• Nie Znaleziono Wyników

A new class of subharmonic solutions to Duffing's equations

N/A
N/A
Protected

Academic year: 2021

Share "A new class of subharmonic solutions to Duffing's equations"

Copied!
55
0
0

Pełen tekst

(1)

CoA R E P O R T AERO N o . 195

bieLiOibt:tK

;i5SEP. tg^

THE COLLEGE OF AERONAUTICS

CRANFIELD

A NEW CLASS O F SUBHARMONIC SOLUTIONS

TO B U F F I N G ' S EQUATIONS

by

(2)

THE COLLEGE OF AERONAUTICS CRANFIELD

A New Class of Subharmonic Solutions to Buffing's Equation

by

P . A. T. Christopher. B . C . A e . . A . F . I . M . A .

SUMMARY

In an e a r l i e r paper, Ref. 1, the author established the existence of exact, pure-subharmonic, solutions of a fairly general type of ordinary, nonlinear, differential equation of second-order. A particular, degenerate, form of that equation is Buffing's equation, without damping, i . e . the t e r m In X is absent. The present study is concerned with this equation and it is shown that there is associated with the pure-subharmonic solution a class of exact subharmonic solutions which may be represented by a F o u r i e r s e r i e s

(3)

2

-CONTENTS

Page

Introduction 3 Exact Pure-SubharmonicB 3

A Broader Class of Subharmonic Solutions 5

A Proof of Existence 12 Some Norms and Pseudo-norms 16

Conditions for T to be a Contraction Mapping in S* 19 Estimates for a_, b_ b„, I a, - a, .1 , 27

0 0 a X 1 U

. . . . 1 ^ 3 - ^3jj|

An Estimate for lub((u,v) - ol 36 Application of the Proof of Existence When I g, - 11 44

is Small

Regions of Existence in the g, , g„, r Space 47

Conclusion 52 References 53

(4)

1. Introduction

In Ref. 1 the author demonstrated that, for particular values of the coefficients, the differential equation

2 3

X + (b + b X )x + c - x + e x = J Q Sin 3ut, ( 1 . 1 )

where x = dx/dt, p o s s e s s e s an exact, pure-subharmonic, solution

X = A Sin ut + B C o s wt, ( 1 . 2 ) i . e . a subharmonic of o r d e r 1 / 3 . A particular degenerate form of ( 1 . 1 )

a r i s e s when b = b = 0, this being Buffing's equation without a damping t e r m , i . e . the t e r m in x i s absent. F o r this equation two different pure subharm-onic solutions e x i s t , the first in which B = 0 and the second in which B Is linearly related to A. F o r given values of c and c t h e s e pure

subharm-X «5

o n l c s a r e generated only by particular values of Q and it i s an obvious, and potentially interesting, question to ask whether subharmonic solutions are generated by other values of Q. The only known broad c l a s s of subharmonic solutions i s that related to the condition c « c- , in which the solution takes the form of a real F o u r i e r s e r i e s whose leading t e r m i s the dominant

subharmonic. See for example Ref. 2, Chapter 4 . F o r the present problem t h e r e i s reason to b e l i e v e that the subharmonic solutions sought m a y have the s a m e form as in the c a s e c « c. , if they exist at a l l . The present study s e t s out to explore the e x i s t e n c e of such solutions, utilizing, and slightly extending the application of, a combined functional analytic, topological, method originally proposed by C e s a r l in Ref. 3 . Alternatively, Cronln g i v e s an account of the method, but with no e x a m p l e s , in Ref. 4 , pp. 180 - 185.

2 . Exact Pure-Subharmonlcs

The real equation to be considered i s 3

X + c - x + e x = Q Sin ut, c f= 0, ( 2 . 1 ) which upon writing

36 = ut ( 2 . 2 ) r e d u c e s ( 2 . 1 ) to

(5)

w h e r e

gj = 9 C j / u •^

S3 - 9^=3/"

r = 9Q/w^

(2.4)

and X* = d^lAG. T h e p r o p o s e d p u r e - s u b h a r m o n i c solution of o r d e r 1/3 m a y be w r i t t e n a s X = a Sin 0 + b C o s 0, e e f r o m which and x " = - a Sin 0 - b C o s 0 e e

x^ = | ( a ^ + b^)(a Sin 0 + b Cos 0) e e e e

(2.5)

(2.6)

+ i { a (3b - a ) Sin 30 - b (3a - b ) C o s 30]

e e e e e e -^ (2.7)

Substituting f o r x , x " and x in ( 2 . 3 ) and equating t h e coefficients of t h e d i s t i n c t t e r m s , i . e . t h o s e containing Sin 0, C o s 0, Sin 30 and C o s 30, r e s p e c t i v e l y , to z e r o , gives r i s e to t h e following r e l a t i o n s :

<gl -^K^ ^*H\K ^ ^e) = °

<ei - 1)^ ^ *g3^e<% ^ ^f) = 0

ig^a^(3b2 - a^) = r

( 2 . 8 ) ( 2 . 9 ) ( 2 . 1 0 ) (2.11)

which a r e t o b e satisfied s i m u l t a n e o u s l y . E q u a t i o n ( 2 . 1 1 ) defines two c a s e s 2 2

a s follows: C a s e (i) b = 0 and C a s e (ii) 3a = b . T h e s o l u t i o n s c o r r e s -e -e -e ponding to t h e s e c a s e s a r e then: C a s e (1). b = 0 e % = 3 r / ( g ^ - 1) = {-4(g^ - l ) / 3 g 3 } * and a^ = 0 ( 2 . 1 2 ) o r a^ = 27Q/(9c^ - J^) = ( - 4 ( 9 C j - u)^)/27c } ^ (2.13)

(6)

In order that a shall be real it is clear that (g, - 1) and g„ shall be of e 1 3 opposite sign. Re-writing (2.12) in the form

gl = 1 - ïgga^. a^ ^ 0. (2.14) then this equation, with a fixed, defines a family of straight lines in the

gi • go plane, all points of which correspond to the existence of a subharmonic solution X = a Sin 0. See Fig. 1.

Case (ii), 3a^ = b^ e e

ag - 3 r / 2 ( g ^ - 1) - {(g^ - l ) / 3 g 3 J * (2.15) from which

gl = 1 + 3g3aJ (2.16)

and defines another family of straight lines in the g- ,g„ plane. See F i g . 1.

it is clear from this diagram that for every pair of real values g, , g„ there is at least one pure subharmonic solution of order 1/3. The amplitude of these subharmonic oscillations is given by | (a + b ) ^ | which, from (2.12)

e e

and (2.15), is the same for both c a s e s , having zero amplitude at u = ^JcT. Typical amplitude versus frequency diagrams a r e shown in Fig. 2. It is to be noted that for these diagrams Q is not fixed, so these a r e not frequency response diagrams in the usual sense.

3 . A Broader Class of Subharmonic Solutions

Associated with the pure-subharmonic solutions already discussed there would seem to be the possibility of the existence of a broader class of

solutions in the form of a real F o u r i e r s e r i e s 00

X = C ( a , _._ 1 Sin (2n + 1)0 + b„ ^ , Cos (2n + 1)0} (3.1) ^ &n T 1 ^n T" 1

n = 0

Writing the pure-subharmonic solution as

X = a Sin 0 + b Cos 0, T = T , (3.2) e e e

then with g and g fixed and F slightly different from F it is anticipated that there will exist a subharmonic solution of the form of equation (3.1). In order to confirm this, use will be made of the Galerkin procedure whereby truncated Fourier s e r i e s , with an increasing number of t e r m ë , a r e used a s

(7)

6

-s u c c e -s -s i v e a p p r o x i m a t i o n -s to the -s o l u t i o n . T h e p r o b l e m of the c o n v e r g e n c e of t h e G a l e r k i n p r o c e d u r e I s , in m a n y a p p l i c a t i o n s , u s u a l l y r e s o l v e d by an a p p e a l to t h e p h y s i c a l m e a n i n g and l i m i t a t i o n s of t h e solution. Such m e a n s of e n s u r i n g c o n v e r g e n c e only apply to a l i m i t e d c l a s s of b o u n d a r y vEilue p r o b l e m and a r e f a r f r o m being s a t i s f a c t o r y . F o r t h e p r e s e n t p r o b l e m t h e f i r s t a p p r o x i m a t i o n to the solution will b e t h e p u r e - s u b h a r m o n i c solution, ( 3 . 2 ) , and t h e second a p p r o x i m a t i o n will b e

x = a Sin 0 + b Cos 0 + a Sin 30 + b Cos 30 ( 3 . 3 )

F o l l o w i n g C e s a r l , t h e information obtained f r o m t h i s second a p p r o x i m a t i o n will b e used to d e n a o n s t r a t e the c o n v e r g e n c e of t h e G a l e r k i n method a n d , t h e r e b y , the e x i s t e n c e of an exact solution ( 3 . 1 ) in v a r i o u s r e g i o n s of t h e g ^ . g g . r s p a c e .

F r o m ( 3 . 3 ) ,

x^ = a Sin 0 + ^^ „ Cos 0 + a Sin 30 + + /3 Cos 90, ( 3 . 4 )

XU XU ó\) oij w h e r e

'^lO = W\ ^ ^l) - |^3<^1 - ^1^ - I ^^^3 ^ I ^<^3 ^ ^3>

3, , 2 , 2 , 3 ^ , 2 ^ 2 . 3 3 , 9 ^ 2 , ^10 = ï\^^l ^ \^ - 4 ^ 3 < ^ - ^ > + 2 ^ ^ ^ 3 + 2 \^^3 ^ ^3) 1 /ou2 2, 3 , 2 ^ 2 , 3 5 2, ^^30 = ï ^ < 3 ^ " ^ > + 2 a 3 < ^ + b j ) + 4^3<^3 + ^ 3 ^

^30 = - WK - ^1) + 1 s^h ^ ^?> ^ K<4" ^3)

^^50 = " ^3<^ • ^\^ + I ^ ^ ^ 3 -^ \\K - ^3> + l^^3^3

^50 '- - K < ^ " ^1^ - I ^ ^ ^ 3 • b&l - ^3> ^ lh^3^3

"70 = • h\K • ^3^ ^ 2 ^^3^3

^70 = - ^1<^3 - ^3) - I ^ V 3

a„„ = —a„(3b„ - a„) 90 4 3 3 3

(8)

and

x" = - a Sin 0 - b, Cos 0 - 9a Sin 30 - 9b Cos 30 (3.5) ± L o O

3

Substituting for x, x and x" in (2.3) and equating coefficients of the distinct t e r m s , i . e . Sin 0, Cos 0, Sin 30 and Cos 30 respectively, to zero, gives

rise to the following simultaneous relationships:

(gj - D a j + gga^Q = 0 (3.6) (gl - Dbj + gg/S^Q = 0 (3.7)

(gl - 9)a3 + ggag^ -F (3.8)

<gl - « ^ ^ ^3^30 = ° <3-«> The coefficients a , b , a , b may be expressed In t e r m s of a In the

