• Nie Znaleziono Wyników

Aneksyna A6, białko wiążące cholesterol i nukleotydy, uczestniczące w naprawie błon biologicznych i w transporcie pęcherzykowym

N/A
N/A
Protected

Academic year: 2021

Share "Aneksyna A6, białko wiążące cholesterol i nukleotydy, uczestniczące w naprawie błon biologicznych i w transporcie pęcherzykowym"

Copied!
6
0
0

Pełen tekst

(1)

Joanna Bandorowicz-Pikuła

*

Agnieszka Kinga Seliga

Laboratory of Cellular Metabolism, Nencki In-stitute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland

*e-mail: j.bandorowicz-pikula@nencki.gov.pl

Received: September 25, 2018 Accepted: October 23, 2018

Key words: annexin A6, cholesterol

metabo-lism, membrane repair, vesicular transport

Acknowledgements: The research in Authors’

Laboratory is supported by statutory fund from the Nencki Institute of Experimental Bio-logy, Polish Academy of Sciences and by an Opus grant, reg. no 2016/23/B/NZ3/03116, from the National Science Center to JBP.

Annexin A6 as a cholesterol and nucleotide binding protein involved

in membrane repair and in controlling membrane transport

during endo- and exocytosis

ABSTRACT

A

nnexins, calcium- and membrane-binding proteins, have been extensively studied at the Nencki Institute since early 1990s, in terms of their structure, potential ligands and func-tions in the organism, with emphasis on mineralization processes in norm and pathology. The results of recently performed studies have revealed that annexins are playing essential roles in membrane organization. In this review we characterize the largest member of the annexin family of proteins, annexin A6 (AnxA6), in respect to its cholesterol and nucleoti-de binding properties, as well as intracellular pH sensing and ability to change membrane permeability to ions. Furthermore, we discuss biological functions of AnxA6 such as partici-pation in membrane lateral organization, cell membrane repair and regulation of vesicular transport.

INTRODUCTION – THE ANNEXINS

The vertebrate annexin (AnxA) superfamily consists of 12 members of

cal-cium and phospholipid binding proteins which share high structural homology

[Morgan et al. 2004; 2006; Gerke et al. 2005; Bandorowicz-Pikula 2003;

Bandoro-wicz Pikula et al. 2001; 2012; Domon et al. 2012; Kodavali et al. 2014; Grewal et al.

2016]. In keeping with this hallmark feature, annexins have been implicated in

Ca

2+

-controlled regulation of a broad range of membrane related events, which

may suggest its potential therapeutic value, namely, the regulation of immune

response and control of tissue homeostasis [Schloer et al. 2018]. Recent highlights

concerning transgenic (knockout animals) are summarized in table 1.

In this review, we focus on one of the main subjects of our investigations,

annexin A6 (AnxA6), its properties and potential functions in addition to major

achievements made by us in this field since 1997, we discuss recent advances

related to hypothetical functions of AnxA6, including organization of biological

membranes, or membrane repair mechanisms. The latter may be controlled in

response to a disrupted cellular hemostasis and vesicle-related cellular

process-es, such as biomineralization [Balcerzak et al. 2008; Kapustin & Shanahan 2016;

Minashima & Kirsch 2018; Bottini et al. 2018], transport and storage of cholesterol

[Enrich et al. 2011; 2017; Reverter et al. 2011].

ANNEXIN A6 AT THE NENCKI INSTITUTE

Annexins were first introduced to the Nencki Institute as one among

sever-al experimentsever-al subjects of the Laboratory of Plasma Membrane Receptors at

early 1990s [Bandorowicz et al. 1992; 1996; Sobota et al. 1993], and since 1997

further explored at the Laboratory of Lipid Biochemistry and Laboratory of

Cellular Metabolism, but also since 1991 by the members of Laboratory of

Cal-cium Binding Proteins [Filipek et al. 1991; 1995; Filipek & Wojda 1996]. During

this time the important discoveries have been made concerning the annexin

structure, potential ligands and finally their cellular and organismal functions.

They are listed in table 2. It should be underlined that structural features,

bio-chemical and biophysical properties of AnxA6 together with its functions have

been well characterized in vitro and in cellular systems mainly on the basis of

two fundamental discoveries – nucleotide binding properties of AnxA6

[Ban-dorowicz-Pikula & Awasthi 1997; Ban[Ban-dorowicz-Pikula et al. 1997a; 1997b; 1999;

Bandorowicz-Pikula 1998; Bandorowicz-Pikula & Pikula 1998; Danieluk et al.

