he m ean L index value was 2.28. A ltogether, 1131 strains from 26

species w ere isolated from the sam ples. T he following species w ere identified:

A p h a -

n o a sc u s d u ru s

(an am o rp h + teleom orph; frequency 20.2% ), A rth ro d crm a q u a d rifid u m

(an am o rp h + teleom orph; 9.5% ),

A rth ro d erm a curreyi

(anam orph + teleom orph;

8.6% ),

T richophyton ajelloi

(7.2% ),

Chrysosporium

spp. (anam orphs o f

A p h a n o a sc u s

reticulisporus

and

A . fulvescens',

6.7% ),

M yceliophthora vellerea

(6.0% ),

C hrysosporium

tro p icu m

(5.9% ),

A p h a n o a sc u s reticulisporus

(teleom orph; 5.2% ),

A rth ro d e rm a

sp. (a-

n am o rp h M icrosporum gypseum

+ teleom orph; 5.2% ),

C hrysosporium europae

(4.6% ),

M alb ra n ch ea

an am o rp h o f

U ncinocarpus reessi

(4.3% ),

A p h a n o a sc u s keratin o p h ilu s

(an am o rp h + teleom orph; 3.8% ),

M icrosporum c o o k ei

(2.8% ),

M albranchea fla v a

(2.3% ), A p h a n o a sc u s terreus

(an am o rp h

C hrysosporium in d ic u m

+ teleom orph; 2.1% ),

(5)

N r 2

Wysypiska kom unalne a występowanie grzybów keratynolitycznych w glebie

171

(6)

172

T a b e la I cd.

К. Ulfig i in.

Nr 2

Abbreviations for units:

dw - dry weight of soil

CFU - colony forming units

MPN - most probable number

T a b e l a I I .

Correlations between the data obtained for keratinolytic fungi with microbio­

logical and physico-chemical parameters

(7)

N r 2

Wysypiska kom unalne a występowanie grzybów keratynolitycznych w glebie

173

T a b l e I I I .

Mean valuables of fungal indices and frequencies for the ranges of pH in 1 M KC1

Chrysosporium pannicola (2.1% ), Aphanoascus fulvescens (teleom orph; 1.1% ), Botryo-

trichum piluliferum (0.4% ), Microsporum racem osum (0.4% ), Chrysosporium m ephiticum

(0.3% ), Myceliophthora sp. (0.3% ), Malbranchea an am orph o f Arthroderm a tubercula­

tum (0.3% ), Arthrographis kalrae (0.2% ), Am auroascus m utatus (0.2% ), Scopulariopsis

brevicaulis (0.1% ), G ym noascus petalosporus (an am o rp h + teleom orph; 0.1% ) and

Chrysosporium an am o rp h o f Arthroderma cuniculi (0.1% ).

T he cluster analysis shows th a t th e p red o m in an t keratinolytic fungal species can be

divided into two groups (Figure 2). T he first em braces A . reticulisporus, A . fulvescens

with th eir anam orphs Chrysosporium spp., Malbranchea an. U. reessi, A . keratinophilus

and C. tropicum while the second com prises th e o th e r species. T h e first group has two

subgroups. T h e first subgroup em braces the Aphanoascus species with th eir anam o rp h s

and the second contains Malbranchea an. U. reessi, A . keratinophilus and C. tropicum.

The second group has th re e subgroups. A. durus is associated w ith C. europae and the

group o f “o th e r species”, while M. cookei is associated with M. vellerea. A. quadrifidum ,

Arthroderma sp. (anam orph M. gypseum), A. curreyi and T. ajelloi form the third

subgroup. T he Chrysosporium anam orphs o f Aphanoascus reticulisporus and A . fu lves­

cens w ere m orphologically indistinguishable. Som e strains of A . reticulisporus and A.

fulvescens with in term ed iate characteristics of ascospores w ere also isolated (F igure 3).