X X O O 6 following way:

a^ = (1 + e^)a^. b^ = (k^ + ^^)a^. a^ = CgS^, bg = c^a^,

where b = k, a and k, is either zero o r 3*. Also F may be written as

e 1 e 1 •'

r = (1 -f X)r . Equations (3.6) to (3.9) become

(gj - 1)(1 + ej)a^ + h \ ^ ^ "" h^^^^ ^ h^^ -" ^h "• V ^ J -VS^^^ •" ^1^^

- (k^ + e^)^] - I (1 + e^Mkj + €2)^4 + | d + ^i)^^ + ^ ^ ) = ° <3-^°>

(g^ - l)(k^ + e^)a^ + h^lih\ ^ ^2^t<^ ^ ^1^^ "*" ^''l ^ ^2>^^

- I - 4 K I + ^1)' - (\ + eg)'] + I (1 + c,)(k^ + C2)€3 +

+ | ( k j +62) (€3 + e^)} = 0 (3.11)

(g^ - 9)e3a^ + gga^ { i ( l + ej)I3(kj + e^)^ - (1 + e^)']

(9)

- 8

and

+ le^l2{l + e^)^ + 2(k^ + Cg)' + ^3 + ^I U = 0 <3.13)

Subtracting (2.8) from (3.10), (2.9) from (3.11), (2.10) from (3.12) and (2.11)

from (3.13) gives, after division by a ^ 0 , the equations

(gl - 1)^1 + fgga^ {(3 + k2)e^ + 2k^e2 + ( k ' - 1)^3 - 2k^e^} + ê^^lo^i^.e^.^^^^)

(3.14) <% - '^'2 ^ k % ( 2 k , e j + (1 + 3k2)e2 + 2k^C3 + ( k ' - l ) e j +

<% - 9)^3 ^ k % ^^^1 - ^)^1 ^ ^\'2 ^ 2(1 + k2)e3] + gga2G3(e^ e^)

= | k 2 ( g j - 1)X (3.16)

(gl - 9)64 + | g 3 a ^ { - 2k^c^ + (k^ - 1)^2 + 2(1 + kJ)e^J + 83^04(^1 ^4)

= 0 (3.17) where

^1<^1 ^4> = h^ + ^1><^1 ^ ^2^ + l < ^ -^ ^1^<^3 + ^4> + K < " l + '^1^2 •

'3 - \'4^ ^ I V ^ ^ 3 - ^4 - ^1^4> ^ h ^ ^ l ^ 2 - ^1>' <3.18)

°2<"l ^4> = l^'^l ^ ^2><"f ^ ^2' -^ I ^''l + "2><^3 ^ "f> + r i < " 2 •" ^^1^3 " ^4^

^ l^2<'^1^2 ^ ^3 ^ ^^1^4 ^ ^1^3) ^ | V ^ 2 - ^1) <3-^^)

^ / V 3 , 2 2. 3 , 2 2, 3 / 2 2. 1 ,„ 2 2.

S<"l "4> = 4<"2 - ^1^ + 2 V"l + ^2> ^ r3<"3 ^ '4> "^ ri^^'2 ' 'l^

•^K"l^2 ^ ^h'3 -" ^'^iVs <3-20>

(10)

„ , K 3 , , 2 2, 3 , 2 2, 3 / 2 2. 1 . 2 ^ 2. °4<^r •••^4^ = 4 ^ < " 2 " ^1^ •" 2^4<"l + "2^ ^ ^ ^ 3 ^ ^4> ^ Véh ^ ^h^

and k = 1 or 2. Now from (2.12) and (2.15) 2 1

^3^e "" j ' ^ 3 ^ % ' ^^' ^'^^^^ ^^3 ^ -4 or 1, and, therefore, equations (3.14) - (3.17) become

(gl - DC^I + Jk3l(3 + kj)ej + 2k^e2 + (^J " 1>^3 ' ^^^^^ +

+ j k g G ^ (e^ c^)} = 0 (3.22)

gl - l>{e2 ^ \h^^\h + ^^ + ^*'l^^2 "• '^1^3 "^ *^1 " ^^^4^ ""

+ |-k3G2(ei e^)] = 0 (3.23)

(gj - 9)63 + (g^ - l){^k3t(kj - 1)€^ + 2k^e2 + 2(1 + kj)e3] + jk3G3(ej, . . . , e ^ ) }

= | k 2 ( g j - 1) X (3.24)

(gl - 8)€^ + (gj - 1) {|k3i:-2k^e^ + (kj - 1)€2 + 2(1 + kj)e4] +

+ j k 3 G ^ ( e j £4)} = 0 (3.25) The task of determining e e in t e r m s of X from these four simultaneous

cubic equations is formidable and probably best solved by the use of a digital computer for specific numerical values of X. This, however, is not the present task, which is to prove that (3.1) is a solution of (2.3) for a region of the g, , g „ , r space, close to, and containing, the individual members of the family of curves defined by g, , g , . r . F o r this purpose c, e. may

X »> 6 X 4 be taken to be, at most, of the first order of small quantities, then

G. , . . . , G contain t e r m s of the second and higher o r d e r s of small quantities only. Under these conditions equations (3.22) to (3.25) may be adequately approximated by

(11)

10

-- Ik^kgCj + |k3(kj -- l)e2 + {_n --f ^k3(l + k^)} e^ = o,

w h e r e n = (gj - 9)/(g^ - 1) ( 3 . 2 7 ) (3.28) ( 3 . 2 9 ) ( 3 . 3 0 )

T h e Solutions of t h e s e equations will be u s e d a s a guide to t h e s i z e of t h e r e g i o n in which t h e e x i s t e n c e of t h e solution ( 3 . 1 ) i s to be d e m o n s t r a t e d . It i s c l e a r f r o m t h e obvious complexity of t h e e l i m i n a n t of t h e s e equations that t h e g e n e r a l i t y p r e v i o u s l y sought, i . e . in u s i n g k, ,k and k , m u s t b e abandoned

X A o

and v a l u e s of e, , . . . , e . obtained for the two c a s e s s e p a r a t e l y .

C a s e ( i ) . k j = 0. k2 = 1. k3 = -4 T h e equations b e c o m e -2e^ + ^3 = 0

U- '

e^ + (n - 2)e3 = X/3 Cg + ( n - 2)e^ = 0 f r o m which e^ = X/3(2n - 3) = - (gj - l)X/3(g^ + 15)

^2 = °

€3 = 2X/3(2n - 3) = -2(gj - l ) X / 3 ( g j + 15) e. = 0 ( 3 . 3 1 ) C a s e ( i i ) . k j = 3 2 , k2 = 2, kg = 1

(12)

^h ^ 3*^2 + ^3 c„ - 3^e. }ie, + 7e„ + 3*€„ + 3^e, + 7^2 + 3^C3 + c^ = O ^1 ^ ^ % ^ 2^" "^ ^^^3 " '*^'^ -3^e^ + ^2 "^ 2 ^ " ^ '^^4 " ° (3.32)

Writing fl = 2(n -f 2), the solution of this s y s t e m of equations i s given by

ejA^ - C2/A2 = C3/A3 = e^/A^ = 1/A,,

where Ao = 12 1 _ q ï 5 32 1 -3= i i 3=* 7 3=» 1 1 3^ «1 -3^ 1 0 8 8x3^ 4 0 i i 3=" 7 3=^ 1 I 3» -32 1 "1 0

0

u^

= -4 0 2x32 1 2 1 7 3 ^ 3 * 0 3' 1 0 -3

i

(3.33) 2x32 1 35 1 1 \ 0 2 1 - 3 ^ + 4S 2x3 2 1 = 4(4 - 12n^ + %^) = 16(1 - n^)(l - 2J^), \ 32 1 -32 0 7 3^ 1 0 3^ n^ 0 -4X/3 1 0 n^ 0 4X/3 1 -3=* 3^ 3 * 1 7 0 n^ 1 . 4X(4 - 4f2^)/3 = 16X(1 - n^)/3

(13)

12 -^ 1 -32 o 5 3^ 1 O 3^ n^ O -4X/3 1 O - 3 ^ O ^ 4 X / 3 - 3 ^ 1 5 I 3^ 3^ II O - 3 ' = 16X(1 - fi^)/3^ ^ 5 3 i 3* 7 - 3 ^ O "^ ^* 1 O O -4X/3 1 32 - 3 ^ 1 n^ O 4 X / 3 - 3 ^ 5 32 1 3^ 7 n. - 3 ^ 1 = -128X(1 - n^)/3 Thus 5 3 = 3 * 7 3 * i •4X/3 1 32 O O - 3 * 1 O = - 4 X / 3 5 3^ 1 3^ 7 3^ -3' 1 O and €j = X/3(l - 2n^) = (g^ - l)X/3(43 - l l g ^ ) , €2 = X/3^(l - 2^^) = (g^ - l)X/3^(43 - U g ^ ) , 8e^. ^4 = 0 4 . A Proof of E x i s t e n c e

In the previous section it has been shown how the Galerkin technique of using truncated F o u r i e r s e r i e s may be used to obtain an approximate solution to equation ( 2 . 3 ) . However, it i s implicit in this p r o c e s s that if ( 3 . 3 ) i s to be an approximate solution to ( 2 . 3 ) then the difference between ( 3 . 3 ) , with a , . . . , b evaluated by m e a n s of ( 3 . 6 ) to ( 3 . 9 ) , suid the proposed

(14)

exact solution ( 3 . 1 ) m u s t be s m a l l in c o m p a r i s o n with ( 3 . 3 ) o r ( 3 . 1 ) . In t h e following t h e m e c h a n i s m of an e x i s t e n c e proof of ( 3 . 1 ) a s a solution to ( 2 . 3 ) will be e s t a b l i s h e d , b a s e d on the u s e of ( 3 . 3 ) a s an a p p r o x i m a t i o n .

T h e motivation behind the proof i s a s f o l l o w s . C o n s i d e r t h e function s p a c e S of a l l r e a l p e r i o d i c functions defined by F o u r i e r s e r i e s of t h e f o r m 2 ( 3 . 1 ) £md having a n o r m v(x) defined a s t h e L n o r m , i . e . 2v y(x) = {(2n)-^ ƒ x^{d)de]' ( 4 . 1 ) O A p r o j e c t i o n o p e r a t o r P naay be defined in S by t h e r e l a t i o n CO

P x = PE l a „ , , Sin (2n + 1)0 + b„ , Cos (2n -i- 1)0 } - Zn + 1 Zxi + 1 n = 0 m = E { a „ , Sin (2n + 1) 0 + b„ , Cos (2n + 1)01 , m<<», ( 4 . 2 ) „ 2n + 1 ^n + 1 •• n = 0

and in the p r e s e n t p r o b l e m m i s c h o s e n to be unity so that

Px = a Sin 0 + b Cos 0 + a Sin 30 + b Cos 30 ( 4 . 3 )

T h i s m e a n s t h a t if x given by ( 3 . 1 ) i s an exact solution to ( 2 . 3 ) then P x i s 2 t h e a p p r o x i m a t e s o l u t i o n . A l s o , by definition, P = P . C o n s i d e r now t h e s u b s p a c e S of S defined by S = ( x : x e S , P x = 0 } ( 4 . 4 ) T h u s if xeS t h e n eo

X = E f a„ ^ , Sin (2n + 1)0 + b„ . Cos (2n + 1 ) 0 } ( 4 . 5 ) . , '• Zn+ I 2 n + l

n = m + 1

Beflne the o p e r a t o r H on S by the r e l a t i o n

Hx = E (2n + 1 ) ' 2 {-a„ , Sin (2n + 1)0 - b„ , Cos (2n + 1 ) 0 ] ,

, Zn + 1 Zn + I ' n = m + 1

( 4 . 6 ) which c o r r e s p o n d s to a d o u b l e i n t e g r a t i o n of xeS with t h e c o n s t a n t s of i n t e -g r a t i o n taken to be z e r o .