1999] and its interaction with cholesterol and cholesterol enriched biological

membranes in a calcium- and pH-dependent manner [Sztolsztener et al. 2010;

2012; Domon et al. 2010; 2011; 2013a,b]. It should be stressed that cholesterol

binding properties of AnxA6, characterized by us on the basis of a series of

in vivo and ex vivo experiments, have been extensively studied in many other

laboratories around the world. The obtained results suggest that AnxA6 acts

as a multifunctional scaffold protein and is able to recruit vast number of

(2)

sig-naling proteins, modulates cholesterol transport and its

distribution within the cell, and also regulates membrane

transport through actin dynamics. These activities suggest

that AnxA6 may contribute to the formation of specific

protein complexes and membrane domains relevant in

sig-nal transduction, cholesterol homeostasis and

endo-/exo-cytosis [Grewal et al. 2017].

MEMBRANE-RELATED FUNCTIONS OF ANNEXIN A6

MEBRANE LATERAL ORGANIZATION

Annexin A6, as a cholesterol binding and

multifunc-tional scaffold protein plays a crucial role in cell motility

[Hayes et al. 2004; Monastyrskaya et al. 2009; Grewal et al.

2017] and is implicated also in cell signaling [Koese et al.

2013; Hoque et al. 2014; Qi et al. 2015; Cornely et al. 2016;

Raouf et al. 2018]. Moreover, annexin A6 has been

report-ed to regulate a formation of multifunctional signaling

complexes at the membranes, affect membrane lateral

or-ganization, or influence cholesterol metabolism and

dis-tribution, but also to participate in the vesicular transport

both in endo- and exocytosis [Cubells et al. 2007; 2008;

Enrich et al. 2014; Garcia-Melero et al. 2016; Cairns et al.

2017]. In addition, it has been shown that AnxA6

recruit-ed to the plasma membrane is able to affect membrane

re-modelling, e.g. upregulated AnxA6 in the cell decreased

plasma membrane order through the regulation of

cellu-lar cholesterol homeostasis and its interaction with the

actin cytoskeleton in the living cells [Alvarez-Guaita et

al. 2015]. Strong experimental evidence has been

accu-mulated that AnxA6 due to its unique, among annexins,

structure affecting the distribution of cell specific surface

receptors, recruits the interaction partners and

simultane-ously bridges specialized membrane domains with

corti-cal actin surrounding activated receptors [Cornely et al.

2011].

MEBRANE REPAIR

The features of AnxA6 described above may be further

extended to the observations suggesting its participation

Table 1. Properties of mammalian annexins revealed on the basis of analyses of knockout animals.

Annexin Gene encoding MW (Da) Total aa C-terminal core domain Some proposed functions*

Annexin A1 ANXA1 38,714 346 4 repeat domains anti- or pro-inflammatory responses, wound closure, epithelial motility, cancer cell metastasis, insulin secretion, cell fusion, vesicular transport, cell signaling, uptake of viruses

Annexin A2 ANXA2 40,41138,604 357339 4 repeat domains cancer cell metastasis, fibrinolysis, pathogen recognition, defense against bacterial infection Annexin A3 ANXA3 36,375 323 4 repeat domains nd

Annexin A4 ANXA4 35,883 321 4 repeat domains cardiomyocyte signaling, integrity of urothelium Annexin A5 ANXA5 35,937 320 4 repeat domains biomineralization, thrombosis, angiogenesis, recognition of apoptotic cells

Annexin A6 ANXA6 75,87372,423 673641 8 repeat domains and linker calcium homeostasis, plasma membrane organization, membrane repair, gluconeogenesis, biomineralization, chondrocyte differentiation Annexin A7 ANXA8 52,73950,316 488466 4 repeat domains cardiac contraction and remodeling, insulin secretion, cell proliferation Annexin A8 ANXA9 36,881 327 4 repeat domains nd

Annexin A9 ANXA10 38,364 345 4 repeat domains nd Annexin A10 ANXA11 37,278 324 4 repeat domains nd Annexin A11 ANXA12 54,390 505 4 repeat domains nd Annexin A13 ANXA13 35,41539,744 316357 4 repeat domains nd

Information taken from https://www.uniprot.org, www.ncbi.nlm.nih.gov/protein/. *Some intra and extracellular functions suggested on the basis of the experiments performed using knockout animals, reviewed in [Grewal

(3)

in membrane repair mechanisms. Efficient cell membrane

repair mechanisms are essential for maintaining

mem-brane integrity and, thus, for cell life [Lauritzen et al.