B ecause o f these sim ilarities and com m on ecological p ro p erties proven by the cluster

analysis, both A phanoascus species (teleom orphs 4- anam orphs) are tre a te d jointly as

Aphanoascus reticulisporus /fulvescens in further considerations. Keratinolytic fungi

(8)
(9)

occur-N r 2

Wysypiska komunalne a występowanie grzybów keratynolitycznych w glebie

175

Ryc. 3. Some o f the keratinolytic fungal species isolated from soils impacted by the municipal

landfill site

A. Ascospores of Amaurouscus mutatus. B. Ascospores of Aphanoascus durus. C.

Atypical (irregular) ascospores of Aphanoascus rcticulisporus. D. Typical (regular) asco­

spores o f Aphanoascus rcticulisporus. E. Ascospores of Aphanoascus terrcus. F. Macro-

conidia o f Microsporum racemosum. G. Bar = 10 ц m

(10)

176

К. Ulfig i in.

N r 2

T a b l e I V .

M ean values o f fungal indices and frequencies for the FC ranges

red m ore abundantly in 1994 than in 1993. In each year, the frequencies of predom i­

nating species as well as the values o f fungal indices showed high seasonal variability.

T able I shows the descriptive statistics for physico-chemical and m icrobiological

param eters. T h ere w ere m any statistically significant correlations found at p < 0.05

betw een the d ata fo r keratinolytic fungi and the above-m entioned p aram eters (T able

II). H ow ever, the stepwise forw ard regression analysis show ed th a t p H in 1 M KC1

(exchangeable acidity), F C with FS and T N M F should be considered as th e m ost

im p o rtan t factors th a t influenced the indices o f keratinolytic fungi in the soils exam ined.

In general, the m ean L-index, F I and NS values increased with increasing p H in 1

M KC1 (Table III). T he highest L-index and FI m eans were calculated for the 7 -8 pH

range. T he m eans decreased slightly over 8 pH. The NS m ean was highest at p H over 8.

However, the difference in the NS m eans between the 7-8 and > 8 pH ranges was small.

T h e m ean frequency o f T. ajelloi was highest at p H below 5. T he m ean frequencies

o f this species decreased as p H increased. T he m ean frequencies o f M. cookei and A .

quadrifidum w ere also highest at p H below 5. H ow ever, these species also occurred

w ith high frequencies at higher p H (6 -8 ). A . curreyi favoured the 6 -8 p H range.

Subsequently, A . durus favoured th e 5 -6 p H range, although th e species was also

isolated with a high frequency from sam ples w ith pH betw een 7-8. Arthroderm a sp.

(an. M. gypseum ) an d th e “o th e r species” group occurred w ith the highest frequency

w ithin th e 7 -8 p H range. C.

europae

occurred with high frequency in the 6 -7 and over

(11)

N r 2

Wysypiska komunalne a występowanie grzybów keratynolitycznych w glebie

177

8 p H ran g e s. F ive fu n g al sp ecies, n am ely С. tropicum , A . reticulisporus/fulvescens, A .

keratinophilus, M albranchea an. U. reessi a n d M . vellerea f a v o u re d p H o v e r 8.

T a b le IV show s th a t, in g e n e ra l, th e m e a n values o f fu n g al in d ic es (L index, F I a n d

N S ) d istin ctly in c re a se d as th e fa e c a l b a c te ria l c o n ta m in a tio n o f soil (F C ) in c re a se d .

T h e m e a n fre q u e n c ie s o f p re d o m in a tin g sp e cie s also d e p e n d e d o n th e level o f soil

c o n ta m in a tio n w ith F C . H o w e v e r, th e m e a n s w ere usu ally m u c h lo w er th a n th o s e

c a lc u la te d fo r p H d a ta . R e su lts w e re sim ilar fo r FS ran g e s.

DISCUSSION

S tu d ie s o f m u n ic ip a l lan d fill sites [19] hav e c o n c lu d e d th a t th e sites a re th e real

so u rce s o f e n v iro n m e n ta l c o n ta m in a tio n w ith m ic ro o rg a n ism s p o te n tia lly p a th o g e n ic

to p la n ts a n d an im als, in c lu d in g h u m a n s. T h e landfill sites e m it n u m e ro u s b a c te ria l

an d fu n g a l p ro p a g u le s, in c lu d in g th o se fro m a c tid io n e -re sista n t, m e so p h ilic, th e r m o p ­

hilic, th e rm o to le r a n t a n d k e ra tin o ly tic species. It is also b eliev e d th a t th e lan d fill sites