(15)

14 -W r i t e ( 2 . 3 ) in t h e f o r m 3 x " = qx = - g X - g X + r Sin 30, ( 4 . 7 ) X Ó w h e r e q i s an o p e r a t o r on S, and c o n s i d e r t h e o p e r a t o r s f, F and T on S defined by 3 3 fx = qx - P q x = -g^x - g^x + P(gjX + g3X ) , ( 4 . 8 ) F x = Hfx = H { - g ^ x - ggX^ + P(g^x + g^xh] ( 4 . 9 ) and y = T x = P x -f F x = P x + H t - g ^ x - g3X^ + P(gj^x + g3X^)} ( 4 . 1 0 )

By p l a c i n g c e r t a i n bounds on i/(x), j x l , v(x - Px) and |x - r*x | i t i s p o s s i b l e t o define a s u b s p a c e S* a n d , provided c e r t a i n i n e q u a l i t i e s a r e s a t i s f i e d , it

will b e shown t h a t T : S -»^S and i s a l s o a c o n t r a c t i o n m a p p i n g . B e c a u s e T i s a c o n t r a c t i o n in S , B a n a c h ' s fixed point t h e o r e m (See Ref. 4 , p . 141) m a y b e invoked to conclude t h a t y(0) e x i s t s uniquely in S and i s continuously dependent on t h e a p p r o x i m a t i o n ( 3 . 3 ) . T h i s m e a n s that a , b , a . . . , a r e uniquely d e t e r m i n e d b y and continuously dependent on a b .

X o

If y(0) i s t h e fixed e l e m e n t of T in S , then y = x and f r o m ( 4 . 1 0 )

O Q y - P y = H { - g ^ y - g^j + P ( g j y + ggy )}

B i f f e r e n t i a t l n g t h i s e x p r e s s i o n t w i c e with r e s p e c t t o 0 gives

3 3 y " - P y " = -g^y - g^y + p ( g ^ y + g^y )

or

3 3 y " + g i y + ggy = P ( y " + g i y + ggy )

= r Sin 30 + P ( y " + g^y + ggy^ - F Sin 30)

T h u s y(0) will satisfy ( 2 . 3 ) p r o v i d e d

(16)

W r i t i n g 3

y (0) = a. Sin 0 + ^, Cos b + a^ Sin 36 + ^^ C o s 30 + a^ Sin 56 + , (4.12) 1 1 o o o

t h e n t h e condition ( 4 . 1 1 ) c o r r e s p o n d s to t h e s e t of d e t e r m i n i n g equations ( 3 . 6 ) to ( 3 . 9 ) in which a^. ^ ^ , a^ and ^3 r e p l a c e a^^, ^^^, a^^ and ^ 3 ^ ,

r e s p e c t i v e l y . T h i s exact s e t of d e t e r m i n i n g equations m a y be w r i t t e n in t h e f o r m

^ 1 = %

-

^^h ^

h^'l

= 0

r = 0

V„ = (g, - 9)a„ + go„ 3 '^1 3 ^3 3 ^ 3 = ^ % - ^ ^ ^ ^3^3 0. ( 4 . 1 3 ) whilst t h e c o r r e s p o n d i n g a p p r o x i m a t e s e t of d e t e r m i n i n g e q u a t i o n s ( 3 . 6 ) t o ( 3 . 9 ) m a y b e r e - w r i t t e n in a s i m i l a r f o r m ^ 1 = < % " 1 = < % ^ 3 = ^ ^ 1 u „ = ( g , - 1 ) ^ ^ g3'^10 - 1 ^ ^ ^ 3 ^ 1 0 - « ) ^ 3 ^ ^3*^30 • - 9 ) b „ + g„i3„„ = 0 = 0

- r = 0

= 0 30 ( 4 . 1 4 ) y

B e n o t e by A the f o u r - c e l l defined by I a | 4n | a | , jbj^ I"^^2 1^ I ' 1^3 l ^ ' " 3 l % l ' I'^S'•^'"4 I % ! • '\' ^' '^' ^4 ^ ° ' In t h e E u c l i d e a n f o u r - s p a c e of C a r t e s i a n c o - o r d i n a t e s a , b , a b . L e t Mand Mo be m a p p i n g s , d e s c r i b e d by equations ( 4 . 1 3 ) and ( 4 . 1 4 ) , r e s p e c t i v e l y , f r o m t h e v e c t o r s p a c e of c o m p o n e n t s (a , b a , b ) to t h e s p a c e of c o m p o n e n t s (Vi , U , V , U ) and (v, , u, , v , u ). T h e s e m a p p i n g s a r e s i n g l e - v a l u e d 1 1 3 3 l l i j 3

and c o n t i n u o u s . Befitie C and C a s the c l o s e d t h r e e - c e l l s d e s c r i b e d by MA and M A^ r e s p e c t i v e l y , w h e r e A^ i s t h e b o u n d a r y of A. It m a y b e v e r i f i e d d i r e c t l y w h e t h e r , o r n o t , t h e o r i g i n of t h e i m a g e f o u r - s p a c e l i e s in C , and w h e t h e r C h a s n o n - z e r o o r d e r v (C , 0), with r e s p e c t to the

0 0 o

o r i g i n (See Ref. 4 , p . 1 5 and p . 3 0 ) . If (u, v) r e p r e s e n t s a g e n e r a l point in C t h e n i t s d i s t a n c e f r o m t h e o r i g i n i s

(17)

16

-| ( u , v ) - OJ = -| { v ^ + u j + v^ + u ^ j ^ l (4.15)

S i m i l a r l y , if (U,V) i s a g e n e r a l point in C then the d i s t a n c e between (U,V) and ( u , v ) i s

| ( U , V ) - ( u , v ) | = | [ ( V j - v^)2 + (Uj - u ^ + (Vg - Vg)^ + (U3 - ^^f}^\

- I g 3 [ ( « i - « 1 0 ) ' + (^1 - ^ 1 0 ) ' + (-3 - - 3 0 ) ' ' <^3 • ^ 3 0 > ' i ' l •

(4.16)

which m a y b e computed using c e r t a i n e s t i m a t e s for o- " ''^i« • l^i ~ ^ i n ' ' I a„ - a I and j ^ - ^OQI • ^ i* c a n b e e s t a b l i s h e d that

| ( U , V ) - ( u . v ) | < | ( u . v ) - 0 | ( 4 . 1 7 )

f o r a l l points in C and C , o r o

g i b | ( U , V ) - ( u , v ) | < l u b | ( u , v ) - o | , (4.18)

t h e n by R o u c h e ' s t h e o r e m (See Ref. 5, V o l . 3 , p . 103) it follows that

v(C ,0) = v(C ,0) ^ 0, (4.19) o

o r t h a t

7 ( M , A , 0 ) = 7(M , A , 0 ) ^ 0, ( 4 . 2 0 ) w h e r e ^ ( M . A . O ) i s t h e l o c a l topological d e g r e e of M at t h e o r i g i n r e l a t i v e to

A. It then follows f r o m Ref. 4 , p . 3 2 , T h e o r e m 6 . 6 t h a t t h e r e i s a point in t h e i n t e r i o r of A for which v. = u = v = u = 0, and a n o t h e r point in t h e

± X O O

i n t e r i o r of A for which V^ = U^ = V- = U„ = 0. T h i s i m p l i e s that t h e exact s y s t e m of d e t e r m i n i n g equations ( 4 . 1 3 ) a r e s a t i s f i e d for c e r t a i n v a l u e s of a. , b . , a , b contained in t h e c e l l A a n d , t h e r e f o r e , y = x , a s given b y equation ( 3 . 1 ) , I s an exact solution of ( 4 . 7 ) a n d , t h e r e b y , equation ( 2 . 3 ) , f o r c e r t a i n v a l u e s a , b , , a , b contained in A,

5 . S o m e N o r m s and P s e u d o - n o r m s

(18)

2jr

o i i/(x) = [(27r) ' / x^(0)d0] ^

V

o

2jr

I(27r)' ƒ (a^ Sin 0 + b^ Cos 9 + a^ Sin 30 + h^ C o s 30 + . . . . ) ^ d 0 ] ^

o Now 2jr * n ^ m ^"^ " ^ Sin m 0 d0 = O, m ^ n o 2;r a b Sin n0 C o s m 0 d0 = O, n m 23r b b C o s n0 Cos m 0 d6 = O, m /t n n m whilst 2ir

al Sin n0d0 = a ^ i 0 / 2 - i - Sin 2n0]^'' = na^

n n 4n ^o n and 2 T hl Cos^ n0d0 = b^(0/2+ i - Sin 2n0]^'' = wh^, Il n 4n o n "o therefore v(x) = I2'^(a]^ + ""l + ^3 + ''s + ^ 5 + • • • • ) ] " (5.1) - 1 . 2 , 2 2 , 2 . 2 . i V F r o m (4.3)

(Px) = 12"\af + bj + a^ + b^)]*

(19)

18 and i/(x - Px) = 1 2 ' ^ a ^ + bg + a^ + . . . . ) f . t h e r e f o r e i/(Px) .$ i/(x) and (* ( 5 . 2 ) v(x - Px) ^ v(x) f o r a l l xe S . Now

X - P x = a Sin 50 + b Cos 50 + a Sin 70 + b Cos 70 +

and f r o m ( 4 . 6 )

H(x Px) = 5 ' ^ a Sin 50 s ' ^ b Cos 50 7~^a Sin 70

-T h u s

- 1 - 4 2 -4 9 -4. 2 i i^H(x - Px) = [2 (5 ag •+ 5 bg + 7 a^ + )]2

-2 -2

^ 5 ^(x - Px) <: 5 i/(x) ( 5 . 3 ) In addition to t h e n o r m v, c e r t a i n r e s t r i c t i o n s will be put on x by m e a n s

of t h e p s e u d o n o r m

| x ( 0 ) | , 0 ^ 0 < 2jr

and t h e r e s u l t t h a t

I X I = I a Sin 0 + b C o s 0 + a Sin 30 + b Cos 30 + a Sin 50 +

' X X o o O

^ 1^1 1+ I M + h g l + Ibg 1+ l a j + . . . . (5.4)

will b e u s e d . T h u s | H ( X - P X ) I = | - 5 ' ^ a Sin 50 - 5 ' \ C o s 50 - 7 " \ Sin 70 - |

^5-2 | a J + 5 - 2 ( b J + 7 2 | a J + . . . .

^ (5 + 7 + . . . ) (a + b + a + . . . ) = ' 5 5 7

(20)

Now i -4 -4 i 4 2^(5 + 7 + ) ^ i / ( x - Px)

c<:2^(5'^ + 7'^ +

....)KM 1 + 3 " * + 5 ' ^ + 7"* + = »r*/96, (See Ref. 6 p . 167, E x a m p l e 3 , and s u b s t i t u t e x = 0), t h e r e f o r e | H ( X - P x ) | 4:2^(7r^/96 - 1 - 3"*)^ i/(x) ;$ 0 . 0 6 8 3 i/(x) ( 5 . 5 ) In a s i m i l a r m a n n e r , if h i s an o p e r a t o r in S, i/H[hx - P ( h x ) ] ^ 5 ' \ Ih - P ( h x ) ] ^ 5'^i/(hx) ( 5 . 6 ) and | H [ h x - P(hx)]|<: 0. 06831/fhx - P(hx)] <: 0.0683f(hx) ( 5 . 7 ) 6. Conditions f o r T t o b e a C o n t r a c t i o n Mapping in S

C o n s i d e r t h e four c e l l A defined in Section 4 . Then x* i s defined a s

X* = a Sin 0 + b C o s 0 + a Sin 30 + b C o s 3 0 , ( 6 . 1 ) with a , b , a , b contained in A. It follows t h a t

i/(x*) = [2-\al + bj + a^ 4- b^)]*^ [2"^^^ +4^4^ 4^)^K I = '^

and | x * | < | a j + | b ^ | + l a g ! + Ibg I < (MJ + '^2 ^ ' ' S "^ V % l = "" o r i / ( x * ) < c = a(/u) | a ^ I , ( 6 . 2 ) and | x * | ^ r = T(ui) j a ^ | , ( 6 . 3 ) w h e r e CT(JU) = { 2 ' (MJ + ^^ + H^ + ^ 4 ) } "

(21)

20

-and

T (ju) = *"! + ^"2 "*" '"3 "*" '^4 *

Befine S to b e the set of a l l x(6) a s given by ( 3 . 1 ) which satisfy t h e conditions P(x) = X* ^ v{x) 4 d | x | ,^ R

v(x -

Px) ^ *l% I

| x - P x j < p | a j

w h e r e d, R, 6 and p will b e chosen b e l o w . T h e n

i/(Px) = v(x*) < c and | P x | = | x * | < r for e v e r y x in S C o n s i d e r t h e m a p p i n g T : S -* S defined in ( 4 . 1 0 ) , t h e n P y = P T x = P ( P x + Fx) = P P x + P F x . Now f o r t h e p r o j e c t i o n P , P P x = P x and P F x = PHfx = 0, t h u s P y = Px = X* and f r o m (4.10) ( 6 . 4 ) ( 6 . 5 ) y - P y = H { -g^x - g3X + P(gjX + g3X )] * *

It i s r e q u i r e d now to obtain conditions f o r T : S -^^ S . F o r t h i s p u r p o s e i/(y - Py) and | y - r>y| will b e evaluated in t e r m s of

fJt., . . . . A«4, I a |, 6 and p. W r i t e

( 6 . 6 )

t h e n

X = Px + (x - Px)

(22)

Thus

viy - Py) = i/H [g^(x - Px) + g3(x^ - Px^) ]

= I/H {g^(x - Px) + g3[(Px)^ - P(Px)^]

+ 3 g 3 [ ( P x ) V - Px) - P ( P x ) ^ x - Px)]

+ 3g3[(Px)(x - Px)^ - P(Px)(x - Px)^]

+ g 3 [ ( x - Px)^ - P(x - Px)^] j

« | g j yH(x - Px) + | g 3 | { v H [ ( P x ) ^ - P(Px)^]

+ 3i'H [ ] + 3i/H [ ] + i/H [ ]} (6.7) and s i m i l a r l y

ly - P y U |gi I

|H(X

- Px)| + jgglflHKPx)^ - P(Px)^] I +

3 | H [ . . . . ) |

+ 3 | H [ ] | + | H | , . . . ] | ] ( 6 . 8 ) Consider the t e r m s in t h e s e e x p r e s s i o n s in o r d e r , with xeS .

Then from ( 5 . 3 ) , ( 5 . 4 ) and ( 6 . 4 )

I/H(X - PX)4 5'\(X - P X ) <: 5"^6 la I ") ' e '

and

|H(X - P X ) | ^ 0.0683 i/(x - Px)4 0 . 0 6 8 3 6 | a Now

(Px)^ - P(Px)^ = «gQ Sin 50 + 0gQ Cos 50 + a^^ Sin 70 + ^^^ Cos 70 + agQ Sin 90 + /Sg^ Cos 90,

therefore

. ((Px)' - P(P,)'l . l2-\.^„ * S^„ * .?„ . S5„ * al^ . 4„)1*

(23)

22

-and

|(PX)2 - P(PX)^\4 | a g j + l ^ g j + . . . . + l ^ g j .

In o r d e r to evaluate these, estimates for I a,.n , etc. a r e required. These ou

may be obtained from the expressions for a , etc. in Section 3 and the definition of A . Thus

| | ^ | | 3 ( 3 , 2 2. 3 3 , 2 2, 3 . l**5ol ^ ' % l fl'^S^^l + ^2> "" 2 ' ' l V 4 ^ 4^1<^3 + ^4> "^ 2 ''2*'3''4^ '

It will be seen later that the values of M. , ..,,tJi. will be expressed in t e r m s of X alone, thus l a ^ n l , . . . . , | ) 3 I may be expressed in the form

l"5o'-< ^0<^>'%l'

1^50 ' -< ^50<^>l%l'

u,oi ^ ^ o < ^ ) ' ^ l '

• N y (6.10) where

^50<^^ = h^3^4 + ^2^ "^ '^l^'^S + ^^4^^ ^ I V4<''l ^ ^3^

^50<^> = | t ^ 4 < ^ f + ^2^ + *'2^^3 "• ^4>^ •" l ^ l ' ' 3 < ^ 2 "" ^4>

A7o(^> = K ( ^ 3 + ^f) + l^2^3^4

^70<^> =K^^3 + ' ' ? ^ I ^1*^3^4

Ago(X) = ^^y^ + 3^2)

«90<^) " K<^''3 ^ ^J

-\ (6.11) y

(24)

T h u s i/[(Px)^ - P ( P x ) ^ ] < </>(X)|a3|^ (6.12) and ((Px)^ - P ( P x ) ^ | ; ^ , ^ ( X ) | a ^ | ^ , (6.13) w h e r e ^X) = [ 2 " ' ( A 2 ^ + B 2 ^ + . . . . .BI^)]" (6.14) and *<^) = ^ 0 ^ ^ 5 0 ^ • • • • ^ ^ 9 0 - < « - ' ^ )

It will be noted that

AgQ B Q Q , (^(X), ^ ( X ) ^ 0 .

F r o m ( 5 . 6 ) and ( 5 . 7 ) it now follows that

v H [ ( P x ) ^ - P(Px)^] 4 : 5 " ^ ^ ( X ) | a ^ | ^ ( 6 . 1 6 ) and | H [ ( P X ) ^ - P(Px)^] I ^ 0 . 0 6 8 3 ^ ( X ) l a ^ l ^ (6.17) Now f r o m ( 5 . 6 ) i/H[(Px)^(x - Px) - P(Px)^(x - Px)]4 5"^i/[(Px)^(x - Px)] < 5 " ^ | P x | ^ v ( x - Px) < 5 " ^ T V ) . « l a ^ l ^ (6.18) F r o m ( 6 . 2 ) and ( 6 . 3 ) and t h e p r e v i o u s r e m a r k s c o n c e r n i n g t h e e x p r e s s i o n of Ml . . . . iM. in t e r m s of X, it I s c l e a r that a and T a r e functions of X.

S i m i l a r l y

(25)

24 -Also, i/H[(Px)(x - Px)^ - P(Px)(x - P x ) ^ ] ^ 5'^i/[(Px)(x - Px)^] ^ 5 " ^ | P x | | x - Pxli/(x - Px)

;$ 5"^T(X). pója If (6.20)

e JH KPx)(x - Px)^ - P(Px)(x - Px)^] \4 0.0683 T(X).p6|a | ? (6.21) i/H[(x - Px)^ - P(x - Px)^] < 5~K{x - Px)^ < 5"^|x - Px|^i/(x - Px)

;$; S'^p^óla 1^ (6.22)

and | H [ ( X - Px)^ - P(x - P x ) ^ ] | < 0.0683 p^6 |a | ? (6.23)

Substituting these inequalities into (6.7) and (6.8) then gives

v(y - Fy)4 5 " ^ | a ^ | { | g j 6 + jg3||a^|^[0(X) + 3T^(X) 6 + 3 T ( X ) . p 6 + p^6] } and

|y - Pyl < 0 . 0 6 8 3 | a ^ | { | g j 6 + ^ 3 ! | ag|^I0(X) + 3 T W + 3 T ( X ) P 6 + P^6 ] }

Now from (2.12) and (2.15)

% =

We, -

l)/g3

or

Ki'-iigig^-ii/u,!.

therefore v(y - P y ) < 5 ' ^ | a ^ ( ( | g j 6 + | l k 3 | | g j - lI[<^(X) + 3T V ) 6 + 3T(X)p6 + p^ó] 1 (6.24) and ly - Pyj ^ 0 . 0 6 8 3 l a ^ | { | g j 6 + |-|k3| | g^ - ll [ ^X) + 3T ^X)6 + 3T(X)p6 + p^6]} (6.25)

(26)

The conditions for T : S * - S* "^^y now be established. F i r s t it is required to ask whether, for xeS ,

"^(y - P y ) ^ i^(x - P X ) ^ 6 | a I

and

|y - Pyl ^ |x - P x U pUgl

o r , upon using (6.24) and (6.25) and dividing throughout by a ^ 0 ,

5 " ^ { l g j ó + 3 | k g t t g ^ - lI[^X) + 3T (X)Ó + 3 T ( X ) P Ó + p^6]J4: 6 (6.26)

and

0 . 0 6 8 3 { | g j 6 + | - | k g | | g ^ - l | [ ^ X ) + 3T^(X).6-f 3T(X)P6 + p^è]]^ p. (6.27)

Now for xeS , Py = Px = Px* = x* and, therefore, j/(x) = 1/ [Px + (x - P x ) ] ^ i/(Px) + v(x - Px) 4 [o(X) + 6 ] | a | ^ d and | x | = JPX + (x - Px)| .$: |px| + |x - P x | < [ T(X) + P l j a ^ l ^ R. (6.28) (6.29) Similarly

v ( y ) ^ i/(Py) + i/(y - Py) < o(X)|a^| + i/(y - Py) (6.30) and

y ^ Py + l y - Py| ^ T(X)|a^| + ly - P y l . ( 6 . s i ) If the Inequalities (6.26) and (6.27) hold then from equations (6.28) to (6.31)

viy) 4 [oW + 6] l a ^ j < d | y U IrM + P ] | % U K

and hence yeS . Choosing d = [a(X) + 6]| a^l and

R = [T(X) + p ] | a I

(27)

with X, 5 and

26

-p satisfying (6.26) and (6.27), then T : Conditions for T to be a contraction mapping in in the following way. With x , x in S*,

EUld Also h = ^ 1 ^2 = P^2 Px^ therefore and »'(yi yi - yg =

- V ^ 5'

^ 5 ' < 5" ^ 5 ' < 5 ' Substituting for i ' ( y i - y2> ^ 5 ' - H[g^(Xj - Px^) + g^ixl - PxJ)] - H[g^(x2 - PX2) + g3(x| - Px^)] = X* = P X g , • - H { g ^ [ ( x ^ - P x ^ ) - (Xg - P X 2 ) ] + g 3 [ (

•^v[g^(x^ - =^2^ ^ h^4 ' 4^^

• ^ ' ' [ g l ( X i - X2) + g3(x^ - X2)(x^ + XjXg •2 r 2 2 i/{(x^ - X 2 ) [ g j + g3(x^ + x^Xg + X 2 ) ] }

s*.