e m it k e ra tin o u s re m n a n ts o f h u m a n an d a n im al origin. S in ce m ic ro b ia l p ro p a g u le s

chiefly s p r e a d fro m lan d fill sites via th e air, a n d since, b e s id e s p la n t su rfa c e s, th e soil

s u rfa c e is th e c h ie f re c e iv e r o f th e s e c o n ta m in a n ts, it is o f hygienic a n d eco lo g ical

in te r e s t to stu d y th e in flu e n c e o f th e sites a n d e n v iro n m e n ta l (soil a n d clim a tic ) fa c to rs

o n th e c o m p o sitio n s o f fu n g al k e ra tin o ly tic p o p u la tio n s in soils o f la n d fill s ite s ’

s u rro u n d in g a re a s. T h e p r e s e n t p a p e r displays g e n e ra l d a ta c o n c e rn in g th e o c c u rre n c e

o f k e ra tin o ly tic fungi in th e s u rro u n d in g a re a o f th e lan d fill site in S osnow iec.

In re s p e c t o f p H r e q u ire m e n ts , H u b a lek [7] (a f te r G arg et al. [5]) d iv id e d th e

d e rm a to p h y te s a n d r e la te d k e ra tin o ly tic fungi in to ac id o p h ilic, n e u tro p h ilic a n d alka-

lophilic. O u r re su lts hav e re v e a le d so m e d iffe re n c e s in r e la tio n to th e ab o v e division.

In H u b a le k ’s division, T. ajelloi, A . curreyi a n d C. tropicum a re ac id o p h ilic; A . quadri-

fid u m , C. serratus (an. M . vellerea) an d C. ke ra tin o p h ilu m a re a lk alo p h ilic ; a n d M.

gypseum is n e u tro p h ilic . In soils c o n ta m in a te d by th e landfill site, th e a c id o p h ilic n a tu re

o f T. ajelloi is u n q u e s tio n a b le . H o w ev er, A . curreyi, w ith th e h ig h e st fre q u e n c ie s a t th e

6 -8 p H ra n g e , sh o u ld be in fac t c o n s id e re d as a n e u tro p h ilic sp ecies. M. g ypseum (w ith

its te le o m o rp h A rth ro d e rm a sp.), w ith th e h ig h e st fre q u e n c ie s also a t p H b e tw e e n 6 -8 ,

can b e m a in ta in e d in H u b a le k ’s n e u tro p h ilic g ro u p . S u b se q u e n tly , C. tropicum is

tax o n o m ic ally a n d physiologically re la te d to th e alk alo p h ilic sp e cie s C. ke ra tin o p h ilu m

[14]. T h e eco lo g ical re la tio n b e tw e e n th e se tw o sp e cie s h as b e e n p ro v ed by th e c lu ste r

analysis. F ro m th e d a ta in th is stu d y an d from river s e d im e n ts in C a ta lo n ia [22], C.

tropicum sh o u ld b e m o v e d to th e alk alo p h ilic g ro u p . T h e stu d y h a s c o n firm e d th e

a lk a lo p h ilic n a tu re o f M. vellerea a n d C. keratin o p h ilu m b u t, b e s id e s C. tro p ic u m , th e

a lk a lo p h ilic g ro u p sh o u ld also in c lu d e A . reticulisporus/fulvescens a n d M albranchea an.

o f {J. reessi. T h e alk a lo p h ilic n a tu r e o f A . q u a d rifid u m is d o u b tfu l, sin ce th e sp e cie s

o c c u rre d w ith th e h ig h e st fre q u e n c y in soils w ith p H < 5 a n d b e tw e e n 6 -8 . In this

study, A . q u a d rifid u m to g e th e r w ith C. europae, A . du ru s, a n d M. c o o k ei h a d w id e

ra n g e s o f soil p H .

T h is stu d y h a s c o n firm e d th e im p o rta n c e o f p H in th e d is trib u tio n o f k e ra tin o ly tic

fungi in soil. H o w ev er, th e ste p w ise fo rw ard analysis h as in d ic a te d th a t p H in 1 M KCI

(e x c h a n g e a b le acid ity ) w as a m o re im p o rta n t fa c to r a ffec tin g th e s e fungi in soil th a n

p H in H 20 (ac tiv e acidity) a n d h ydrolytic acidity (K a p e n ). It h a s b e e n d e m o n s tra te d

(12)

178

К. Ulfig i in.