S* 3 ^1 * S * . may be

- P . J ,

^4)]

' ' { . | [ g l + gg(Xi + X^X2 + X2)] (Xj - X2)} ' ^ g j + aigg K^' (xj - X2). R and then a gives

^ t l g j + [T(X) + p f ^ 3 ! |g^ - ij} v{x^

which means that T is a contraction in S provided

g j + [T When the mappint in S , theorem, Ref.

(X) + p ] ^ | k 3 | | g j - l | < 2 5

above conditions a r e satisfied for T to then it may be concluded, on the basis 4, p . 141, that the fixed element

-be of Xg). established - < ' ^ a contraction Banach' s fixed Px^)]] (6.33) point

(28)

y(0) = a, Sin 0 + b , C o s 0 + a^ Sin 30 + b , Cos 30 + a^ Sin 50 + 1 1 o o o

e x i s t s , i s unique in S and i s continuously dependent on x*. T h u s a_, b _ , a_, 5 5 7 b , . . . . , a r e uniquely d e t e r m i n e d by and continuously dependent on a , a b , ,

I X O X b for a , . . . . , b in A.

7 . E s t i m a t e s for a^. b ^ b g , \a^ - a^^l ^ - ^3^)

In o r d e r to b e a b l e to obtain t h e E u c l i d e a n d i s t a n c e between t h e c e l l s C^ and C , e s t i m a t e s of a^, b ^ b ^ , U^ - Q^J, IjSg - ^3^]

will be r e q u i r e d . F o r x in S , P y = P x = x* and it follows that

y - P y = a Sin 50 + b C o s 50 + a Sin 70 + , ( 7 . 1 )

a n d , t h e r e f o r e , t h a t a_, b_ e t c . a r e t h e F o u r i e r coefficients of (y - P y ) . o 0

C o n s i d e r now a p e r i o d i c function G(0) of p e r i o d 27r and t w i c e d i f f e r e n t i a b l e . A s s u m i n g t h a t G(0) h a s a F o u r i e r s e r i e s r e p r e s e n t a t i o n In both Sin n0 and

Cos n 0 , t h e n t h e F o u r i e r coefficients will b e given by

2ir 2ir a = TT" / G(0) Sin n0d0, h = w~ I G(0) C o s n 0 d 0 . o o E v a l u a t i n g t h e f i r s t of t h e s e i n t e g r a l s by p a r t s g i v e s 2v -1 f -1 -1 2^ a = ff / G(0) Sin n0d0 = ^ [-n G(0) C o s n 0 ]

J

o 2ff 27r + w'^ / n''^ G\9) C O S n0d0 = w'^ / n'^G* (0) C o s n0d0 o o which upon i n t e g r a t i n g by p a r t s a g a i n g i v e s 2ff a = -rr'^ / n ' ^ G " ( 0 ) Sin n0d0, ( 7 . 2 )

J

o

(29)

- 28 and in a s i m i l a r way 2ff b ^ = -ff"^ / n"^G"(0) C o s n0d0 (7.3) Now n ' 2n -1 f -2 -TT / n G"(0) Sin n0d0 27r « ir -1 | G " ( 0 ) n ' Sin n 0 | d0 - 2 which by t h e S c h w a r z i n e q u a l i t y i s 2jr 2ff 4 ^'^n'^[ I | G " ( 0 ) | ^ d 0 ] ^ [ / | s i n n 0 | ^ d 0 ] * 2w 2ff < 2^n'^[(27r)"^ / | G " ( 0 ) | ^ d 0 ] ^ [TT"^ ƒ j s i n n 0 | ^ d 0 ] ^ = 2*n"^i/(G") S i m i l a r l y j ^ » . " 2 „ / r < i i \ |b I < 2 ^ n ' V G " ) . I n'

Identifying (y - Py) with G(0) then y i e l d s

2»n v [ ( y - P y ) " ] ,

1^1

<

(7.4)

B i f f e r e n t i a t l n g ( 6 . 6 ) with r e s p e c t to 0 g i v e s

(30)

which m e a n s t h a t vHy - P y ) " ] = i/[g^(x - Px) + g3(x^ - P x ^ ) ] < | g j i / ( x - Px) + \g^liv[{Px)^ - P(Px)^] + 3 i / [ . . . J + 3i/[ ] + v[...]} = M a in a c l o s e l y s i m i l a r m a n n e r to ( 6 . 7 ) , o r f r o m ( 6 . 2 4 ) M = I g ^ j ó + i l k g l jg^ - l | [ ^ X ) + 3 T ^ X ) 6 + 3 T ( X ) P 6 + p^ó ] ( 7 . 5 ) T h u s

'^J '^ i -2 I I

2^n ^ M J a , ( 7 . 6 )

b I <

' n' and in p a r t i c u l a r

U J . |bj « 2^5-2

M U J

| a , ^ | , j b j < 2 * 7 " ^ M | a ^ |

\aj , Ibgl < 2 ^ 9 ' ^ M | a J

As a p r e l i m i n a r y to d e t e r m i n i n g \a^ - a. _| , e t c . t h e following r e l a t i o n s will b e r e q u i r e d : 2

(a Sin 0 + b j C o s 0 + a Sin 30 + b C o s 30) Sin 0

= 7 Sin 0 + ^y^ C o s 0 + Y Sin 36 + + y C o s 70 ( 7 . 7 )

(a Sin 0 + b C o s 0 + a Sin 30 + b C o s 30)^ C o s 0

= ?, Sin 0 + ?, C o s 0 + 5„ Sin 30 + + ?„ C o s 70 ( 7 . 8 ) s i c 1 s 3 c 7

2

(a Sin 0 + b Cos 0 + a Sin 30 -f b Cos 30) Sin 30

(31)

30

-and

2

(a Sin 0 + b Cos 0 + a Sin 30 + b Cos 30) Cos 30

?, Sin 0 + f, Cos 0 + r Sin 30 + + ?„ Cos 9 0 , ( 7 . 1 0 ) s 1 c 1 s 3 c 9 where 3T1 = | ( 3 a 2 + bf + 2a2 + 2b2 - 2a^a3 - 2b^b3) cT'l = l < ^ ^ ^ ^ ^ 3 - ^ ^ 3 > 1 / 2 , 2 , s^3 = ^ ^ 3 - 4 ^ - ^ >

c^3 = -ri<^ - 2^3)

s'^5 = | f - ^ ^ 3 ^ V 3 ^ l < 4 "^3>J

c'>'5 = " bh^3 ^\^3 ^ V3>

1 / 2 . 2 , s^7 = - 4 <^3 • ""S^ 1 . y » —^a b c^7 2 3 3 s^l = l < ^ ^ ^ ^ ^ 3 - ^''3>

Jl - h4 ^ 3bJ + 2a32 + 2b32 + 2a^a3 + 2b^b3)

s^3 = K < ^ ^ 2a3)

c^3" w - h4 - 4^

sh ' I^^^'S ^ ^ ^ 3 ^ ^3*^3^

c^5 ' l l - ^ l ^ S ^ - V s -|^^3 -^3>1

s^7 = |-^3^3 e I7 2 , 2.

0^7 '-t^3 - V

L 2 ,2,

^ ^ 3 " 4 ^ ^ - ^ >

(32)

c'^ ' K S ^^ag)

s'^ c'^ s ^ c*^

s'V

c'V

s"^ c'^ s^l c^^l s^3 c^3 s^5 c 5 8^7 c^7 s^9 c^9

'

hK

- K - K -

4^

-

1 ^ 3

=

| i v 3 ^

Vs

-V4

-4^^

- -

kW

^

^^3 -

h^3>

4<-^^3^^v

= - | < ^ ^ 3 ^ ^ ^ 3 >

L 2 , 2 ,

= - 4<^3 - ^ )

= - k^3

= J ^ ( 2 b 3 - b,)

=

b,b3

-

|(a2

- 4)

= i^3^3

' J ( 2 a j + 2b2 + a^ + Sb^) = | ( a ^ b ^ + bj^ag - a^bg)

=

|fV3^

Vs - K '

-4^^

' hhh ^ ^^3^

= | ( - a ^ a 3 + b^bg)

= l^3^3

1/ 2 ,2,

= -4<^3 - V

(33)

- 32 F r o m t h e s e , the following i n e q u a l i t i e s m a y be d e t e r m i n e d :

(s'^5l'W^< | f ^ ^ ^ ^ ^ 4 ^ <^'^^^J|%|'

ic^sl'ls^^^ h^\^ + ^ ^ +^^4^1^'^

Is^l 'lc^7l<

I M •''^^4^I%I^

Ic'^l'IsM^ I V 4 ^ ^ ^ ^ l % l '

l s ^ 9 l - l c ^ 9 l < I < ^ ' - - 4 ) | % l '

Ic'^l ' I s ^ ^ 1^4!^

2 el 3 F r o m ( 4 . 1 2 ) t h e F o u r i e r coefficients of y ( 0) m a y b e obtained by t h e r e l a t i o n s 2w 2-n - 1 / 3 - 1 / 3

a " Ti I y (0) Sin n0d0 and ^ = w / y (0) Cos n 0 d 0 .

*

F o r X in S , P y = P x = x*, and f r o m ( 3 . 4 ) t h e F o u r i e r coefficients of (x*)^ = (Py)^ a r e

27r 2ff

a = ff"'^ / (Py)^ Sin n0d0 and ^ = ff''^ / (Py)^ Cos n0d0

(34)

T h u s 27r

- 1 / 3 3

a - a = IT I [y - (Py) ] Sin n0d0

o

2n

= TT'^ / (y - P y ) [ ( y - Py)^ + 3(y - Py)(Py) + 3 ( P y ) ^ ] S i n n0d0

= J , + 3 J „ + 3 J „ , ( 7 . 1 1 ) n 1 n 2 n 3

w h e r e

2ir 2K

o o

= 2ly - PyJ^ax.^^^y • ^"^f < 2p6^|aJ?

2v 2it

l ^ j j =

I T T ' M

(y - Py)^Py) Sin n0d0| < ^1 Py| ^^^^ (27r)"^ / (y - Py)^d0

= 2lpylj^^^_ [v{y - Py)f < 2T(X)62|aJ?

27

I^Jgl = Iff'^ I (y - Py)(Py)^ Sin 6 d0l,

which f r o m ( 7 . 7 ) b e c o m e s

27

l.^al - !•"' ƒ

(a Sin 50 + b C o s 50 + )( 7 , Sin 0 + . . . . + 7 , C o s 70)d0l

D O B X C I

a_ 7c + b_ 7_ + a_ 7r, + b_ 7„ ,

(35)

- 34

and upon substituting for a 7 etc. this becomes

D S O

I1J3I ^ l i J g l U j '

where

I1J3I = 2 ^ M { 5 " 2 [ | ( M ^ ^ + ^^^i^) + 1 ( / | + M4) +1(^1^4 + A^/^ + ^^^^)]

similarly

+ 7"'[i(A| +/|) ^I^M,]};

2v

-if, „ w„ >2

3J3I = I T / (y - Py)(Py)^ Sin 30 do o 2]r " TT / (^5 ^^^ ^^ + bg C o s 50 + ...)(gr)^ Sin 0 + . . . + ^r^ C o s 90)d0 o = ' ^ 5 s % + ^5c^5 ^ ^ s ^ ^ N c ' V ^ ^ 9 s ^ -^ ^ c o r

3'^3l

-^

13^3" %'^'

where

igjgl - 2W5-2[|(M^^ + ^^^) +1(^2 ^ ^ j ^ 1 ^ ^ ^ ^ ^ ^ ^ ^^^^^

+ ^ ' ^ l | < ^ ' ^ +'^^4> + | ^ ^ 4 ^ ^ ^ ^ J

-

9 - ' [ ^ A |

. M^) 4^M4]}

It follows that a^ - a ^ J < [2p6^ + 6 T ( X ) 6 2 + 3 | ^ J 3 | ] | a ^ | ^ '*3 " ' ' 3 0 ' ^ f^pó^ + 6 T ( X ) 6 2 + 3I3J3I ] la^l^

(36)

A l s o , 2ir ^n • ^ n o " ' ^ ' ^y^ ' ^ ^ ^ ^ J ^ ° ^ "®**® = L + 3 L + 3 L ( 7 . 1 2 ) n 1 n z n o where

LsU<2p6 2laJ?

|^L2|<2T(X)62|aJ?

2 7

'.^1 • ! ' • ' ƒ <

a_ Sin 50 + b . C o s 50 + . . . ) ( f, Sin 0 + . . . + ?„ C o s 70)d0l 5 5 s i c 7 ' ^ s « 5 ^ ^ c ^ 5 ^ ^ s ^ ^ ^ c ^ ' ' 2 7

, - L , | = 1 7 " ^ / (a Sin 50 + b_ Cos 5 0 + . . . ) ( f, Sin 0 + . . . + r C o s 90)d0|

0 0 f O 5 S i c 9 » | a _ r_ + b_ L + a_ ? , + b„ 5„ + a„ C„ + b„ r | . * 5s 5 5c ^ 7s 7 7c 7 9s 9 9c 9 and, thereby,

l i S l ^ l i ^ J ' s l '

3^1 < I3^3"S''

where 1^13! = l^jgj and [glgj = \^i^\. T h u s

'**! " ' ' 1 0 '

< / [ 2 P + 6 T ( X ) ] 6 ^ + 3 t ^ J 3 | } | a ^ ( 3 ( 7 . 1 3 )

1^1 "^in I

1 ' ^ l O '

(37)

36

-and

"^3 " '*30'

1^3 - ^ 3 0 l

< { [ 2 p + 6T(X)]Ó^ + 3 | 3 J 3 J } j a ^ | ? (7.14)

8. An Estimate for lub I (u,v) - ol

Since n. , . . . . , u , define the cell A, and hence S , it is clear that If S is to contain the proposed exact solution then A must contain the point (a ,b ,a ,b ) defined by the leading coefficients of the exact solution and

X X O 0

H. u must be chosen so as to make this possible. Now l a j = 1(1 + e ^ ) a j « d + U i l ) | a g |

j b j = [(k^ + e 2 ) a j < ( | k j + | e 2 l ) l a j

' ^ 3 ' = I V e l

^ 3 " % l

' V e ' ^1^4! I % l '

and if ju. ^ a r e chosen so that

( 8 . 1 ) 1 + l^ll^ l\

j k j + |e2l< ^

^ 3 ! ^ ^

1^4! < ^4

(8.2) then

| a j < M j a ^ j . IhJl^H^l^J. Ugl 4n^\aJ and [bgl KU^JsiJ

a s required. The four-cell A is then defined a s the set of points correspond-ing to all combinations of e^ e. in the intervals

1 - ^^ < e^ < M^ - 1. k^ - ^2 ^ ^2 *= ''2 " ^ 1 ' " ^ ^ S -^ ^ 3 ' • ''4 -^ ^4 ^ ^'4 (8.3)

(38)

The set of points defining the boundary three-cell A^ are obtained by taking e. e., in turn, to be their extreme values in the above definition. Thus Ap is made up of the following collection of three-cells:

e^ = 1 - ^ 1 . k^ - ^2 ^ ^2 ^ ^2 • ^ 1 ' "'^3 ^ ^3 ^ ^ 3 ' '^4 ^U^ ^ 4 '

Cj = ti^ - 1, k^ " ^"2 ^ ^2 ^ '^2 ' '^l • '^3 ^ h ^ ^^3' '^4 ^ ^4 "^ '^4'

N

> (8.4)

1 - y^ 4€^ 4n^ - 1, kj - jU2 < ^2 ^ ^ 2 ' '^l' "'^3 ^ ^3 ^ ^ 3 ' ^4 "" ' ^ 4 ' ^ where e. e take on all values over their respective intervals.

From equations (2.8), (2.9), (2.10), (2.11) and (4.14) it foUows that Vj - (g^ - l)(aj - a^) + g3[«^^ - | a ^ ( a 2 + b^)}

Ui = ( g i - l ) ( b i - b ^ ) + g 3 f ^ i o - | V % ^ ^ e > >

-3 = <% - ^ ^ " g3^"30 - WK - 4^^ - <^ - ^e)

U3 = (g, - 9)^3 + gat^ao 4 ^ ( 3 % - b ^ ) 5 .

which, from equations (3.22), (3.23), (3.24) and (3.25), reduce to

vi = (gj - DCe^ +i-k3 [(3 + 4)e^ + 2k^e2 + (kj - Dcg - 2k^eJ + l-kgG^l a e (8.5) Uj = (g^ - 1){£2 +4k3[2kjCj + (1 + 3kJ)€2 + 2k^e3 + (kj - l)c^] + gkgGg'i a

Vg = [(gj - 9)eg + (g^ - l ) { | k 3 [ ( k j - De^ + 2k^e2 + 2(1 + kj)e3]

Ug = [(gl - ^ \ + (gl - l)[\k^[-2k^€^ + (kj - 1)€2 + 2(1 -f kj)c^]

e (8.6)

(8.7)

(39)

38

w h e r e G, , . . . , G . a r e given by equations ( 3 . 1 8 ) , ( 3 . 1 9 ) , ( 3 . 2 0 ) and ( 3 . 2 1 ) .

T h u s C i s given by M A _ , w h e r e M i s defined by equations ( 8 . 5 ) , ( 8 . 6 ) , o o B O

( 8 . 7 ) and ( 8 . 8 ) , and A^ i s t h e t h r e e - c e l l defined by ( 8 . 4 ) . T h e d i s t a n c e | ( u , v ) - o | Is then given by ( 4 . 1 5 ) .

In o r d e r to employ t h e Inequality ( 4 . 1 8 ) it i s r e q u i r e d to d e t e r m i n e l u b | ( u , v ) - o | . F o r m a l l y it i s not a difficult p r o b l e m t o d e t e r m i n e t h e m i n i m a of | ( u , v ) - o | . T o do t h i s , h o w e v e r , r e q u i r e s t h e solution of a s e t of s i m u l t a n e o u s equations of an equal d e g r e e of complexity a s ( 3 . 2 2 ) , ( 3 . 2 3 ) , ( 3 . 2 4 ) and ( 3 . 2 5 ) , a t a s k which h a s a l r e a d y been avoided. T h i s difficulty m a y , to s o m e e x t e n t , b e o v e r c o m e by u s e of t h e inequality

l u b | ( u , v ) - o| > | { ( l u b v ^ ) ^ 4 ( l u b u j ) ^ + (lubv3)^ + ( l u b u 3 ) ^ J ^ j , ( 8 . 9 )

which, when o n e of c o m p o n e n t s i s d o m i n a n t , usefully r e d u c e s t o

f V, I I I " l l u b | ( u , v ) - 0 | > l u b ^ ( 8 . 1 0 ) T h e u s e of t h e right hand s i d e of ( 8 . 9 ) , in p l a c e of l u b | ( u , v ) - 0 I, in ( 4 . 1 8 ) will u s u a l l y u n d e r e s t i m a t e t h e s i z e of t h e r e g i o n in t h e g. . g o . l ^ s p a c e f o r which t h e e x i s t e n c e t h e o r e m can b e p r o v e d t o b e v a l i d . N e v e r t h e l e s s , v a l u a b l e r e s u l t s c a n s t i l l b e obtained by i t s u s e . C o n s i d e r t h e evaluation of lubv^ . T h e f i r s t s t e p i s to d e t e r m i n e w h e t h e r any m i n i m a e x i s t in v- a s e^ , . . . , e. v a r y o v e r Ap.. B i f f e r e n t i a t l n g equation ( 8 . 5 ) g i v e s 9v d€ dv dv 8? 8v

^ =(gi -1){1 4 k 3 ( 3 + k 2 ) 4 k 3 ^ ) a ^

BG

'- =(gi - I J ^ K ^ ^ K B^^%

1 1 9 1 ^^1 N ^ 8v- , . dG

_ i =(g, - D f - h k g . l k g — )a

4 4 ( 8 . 1 1 ) y

(40)

w h e r e dG 8

8-^

=

l^^^l

-

^l<-2

-

^4)

- ^^

^'M ^ 4 -

2<^3

-

^4)^

^

= F ^ < ^ 1 -^ ^3> •" "2 • "4 -^ ^1<^2 - ^4> •" *^lV3i

1 8G ^^2 8G^ ^^3 and

• | ' - ' l * V 2 * ^V * 'V3 * I'V2

«f>

8G^ 3 8 ^ = 2 ^-"^l^l 4 ( 8 . 1 2 ) y -2 ^ 2e4 + e^(2e^ ^ 2 « , u . will b e c h o s e n so Now in t h e s u b s e q u e n t a n a l y s i s t h e v a l u e s of u. , t h a t t h e v a l u e s of e. , . . . , e . on A a r e , at m o s t , of t h e f i r s t o r d e r of s m a l l q u a n t i t i e s . T h u s , f r o m ( 8 . 1 2 ) , t h e d e r i v a t i v e s 8 G . / 8 c . , , 8G^/8e^ a r e , at m o s t , of t h e f i r s t o r d e r of s m a l l q u a n t i t i e s . T h e c o n s t a n t t e r m s In t h e t^ b r a c k e t s in ( 8 . 1 1 ) a r e e i t h e r z e r o o r of o r d e r unity, it follows, t h e r e -f o r e , t h a t it i s p o s s i b l e -f o r 8 v ^ / 8 c , , . . . . , 8 v . / 8 e . t o b e z e r o only when t h e s e c o n s t a n t t e r m s a r e z e r o . T a k i n g t h e s e in t u r n

| l + k3(3 + kj)/4| > 0. Ik^k3/2| ^ 0, |k3(kj - 1)/4| > 0,

thu s it Is p o s s i b l e f o r 8 v . / 8 e and 8 v , / 8 e . to b e z e r o in t h i s r a n g e of C j , . . . , e , but not 8v-/8e- o r 8v / 8 e . Now with e ,

on A t h e l e a s t condition f o r a m i n i m u m i s 1 - ju, o r e,

Ü1

8e., 8 € , 8v^ 8e. = 0 .