N r 2

by G arg et al. [5] a n d c o n firm e d in th is stu d y th a t k e ra tin o ly tic fu n g al sp e c ie s o c c u r

in w id e p H ra n g e s in th e soil e n v iro n m e n t. T h e se w ide ra n g e s d o n o t alw ays fit th e

division o f k e ra tin o ly tic fungi b a se d u p o n p H o p tim a . T h is ca n b e e x p la in e d by th e

follow ing h y p o th e sis. T h e m a in (b u t n o t th e only) s u b stra tu m fo r th e g ro w th o f

k e ra tin o ly tic fungi is k e ra tin o u s re m n a n ts on th e soil su rfa ce . H o w ev er, th e fungi are

fo u n d in activ e a n d in a ctiv e fo rm s in soil. B o th fo rm s a re a b le to a tta c k k e ra tin o u s

s u b s tra ta b u t th e d istin c tio n o f in active fo rm s w ith th e k e ra tin b a itin g m e th o d is m o re

d ifficu lt [12]. If k e ra tin o ly tic fungi exist in a given soil m ostly in in a ctiv e fo rm s, th e

m e th o d m ay n o t re fle c t th e re a l activity a n d p H p re fe re n c e s o f th e s e m ic ro o rg a n ism s

b u t o n ly d e te c ts th e p re s e n c e o f fungal sp o re s in th e soil. T h e w ide p H ra n g e s th a t

h av e b e e n fo u n d fo r so m e sp e cie s in th e s u rro u n d in g a r e a o f th e lan d fill site in

S o sn o w iec m ay s u p p o r t th e hyp o th esis.

T h e r e is an a d d itio n a l p ro b le m in th e in te r p re ta tio n o f th e d a ta . It a p p e a r s th a t

k e r a tin o u s re m n a n ts ( o r b a its) o n th e soil su rfa c e p ro v id e a highly specific e n v iro n m e n t

in w h ich fu n g al g ro w th is in flu e n c e d by b o th soil a n d re m n a n t fac to rs. N u m e ro u s

s tu d ie s hav e b e e n p u b lis h e d on k e ra tin o ly tic fungi d e te c ta b le by k e ra tin o u s b a it [5].

T h e stu d ie s hav e a ssu m ed th a t soil fa c to rs play a cru cial ro le in th e d istrib u tio n o f th e

fu n g i in soil a n d th a t re su lts o b ta in e d w ith th e k e ra tin -b a itin g m e th o d fully re fle c t this

ro le. H o w ev er, th e re a re little e x p e rim e n ta l d a ta to d e te r m in e how fa r th e soil a n d

r e m n a n t fa c to rs, in c lu d in g p H , in flu e n c e k e ra tin o ly tic fungi in th e so il-k e ra tin o u s

s u b s tra tu m e n v iro n m e n t.

B e sid e s p H a n d th e p re s e n c e o f k e ra tin o u s s u b s tra ta , o th e r fa c to rs a ffec t th e

d is trib u tio n o f k e ra tin o ly tic fungi in soil. A m o n g th e m , m o re a tte n tio n sh o u ld b e p aid

to th e c o n ta m in a tio n o f soils w ith faecal b a c te ria (F C , F S). T h e p o sitiv e c o rre la tio n s

b e tw e e n th e in d ic es fo r k e ra tin o ly tic fungi a n d th e q u a n titie s o f fae cal b a c te ria in soils

a re u n q u e s tio n a b le . T h e r e la tio n s h ip b e tw e e n th e to ta l p o p u la tio n o f k e ra tin o ly tic fungi

w ith th e c o n ta m in a tio n o f soils w ith fae cal b a c te ria h as b e e n c o n firm e d by th e ra n g e

analysis. S in ce k e ra tin o ly tic fungi a n d faecal b a c te ria o c c u r a b u n d a n tly in m u n ic ip a l

solid w a ste , a n d sin ce b o th types o f c o n ta m in a n ts s p re a d fro m landfill sites o v e r th e ir

s u rro u n d in g a re a s [18, 19], th e asso c ia tio n o f th e a b o v e -m e n tio n e d g ro u p s o f m ic ro o r­

g an ism s in soil can b e ex p lain e d . H o w ev er, th e step w ise fo rw a rd reg re ssio n , to g e th e r

w ith th e ra n g e analysis h a s also in d ic a te d th a t, g en e rally , p H in 1 M KC1 affects

k e ra tin o ly tic fungi m o re th a n th e fae cal c o n ta m in a tio n o f soils.

T h e d a ta hav e also re v e a le d th e in flu e n c e o f clim a tic fa c to rs o n th e d is trib u tio n o f

k e ra tin o ly tic fungi in soil. A m o n g th e se fac to rs, th e W w in d e x re q u ire s sp e cia l a tte n tio n .

A lth o u g h n o c o r r e la tio n s b e tw e e n fun g al in d ices (L -in d ex , F I a n d N S ) a n d th e

fre q u e n c ie s o f p re d o m in a tin g sp e cie s w ith soil h u m id ity w ere o b se rv e d , th e c o rre la tio n s

b e tw e e n th e s e fre q u e n c ie s a n d th e W w in d e x w e re c le a r. T h is m e a n s th a t th e w a te r

d e fic it in th e n e a r-s u rfa c e soil lay er a ffe c te d indiv id u al sp e cie s m o re th a n it d id th e

to ta l fu n g al p o p u la tio n . O n th e o n e h a n d , A . reticulisporus/fulvescens a n d A . keratinop-

h ilu s w e re fo u n d to o c c u r m o re a b u n d a n tly in th e p e rio d s w ith h ig h e r w a te r d efic it in

soil. O n th e o th e r h a n d , A rth ro d erm a sp. (an. M. g y p se u m ) w ith /1 , q u a d rifid u m fa v o u re d

th e p e rio d s w ith lo w er w a te r d eficit. T h e re la tio n sh ip s c o n c e rn in g th e A p h a n o a sc u s

sp e c ie s d isa g re e w ith th e o b se rv a tio n s th a t h av e b e e n m a d e in sew age slu d g e s [21]. In

th e slu d g e e n v iro n m e n t, all A p h a n o a sc u s sp e cie s w e re c h a ra c te ris tic fo r th e m u d slu d g e

(13)

N r 2

Wysypiska komunalne a występowanie grzybów keratynolitycznych w glebie

179

s tru c tu re a n d high h u m id ity (w a te r excess). T h e e x p la n a tio n fo r th is d is a g re e m e n t m ay

b e th a t m ostly in a ctiv e A p h a n o a sc u s p ro p a g u le s o f m u n ic ip a l w aste o rig in o c c u rre d in

dry sa n d y soils a ro u n d th e landfill site ex a m in e d . F u n g a l k e ra tin o ly tic activity w as

in itia te d by a d d in g w a te r to th e soil sa m p le s su p p le m e n te d w ith h a ir b ait.

T h e sta tistic a l analysis h as in d ic a te d th a t th e o c c u rre n c e o f k e ra tin o ly tic fungi in

soils m ay d e p e n d o n o th e r e n v iro n m e n ta l fac to rs, p a rtic u la rly on th e size d is trib u tio n

o f soil p a rtic le s (P S D ). T h e s e d e p e n d e n c ie s m u st be p ro v e d in la b o ra to ry stu d ies. S o m e

w o rk e rs [9, 17] hav e also su g g e ste d th e im p o rta n c e o f bio lo g ical in te ra c tio n s w ith in

fun g al p o p u la tio n s a n d in d iv id u al p re fe re n c e s o f fungal sp e cie s to d iffe re n t k e ra tin o u s

s u b s tra ta in th e d istrib u tio n o f k era tin o ly tic fungi in soil. H o w ev er, th e re is little

e v id en c e to s u p p o r t th e s e su g g e stio n s fo r soil co n d itio n s. T h is p ro b le m also re q u ire s

f u rth e r a tte n tio n .