But 8 v , / 8 e ^ 0 in t h i s r a n g e , so t h e r e can be no m i n i m u m on the p a r t of X Ó

' = H. - 1 . S i m i l a r l y with e „ = k. - / ^ o r

A defined by c , = 1

B 1 o r

(41)

40

-But 8v-/8e- h 0 in this range, so there can be no minimum on the part of A defined by c„ » ± (k^ - nJ). Similar arguments apply to the parts of A defined by e„ = ± M, and e » * H.- Since, then, there a r e no minima In v.(e, e ) for e , . . . , e in A , it may be concluded that lub v^ is the value of V. at one of the sixteen combinations of extreme values of e-, . . . , e . The values of | v J at these combinations of extreme values may conveniently be called "corner" values, (v^) , and these a r e readily evaluated. Birect conaparison of these corner ' values then yields the least value

min (v,) ] . • lubv^

1 c Ag (8.13)

Consider now the evaluation of lubu^ . Bifferentiatlng (8.6) gives

'2i

~ = ( g l - 1) ^ ^ ^ ^ 3 ^ ^ ^ 3 8 - ^ 1

du

^ = ( g , - I ) { l . l k 3 ( 1 . 3 k f ) . l k 3 ^ ) a ^

3^=(g, -l){-k,k3 4 k 3 3-^}

^ '3 864 * e where

^ S 3

^ '- 2 ^'^l^l ^ h ^ Sh - '4 ^ ^1^2 ^ ^2^3 - ^l"4>

y = I <^1 ^ '^^2 ^ ^3 ^ ^^4^ n<^l ^ '4 ^ 2-3 •*• 2^4>

(8.14) \ , >(8.15) ^ 2 <^1^3 ^ V4>

^ S 3

i ^ = 2 ^Sh ^ ^2 ^ ^kjCg + e^e2 + 2^263)

87-' = l < - ^ ^ V 2 ^ 2 k ^ V ^ H - ^ l > ^ 3 V 4

4

(42)

In C a s e (11), and u n d e r t h e s a m e conditions a s w e r e a s s u m e d in t h e d i s c u s s i o n of l u b V j , t h e p a r t i a l d e r i v a t i v e s 8 u . / 8 e , 8 u . / 8 € , 8Uj/8e and 8 u - / 8 e . a r e not z e r o . It follows t h a t lubu^ c o r r e s p o n d s to t h e l e a s t c o r n e r v a l u e . In C a s e (1)

|-k^k3 = 0, l+|-k3(l + 3kJ) = 0. Jk3(kj - 1) > 1

and only 8 u . / 8 e . can b e g u a r a n t e e d t o b e o t h e r t h a n z e r o , without f u r t h e r exanninatlon of t h e p a r t i a l d e r i v a t i v e s of G , F o r t h e p a r t s of A defined b y

z a

c- = ± (1 " /"i^i -o ~ * (ki " A*J and c = ± M, , r e s p e c t i v e l y , it i s c l e a r t h a t

t h e l e a s t condition f o r a m i n i m u m cannot b e s a t i s f i e d , b e c a u s e 8 u ^ / 9 e ^ 0. When e . = ± ^ t h e l e a s t condition f o r a m i n i m u m in u, on t h e a p p r o p r i a t e 4 4 1 part of M A _ i s o B

®"l 4 » S

3 ^ = - 3 (gl - l ) a ^ . ^ -0 bM 8G

8 ^ = - 1

<^i

- 'K- ^ - °

8u 4 8G

E x c l u d i n g t h e condition g, = 1, a = 0, t h e conditions for a m i n i m u m on A b e c o m e B 8G2/8€i = 8G2/8€2 = 8 0 2 / 8 6 3 = 0 o r f r o m ( 8 . 1 5 )

l<^2 - ^ 4 ^ V 2 * - V 3 - V4> ' ° <«-^«>

I <^i - ^3)' M ^ '4 ^ ^4' '4^ ^ I <^i^3 ^ V4) = ° <«-^'>

| e 2 ( l + -1 + 263) = 0 ( 8 . 1 8 ) Now 1 + e, + 2e_ A 0, t h u s f r o m ( 8 . 1 8 ) , e_ = 0 at t h e m i n i m a . X 0 A

(43)

- 42

- f e ^ d ^ c ^ ) = 0.

But 1 + e, ^ O, thus e. = O at the m i n i m a . However, the value of e. on this part of A h a s been fixed at ^ or - ju.. where u^ ^ 0. It follows that

ti 4 4 4

there can be no m i n i m a in u (e. , . . . , e . ) for e e in A defined by

VI e = ± A». ^ 0. Summarizing, lubu

1 = " ^ ^ < " l ) c U

B' F r o m ( 8 . 7 ) , 8v ^1 8v

^"^3 rl 2 1 ^ S

8G„ J- = (g^ - 1) {2kik3 + 3 k 3 9-^ \ ^ N ^""3 1 2 1 ® S

^ = [(gl - 9) + (g, - 1) {|k3 (1 . k^) . ik3 ^ ) ] a ^

""3 1 , , n ' ° 3

4 4

y ( 8 . 1 9 ) (8.20)

Now In Case (11) both

W4 - l ) > 0 a n d | k ^ k 3 > 0 ,

so that lubv corresponds to the least corner value. In Case (i)

^^y - 1) > 0 and |k^k3 = 0 .

Thus 8v„/8e, ^ 0 and there can be no minima in v„ for the parts of A

3 1 o o defined by Cg = ± (k^ - A^), Cg = ± ^ and e^ = ± ^«4. r e s p e c t i v e l y .

When e = ± (1 " K ) the l e a s t condition for a minimum in v on the appro-priate part of M A i s

^ 3 4 , , , ^ 3

(44)

« - 3 «^3 «^3 Now 8G„ = {gl - 9

= - 1

(gl

o ( g , -- ^ ) %

4 ^ S

) j a = O (8.22) e = O ( 8 . 2 3 ) B^ - I ^2<^ -^ ^1 ^ 2C3). and t h e condition ( 8 . 2 1 ) i s s a t i s f i e d by €„ = 0. A l s o

! i -3

8e^ 2 V 4 ' 4

and condition ( 8 . 2 3 ) i s satisfied by t a k i n g e = O o r e = 0.

Upon s u b s t i t u t i n g f o r 8 G „ / 8 € in ( 8 . 2 2 ) t h i s b e c o m e s , a f t e r s o m e r e a r r a n g e

-«3 O

m e n t with e„ = 0,

(-1 - 4e^ - 2^1 - 3el - €^)(gi - 1) - 8 = 0,

a condition which can b e s a t i s f i e d f o r a v a l u e of g^ a p p r o x i m a t e l y equal to - 7 . If, h o w e v e r , g i s r e s t r i c t e d to the i n t e r v a l - 6 < g^ ;g:oo ( 8 . 2 4 ) t h e n t h e m i n i m u m cannot e x i s t and lubVg = m i n (V3)^]^ ( 8 . 2 5 ) B A c l o s e l y p a r a l l e l a r g u m e n t shows that p r o v i d e d g i s r e s t r i c t e d t o t h e i n t e r v a l ( 8 . 2 4 ) then l u b u , = m i n ( u . ) ^ ] ^ ( 8 . 2 6 ) 3 3 c ' A „ i 3 . T h i s r e s t r i c t i o n on t h e v a l u e of g^ m a y s e e m u n d e s i r a b l e , h o w e v e r , it will b e s e e n l a t e r t h a t t h e ( 6 . 3 3 ) i s m o r e s e v e r e . b e s e e n l a t e r t h a t t h e r e s t r i c t i o n on g. inaposed by t h e c o n t r a c t i o n condition

(45)

44

-S u m m a r i z i n g t h e s e r e s u l t s , it follows t h a t ü H. - l , M , ~ k , K, and u a r e c h o s e n to b e , at m o s t , of the f i r s t o r d e r of s m a l l q u a n t i t i e s and g. i s r e s t r i c t e d to t h e i n t e r v a l - 6 - ^ g . ^ so, g ^ 0, t h e n

l u b l ( u , v ) - ol 5. M[min ( v . ) f + [ m i n ( u , ) f + [ m i n ( v . ) f+ [ m i n (u„) fy\

1 ' I " I c I c 3 c j c - * '

( 8 . 2 7 )

T h i s e s t i m a t e for l u b l ( u - v ) - o | will be used in Sections 9 and 1 0 .

9 . Application of t h e Proof of E x i s t e n c e When | g^ - II i s S m a l l .

The technique of the e x i s t e n c e proof h a s been given in Section 4 , and it i s now intended to apply t h i s method to d e m o n s t r a t e the e x i s t e n c e of s o l u t i o n s , of the f o r m ( 3 . 1 ) , s t e m m i n g f r o m the two f a m i l i e s of p u r e - s u b h a r m o n i c

s o l u t i o n s r e p r e s e n t e d in F i g . 1. T h e r e q u i r e d inequality ( 4 . 1 8 ) i s m o s t r e a d i l y e s t a b l i s h e d when |g. - 1 | i s s m a l l , and the r e s u l t s for t h i s condition will b e obtained f i r s t . In o r d e r to e s t a b l i s h t h e proof in a l a r g e r r e g i o n of t h e g, , g , r s p a c e f a i r l y e x t e n s i v e computation i s r e q u i r e d . E x a m p l e s of

X o

such extended r e s u l t s will b e obtained in Section 10.

Some guidance to t h e c h o i c e of M. 1 • • • . / " . ïnay b e obtained f r o m t h e l i n e a r i z e d second a p p r o x i m a t i o n s obtained in Section 3 . It can b e s e e n f r o m t h e s e t h a t , provided g i s t a k e n to be sufficiently c l o s e to unity, e , . . . . , € will a l w a y s b e s m a l l f o r a l l finite X. F o r any finite X and c h o s e n i n t e r v a l 1 " " y ^ g , < 1 + T i with 0 < 7 < < 1, t h e a s s o c i a t e d v a l u e s of e , . . . ,e , given b y the l i n e a r i z e d second a p p r o x i m a t i o n , define a f o u r - c e l l A . A s a t i s f a c t o r y choice f o r A i s then a c e l l slightly l a r g e r than A such that A i s contained in t h e i n t e r i o r of A. T h u s when t h e l i n e a r i z e d second

e

a p p r o x i m a t i o n p r e d i c t s z e r o v a l u e s f o r any of t h e e. , . . . , e then t h e

c o r r e s p o n d i n g n would b e c h o s e n t o b e n o n - z e r o , but s m a l l in r e l a t i o n t o t h e o t h e r c o m p o n e n t s . T h e v a l u e s of R M, defining A m a y t h e n be used to e v a l u a t e T , A . „ B . . and é. It will b e o b s e r v e d that u, , . . . . ,M. c a n

50 go 1 4

a l w a y s b e chosen so that T-»^1 + k and ^-»0 a s | g - l | - > 0 .