K e ra tin o ly tic fungi o c c u rre d a b u n d a n tly in th e e x p lo ite d a r e a o f th e landfill site an d

its s u rro u n d in g s. T h e in flu e n c e o f e n v iro n m e n ta l fa c to rs o n th e q u a lita tiv e a n d q u a n ­

tita tiv e c o m p o sitio n o f k e ra tin o ly tic fungi in soils w as com p lex . S in ce m a n y h a b ita ts

w ith d iffe re n t eco lo g ical c o n d itio n s w e re fo u n d in th e su rro u n d in g a r e a o f th e landfill

site e x a m in e d , a n d since th e k e ra tin (h a ir) b a itin g m e th o d p ro v id e s so m e in te r p r e ta tio n

p ro b le m s, it is m o re difficu lt to ex p lain o u r d a ta . E a c h o f th e h a b ita ts m e n tio n e d

sh o w ed u n iq u e c o n d itio n s fo r th e gro w th a n d survival o f k e ra tin o ly tic sp e cie s o rig in a te d

fro m th e landfill site. F o r ex a m p le , th e o c c u rre n c e o f k e ra tin o ly tic fungi in th e ash

h e a p soil im p a c te d by th e site h a s b e e n d e m o n s tra te d prev io u sly [20]. T h e d is trib u tio n

o f k e ra tin o ly tic fungi in th e h a b ita ts ex am in ed a p p a re n tly re q u ire s a s e p a r a te p a p e r.

In p a rtic u la r, th e sp a tia l d is trib u tio n o f th e fungi re q u ire s sp ecial illu stra tio n m e th o d s.

T h e th e sis fo r using m ic ro o rg a n ism s, including k e ra tin o ly tic fungi, as b io in d ic a to rs o f

e n v iro n m e n ta l c o n ta m in a tio n w ith m u n ic ip a l w aste sh o u ld be b e s t show n w ith th e se

m e th o d s.

A c c o rd in g to A je llo ’s classificatio n [1], all th e d e rm a to p h y te s a n d o th e r k e ra tin o ly tic

fungi iso la te d in this stu d y sh o u ld b e c o n s id e re d as g eophilic. T h is m e a n s th a t th e se

fungi disp lay sa p ro p h y tic activity in soil a n d a re n o t sp e cia lise d in p a th o g e n ic life.

H o w ev er, a m o n g th e d e rm a to p h y te s th e p a th o g e n ic p r o p e rtie s o f M . ra c em o su m h av e

b e e n clearly d e m o n s tr a te d [review in 20]. A lso, M. gypseum a n d M. co o k ei hav e b o th

b e e n r e p o r te d to ca u se in fe c tio n s in h u m a n s, cats, d ogs a n d h o rs e s [review in 17].

S u b seq u e n tly , a m o n g th e n o n -d e rm a to p h y te s A . fu lvescen s a n d 5. brevicaulis hav e b e e n

r e p o r te d as h u m a n a n d an im al p a th o g e n s [review in 6]. T h u s, o u r re su lts hav e p ro v e n

th a t m u n ic ip a l solid w aste a n d landfill sites a re th e so u rc e s o f p o te n tia lly p a th o g e n ic

fungi w ith k e ra tin o ly tic p ro p e rtie s . T his fin d in g c a n n o t b e ig n o re d fro m th e hygienic

an d e p id e m io lo g ic a l p o in ts o f view.

ACKNOWLEDGEMENT. The data have been obtained within a grant from the State

Com mittee for Scientific Research in Warsaw. Special thanks are given to Dr. E. Mcirchwińska,

ex-director of the Institute for the Ecology of Industrial Areas in Katowice, for her unceasing

support for the research. We are also grateful to Mrs. I. Biedroń for technical assistance.

(14)

180

К. Ulfig i in.

N r 2

К . U l f i g , G . P ł a z a , A . S z t y l e r , J . B r o n d e r , M . T e r a k o w s k i ,

J . G u a r r o

G E N E R A L ASSESSM ENT O F T H E IN FLU EN C E O F A M U N IC IPA L LA N D FILL SITE

AND E N V IR O N M EN TA L FACTORS ON T H E O C C U R R E N C E O F K ER A TIN O LY TIC

FUNG I IN SOIL

Summary

T he study was to generally determ ine the influence of a municipal landfill site and environ­

m ental factors on the distribution of keratinolytic fungi in soil. The landfill site in Sosnowiec

was selected for examination. Keratinolytic fungi occurred abudantly in soils of the landfill site

examined and its surrounding area. O f 495 soil samples (Petri dishes) examined, 379 (76.56%)

were found to be positive for keratinolytic fungi. A ltogether, 1131 strains from 26 species were

isolated from the samples. Among the fungi, some species with pathogenic properties (M i-

crosporum racemosum, M. cookei, M. gypseum, Aphanoascus fulvescens and Scopulariopsis brevi-

caulis) were recorded. The influence of environmental factors on the qualitative and quantitative

composition of keratinolytic fungi in the soils was complex. A mong these factors, exchangeable

acidity (pH in 1 M KC1, in particular), faecal bacterial contam ination and the level of w ater

deficit in soil were the most important. The conclusion has been drawn that municipal landfill

sites are the sources of potentially pathogenic fungi with keratinolytic properties.

K . U l f i g , G . P ł a z a , A . S z t y l e r , J . B r o n d e r , M . T e r a k o w s k i ,

J . G u a г г о

O G Ó L N A O C EN A W PŁYW U WYSYPISKA O D PA D Ó W K O M UN A LN YCH I

C ZY N N IK Ó W ŚRO DOW ISKOW Y CH NA W Y STĘPO W A N IE G R ZY B Ó W

K ERA TYN O LITY CZN Y CH W G LEB IE

Streszczenie

Celem badań była ogólna ocena wpływu wysypiska odpadów komunalnych i czynników

środowiskowych na występowanie grzybów keratynolitycznych w glebie. Do badań wybrano

wysypisko odpadów komunalnych w Sosnowcu. Grzyby keratynolityczne obficie występowały

w badanych glebach. Na całkowitą liczbę 495 próbek gleby (szalek Petriego) wzrost tych grzybów

stwierdzono w 379 próbkach (76,56%). Łącznie wyizolowano 1131 szczepów grzybowych należ­

ących do 26 gatunków. Wśród wyizolowanych grzybów kilka gatunków (Microsporum racemosum,

M. cookei, M. gypseum, Aphanoascus fulvescens and Scopulariopsis brevicaulis) posiada właściwości

chorobotwórcze wobec ludzi i zwierząt. Wpływ czynników środowiskowych na skład jakościowy

i ilościowy grzybów keratynolitycznych w glebie był złożony. Wśród tych czynników do najważ­

niejszych należy zaliczyć: kwasowość wymienną (pH w 1 M KC1), zanieczyszczenie bakteriam i

kałowymi oraz deficyt wody w glebie. Wyciągnięto wniosek, że wysypiska odpadów komunalnych

są źródłem skażenia środowiska grzybami chorobotwórczymi o właściwościach keratynoli­

tycznych.

R EFER EN C ES

1. Ajello L .\ A taxonomic review of the derm atophytes and related fungi. Sabouraudia 1968,

6, 147.

2. Arx von J.A.: The ascomycete genus Gymnoascus. Persoonia 1986, 13, 17.

3. Cano J.F., Guarro J. \ The genus Aphanoascus. Mycol. Res. 1990, 94, 355.

4. Currah R .S.: Taxonomy of the Onygenales: Arthrodermataceae, Gymnoascaceae, Myxotricha-

ceae and Onygenaceae. Mycotaxon 1985, 24, 1.

(15)

N r 2

Wysypiska kom unalne a występowanie grzybów keratynolitycznych w glebie

181

5. Garg A.P., Gandotra S., Mukerji K.G., Pugh G.J.F.: Ecology of keratinophilic fungi. Proc.

Indian Acad. Sci. (Plant Sci.) 1985, 149.

6. Hoog de G.S., Guarro J.\ Atlas of clinical fungi. C entraalbureau voor Schimmelcultures

& Universitat Rovira i Virgili, Baarns & Reus 1995.

7. Hubalek Z.\ Fungi associated with free living birds in Czechoslovakia and Yugoslavia. Acta

Sci. Natl. Brun. 1974, 8, 1.

8. Instytut Higieny Wsi: M etody kontroli stanu sanitarnego osadów ściekowych. Lublin 1985.

9. Komiiłowicz Т.: Częstotliwość występowania i rozmieszczenia grzybów keratynofilnych w

wybranych glebach uprawnych. A cta Mycol. 1993, 28(1), 3.

10. Lacey J.: Microbiological hazards o f waste disposal. A F R C Institute of A rable Crops

Research, H arpenden, H erts 1994.