T h e s i m u l t a n e o u s i n e q u a l i t i e s (6.26) and ( 6 . 2 7 ) b e c o m e

(46)

and

I g j ö + i l k g l j g ^ - l\{.4> + S T ^ Ó + 3 T P 6 + p^6] ^ 1 4 . 6 4 1 p . ( 9 . 2 )

With g fixed, t h e s e i n e q u a l i t i e s will yield the s m a l l e s t value of 6 if they a r e t a k e n to b e e q u a t i o n s . T h u s

25 Ó = 1 4 . 6 4 1 p o r

p = 1.7075 6 ( 9 . 3 )

T a k i n g ( 9 . 1 ) to b e an equation and s u b s t i t u t i n g for p f r o m ( 9 . 3 ) t h e n gives

1.7075^0^ + 5. 1 2 2 5 T 6 ^ + { 3 ( | g J - 2 5 ) / | k311 g^^ - l | +3r^)6 + <l)=0 ( 9 . 4 )

T h e c o n t r a c t i o n condition ( 6 . 3 3 ) i s

I g J + IkgUr +P)^|gi - l| < 2 5 ,

which, a l t e r n a t i v e l y , m a y be w r i t t e n

IgJ - 25 + | k 3 | k ^ ( T + p ) ^ | g i - ll < 0 , ( 9 . 5 )

w h e r e k > 1, T h i s p a r a m e t e r k m a y be looked upon a s c o n t r o l l i n g the amount of c o n t r a c t i o n of t h e m a p p i n g T . F o r given v a l u e s of k , T and 6 t h e l a r g e s t a s s o c i a t e d v a l u e of | g . - I j will b e obtained by t a k i n g ( 9 . 5 ) to b e a n e q u a t i o n . Thus | g - l | m a y t a k e a l l v a l u e s in t h e i n t e r v a l f r o m z e r o to

Igl - l | = - ( | g j - 2 5 ) / | k 3 | k ^ ( T + p ) 2 . ( 9 . 6 )

It i s now r e q u i r e d t o d e t e r m i n e 6 f r o m ( 9 . 4 ) u n d e r t h e conditions t h a t

k , T and tfi a r e fixed and Ig. - l | h a s i t s g r e a t e s t v a l u e . T h i s c o r r e s p o n d s t o r e - w r i t i n g ( 9 . 6 ) a s

( I g J - 25)/|k3||gi - l | = -k4(T +P)^

and s u b s t i t u t i n g into (9.4), giving

1 . 7 0 7 5 ^ 1 - 3k^)63 + 3 x 1.7075(1 - 2k^)T62 + 3(1 - \ii^)T^6 + 0 » 0 ( 9 . 7 )

3 2

Since k > 1 and T > 1 + k. > 0, t h e coefficients of 6 , 6 and ó in ( 9 . 7 ) are a l l n e g a t i v e , whilst 0 > 0. It follows that t h e equation h a s only one p o s i t i v e r e a l r o o t . (Note. T h e r e l e v a n t v a l u e of 6 m u s t , by definition, b e p o s i t i v e . )

(47)

46

T h e v a l u e of t h i s r o o t can a l w a y s b e m a d e a s s m a l l a s d e s i r e d by t a k i n g k sufficiently l a r g e ; t h e a s s o c i a t e d g r e a t e s t v a l u e of | g . - l | w i l l , h o w e v e r , b e r e d u c e d .

T h e v a l u e of 6 obtained f r o m ( 9 . 7 ) can b e used to e v a l u a t e M = 256, l l j g l - 13^31' 10^1 - «*iol' 1^3 " ^^301 ^ ^ ° " ^ *^® r e l a t i o n s given in Section 7 . F r o m t h e s e c a l c u l a t i o n s will e m e r g e e x p r e s s i o n s of t h e f o r m

I"! " "lo'

^ C , 6 l a [ 3 ( 9 . 8 ) e and l'*3 " ""30 ^ C „ 6 | a I ^, ( 9 . 9 )

w h e r e C. and C h a v e finite u p p e r b o u n d s . Substitution into ( 4 . 1 6 ) will t h e n X «3 give | ( U , V ) - ( u , v ) | ^ I 2 ^ g 3 ( c j -f C^) ^ I j a J ^ Ó , But

'%iKl'4i^3iu.-'I

t h e r e f o r e 1| A.^2 . ^ 2 i | o r | ( U , V ) - (u,v)l ^ j | 2 ^ ( C ^ + C ^ ) ^ | | k 3 | | g j - l l l a j a g l b | ( U , V ) - ( u , v ) ( = j | k 3 | l 2 ^ ( c j + C 3 ) ^ l | a ^ | | g j - l | Ó ( 9 . 1 0 ) T h i s quantity can b e m a d e a s s m a l l a s d e s i r e d by m a k i n g |g - l | o r 6 sufficiently s m a l l . F o r t h e p r e s e n t p u r p o s e it i s sufficient to e s t i m a t e l u b l ( u , v ) - 0 f r o m ( 8 , 1 0 ) . Thus f r o m ( 8 . 8 ) l u b l ( u , v ) - ol > l u b l u I ,

(48)

w h e r e

lub U3 = lub I [(g^ - 9)e^ + (g^ - 1){ k 3 [ - 2 k ^ e i + (k^ - 1)62 + 2 (1 + k^)e_j]

+ k g G ^ i J a ^ l ( 9 . 1 1 )

When \g^ - l l ^ O , g l b | ( U , V ) - ( u , v ) | - ^ 0 , whilst

lublugl-^tg^ - 9[iU4ra^l.

w h e r e li > 0. It i s c l e a r that for | g - l| sufficiently s m a l l

g l b | ( U , V ) - ( u , v ) | < l u b j u g U l u b | ( u , v ) - 0 |

a n d , f r o m Section 4 , t h e d e s i r e d r e s u l t f o l l o w s .

It i s i m p o r t a n t to note that t h e inequality i m m e d i a t e l y above i s not s a t i s f i e d when a = 0 . T h i s condition c o r r e s p o n d s to g. = 1 . It follows that in t h e g. = 1 , g , F plane t h e a m p l i t u d e of t h e p u r e s u b h a r m o n i c , equation ( 2 . 5 ) , i s z e r o and t h e e x i s t e n c e of an a s s o c i a t e d s u b h a r m o n i c s o l u t i o n , equation ( 3 . 1 ) , h a s not been e s t a b l i s h e d .

1 0 . Regions of E x i s t e n c e in the g^g , F S p a c e

It h a s been shown in t h e p r e v i o u s s e c t i o n t h a t t h e r e i s a n a r r o w r e g i o n of t h e g,.g„, r s p a c e , g in the i n t e r v a l 1 - 7 < g , - $ 1 + 7 , 0 < 7 < < 1 , for which t h e solution ( 3 . 1 ) e x i s t s . T h e v a l u e of 7 defining t h i s r e g i o n , which m a y be looked upon a s t h e n u c l e u s of t h e c o m p l e t e r e g i o n of e x i s t e n c e , i s n o t , h o w e v e r , known. To d e t e r m i n e t h e c o m p l e t e r e g i o n would, a l m o s t c e r t a i n l y , r e q u i r e e x t e n s i v e n u m e r i c a l c o m p u t a t i o n . N e v e r t h e l e s s , it i s useful to obtain s o m e i n c o m p l e t e e s t i m a t e s for t h e r e g i o n , p a r t i c u l a r l y t h e s i z e of t h e g. I n t e r v a l and t h i s will now b e done f o r C a s e (1).

F r o m the l i n e a r i z e d second a p p r o x i m a t i o n obtained in Section 3 ,

^1 = -(gl - l ) ^ / 3 ( g i + 15), £3 = 2 e j , 62 = £4 = 0 ( 1 0 . 1 )

C o n s i d e r an i n t e r v a l 0 ^ g. 4 2, then from ( 1 0 . 1 )

(49)

- 48

C h o o s e K A* to b e

A^ = 1 + | x | / 4 0 , A^ = | x | / 2 0 , *^ = M4 = l x l / 1 0 0 ( 1 0 . 2 )

Take Ixl = 1/5, then

Ai = 1.005, A^ = 0.01 and t^j = ^\ = 0.002 (10.3)

Substituting these values of A<, t ...,^i. into the expressions for a, T , etc. gives

a = 0.7107, T = 1.019, T ^ = 1.038

\o

^ o

^ 0 = 0 = 0. = 0 007575 000075 000000 ^50 ^70 ^90 = 0.001575, = 0.000030, = 0.000000, (j, = 0.005471.

Using these values, equation (9.7) becomes

1.7075^(1 - 3 k J ó ^ + 5.2198(1 » 2k^)6^ + 3.114(1 - k^)6 -t- 0.005471 = 0

(10.4) It is now convenient to make the estimate for lub|(u,v) - o| . This information will then facilitate the choice of k which will yield a value of glbi(U,V) - (u,v)| which just satisfies the inequality (4.18). The maximum value of Ig - l| associated with this value of k will then be given by (9.6). The interval so defined can then be compared with the assumed interval 0 < g 42, and the smaller of these two intervals, which will be contained in the l a r g e r , will be the interval for which the existence theorem is valid. This can be maximized by iterating until the two intervals are the same.

Using the values of A*, I\ in (10.3) tables of corner values (v ) , . . . , ( u ) were prepared, and it was found that the value

•J c

min(u„) < {0..OI6 - 0.00406 |g, - ll} l a | (10.5) 3 c 1 e

was much larger than any of the other components. A value of

lub|(u,v) - o| > 0.011941a [, (10.6) e

(50)

obtained by putting | g - 11 = 1 in (10.5), may, therefore, be adopted. Now M = 256, therefore, from Section 7,

l^jgl = 0.0086206 , I3J3I = 0.37166 (2p + 6 T ) 6 ^ + 3I j I = 3.41506^ + 6.1146^ + 0.025866 and (2p + 6 T ) 6 ^ + 3I J3I = 3.41506^ + 6.1146^ + 1.11486 Thus, from (4.16), |(U,V) - (u,v)| < 2 ^ X I {(3.41506^ + 6.1146 + 0.0259)^ + (3.41506^ + 6.1146 + 1.1148)^}" Ig, - ll | a U (10.7) X e

Selecting a value 6 = 0.0055 and substituting into (10.7) gives |(U,V) - (u,v)l < 0 . 0 1 1 9 2 Ig^ - i l i a |

Now the greatest value of | g - H in this expression has to be consistent with the value assumed in arriving at the values of M. Mi ^ (10.2), i . e . |g - ll < 1.0. Thus

gib I (U,V) - (u,v)| = 0.011921a | < lub | (u,v) - o |

for |g^ - ll 4 I or 0 4 g^ 4 2.

The value of k. required to give 6 = 0.0055 may be obtained by substituting for 6 in (10.4) and solving for k , giving

k^ = 1.3 04 4

The extreme values of g associated with this value of k a r e given by (9.6), which becomes

5.52 Igj - ll - 25 -f IgJ = 0 (10.8)

Solving this equation by iteration then gives an associated interval for g of

Cytaty

Powiązane dokumenty

Therefore, whenever U is convex and system (1) is autonomous, it generates a continuous local flow that is monotone (for the definition and properties of monotone flows the reader

C o s n e r, A Phragm´ en–Lindel¨ of principle and asymptotic behavior for weakly coupled systems of parabolic equations with unbounded coefficients, Dissertation, University

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXX (1991)H. J anus

( 0. The results obtained here overlap some results of E.. the successive zeros of an oscillatory solution x{t). This condition is a generalization of one given

The aim of this paper is to extend the result of [9] to the case when the multi- function F is contained in the Fr´echet subdifferential of a φ-convex function of order two.. Since

In final section, we give our main result concerning with the solvability of the integral equation (1) by applying Darbo fixed point theorem associated with the measure

Abstract: Using the technique associated with measure of non- compactness we prove the existence of monotonic solutions of a class of quadratic integral equation of Volterra type in

In this paper, sufficient conditions are given for the existence of solutions for a class of second order stochastic differential inclusions in Hilbert space with the help