11. Lem bke L.L., Knisely R.N.: A irborne microorganisms in a municipal solid waste recovery

system. Canadian J. Microbiology 1985, 31, 198.

12. Majchrowicz I., D om inik Т.: Third contribution to the knowledge o f keratinolytic and

keratinophilic soil fungi in the region of Szczecin. Ekol. Pol. A 1968, 16, 121.

13. Oorschot van C.A.N.: A revision of Chrysosporium and allied genera. Studies in Mycology

1980, 20, 1.

14. Padhye A. A.: Therm otolerance of Chrysosporium tropicum differentiates it from C. kerati-

nophilum. Mycologia 1969, 61, 1162.

15. Pahren R.H.: Microorganisms in municipal solid waste and public health implications. CRC

Critical Reviews in Environmental Control 1987, 17, 187.

16. Sigler L., Carmichael J.W.: Taxonomy of Malbranchea and some other Hyphomycetes with

arthroconidia. Mycotaxon 1976, 4, 349.

17. Simpanya M.F., Baxter М.: Isolation of fungi from soil using the keratin-baiting technique.

M ycopathologia 1996, 136, 85.

18. Ulfig K.: D erm atophytes and o ther keratinophilic fungi in municipal solid waste. Roczn.

PZH 1985, 36, 497.

19. Ulfig K , Plaza G., Sztyler A., Terakowski М., Mielżyńska D., Guarro J. : Municipal landfill sites

as the sources of public health risk from pathogenic fungi. Institute for the Ecology of

Industrial Areas, KBN grant, R apport no. 717/DG/93, Katowice 1996.

20. Ulfig K., Terakowski М., Plaza G.: First isolation of Microsporum racemosum in Poland.

Roczn. PZH 1996, 47, 313.

21. Ulfig K., Terakowski М., Plaza G., Kosarewicz O.: Keratinolytic fungi in sewage sludge.

Mycopathologia, 1996, 136, 41.

22. Ulfig K., Guarro J., Cano J., Gene J., Vidal P., Figueras M.J.: G eneral assessment of the

occurrence of keratinolytic fungi in river and marine beach sedim ents o f Catalonian waters

(Spain). W ater Air & Soil Pollution, 1997, 94, 275.

23. Wita E.: O cena oddziaływania wysypiska odpadów komunalnych w Sosnowcu w rejonie ulicy

G renadierów i szybu wentylacyjnego KWK Juliusz na środowisko. Maszynopis Instytut

Ekologii Terenów Uprzemysłowionych, Katowice 1993.

Cytaty

Powiązane dokumenty

Zbiorcze zestawienie danych o radzajach i ilości odpadów, o sposobach go- spodarowania nimi oraz o instalacjach i urządzeniach służących do odzysku lub unieszkodliwiania odpadów

Jed- nym z podstawowych kryteriów świadczących o negatywnym wpływie składo- wiska na środowisko jest obecność metali ciężkich (Hg, Pb, Cd, Co, Cr, Cu, Mn, Zn, Ni) w

Emisje gazów cieplarnianych z procesu kompostowania to emisja metanu (z bryły składowiska) i emisja ditlenku węgla z procesów biodegradacji oraz po- chodzenia

3 Influence of pH on growth of strain ANL- αCH3 with PPN and acetate (diamonds) and on activity of nitrile hydrolysis (ammonia formation rate) by washed cells (PPN, closed circles;

Do tej pory przeprowadzono wiele badań dotyczących lęku przed matematyką (Ashcraft, Kirk, 2001; Ashcraft, Moore, 2009; Hembree, 2009; Wigfield, Meece, 1988). W

Over the past years, there were reported several cases of influenza in humans caused by avian influenza virus that may possibly cause a pandemic and carry a high risk of

Większa dawka osadu bez dodatku i z dodatkiem słomy pszennej bądź łuski kakaowej oraz kompostu GWDA istotnie zwiększyła plon świeżej i suchej masy bulw ziemniaka i

Decoupling Edge Versus Bulk Conductance in the Trivial Regime of an InAs/GaSb Double Quantum Well Using Corbino Ring Geometry.. Nguyen, Binh Minh; Kiselev, Andrey A.; Noah, Ramsey;