2015; Demonbreun et al. 2016; Boye et al. 2017].

Initially, it has been observed that AnxA1 is involved

in the repair of plasmalemmal lesions induced by

bacteri-al toxins. Furthermore, highly Ca

2+

-sensitive AnxA6, that

responds faster to [Ca

2+

]

i

elevation than AnxA1, promotes

formation of lesions, and therefore is able to react to a

limited and sustained membrane injury [Potez et al. 2011].

The AnxA6 contribution to membrane repair mechanism

has been further elaborated on the basis of in vitro

obser-vations that AnxA4 and AnxA6 involved in plasma

mem-brane repair cause rapid closure of micron-size holes in

membranes. It has been demonstrated that AnxA4 binds

to membranes and generates curvature force, whereas

AnxA6 induces constriction force. In cells, plasma

mem-brane injury and concomitant Ca

2+

influx result in AnxA4

recruitment to the vicinity of membrane wound edges.

Then, homo-trimerization of AnxA4 leads to membrane

curvature near the edges. Mediated by AnxA6

constric-tion force is responsible for pulling the wound edges

to-gether for membrane fusion and final repair [Boye et al.

2017]. In agreement are observations performed by means

of whole genome sequencing and RNA sequencing which

identified AnxA6 on the mouse model of muscular

dys-trophy associated with cardiomyopathy. Its truncated

version called ANXA6N32 was found to be responsible

for disrupting the whole AnxA6-rich cap and the

associ-ated (surrounding) repair zone at the site of sarcolemma

disruption, resulting in a membrane leak, characteristic

for muscular dystrophy [Swaggart et al. 2014].

VESICULAR TRANSPORT

AnxA6 features allowed many investigators to think

about this protein as a potential modulator of vesicular

transport events. It has been suggested that AnxA6 is

impli-cated in endocytosis, especially at the stage of fusion of

au-tophagosomes with endocytic compartment in hepatocytes

[Tebar et al. 2014; Enrich et al. 2017]. Moreover, AnxA6

high-ly expressed in smooth muscles, hepatocytes, endothelial

cells and cardiomyocytes, has been found to affect various

stages of endocytotic route of cholesterol transport [Cubells

et al. 2007; Enrich et al. 2011; Reverter et al. 2011; Rentero et

al. 2018].

In addition, AnxA6 was found to participate in

choles-terol storage and the control of late endosomal cholescholes-terol

levels, that modulate integrin recycling and cell migration

[Garcia-Melero et al. 2018], as well as influenza A

replica-tion and propagareplica-tion [Musiol et al. 2013]. AnxA6 has also

been linked to triglyceride storage in adipocytes [Cairns et

al. 2017].

Participation of annexins in exocytosis was first

postu-lated almost 30 years ago [Creutz 1992]. Further studies

has revealed, that the number of observations suggesting

functioning of AnxA6 in exocytosis is limited.

Investiga-tors, however, agree that this multifunctional protein plays

a regulatory role in membrane trafficking during exocytosis

too [Enrich et al. 2017; Cairns et al. 2018].

CONCLUDING REMARKS

We have actively contributed to experiments, results

of which show that AnxA6 is an exceptional member

Table 2. Properties and potential cellular functions of annexin A6 studied in the Laboratory of Lipid Biochemistry.

Feature Description References

Cellular localization Plasma membrane, lysosomes and endosomes, matrix vesicles

[Bandorowicz et al. 1992; Balcerzak

et al. 2008; Strzelecka-Kiliszek et al.

2008; Sztolsztener et al. 2010; 2012; Cmoch et al. 2011; Bottini et al. 2018]

Membrane binding properties and ion channel-like activity

Calcium dependent binding to plasma membrane phosphatidylserine

A pH and calcium dependent interaction of AnxA6 with cholesterol, identification of cholesterol binding domain in AnxA6

Mechanism of folding of AnxA6 in membranes at acidic pH

[Bandorowicz-Pikula et al. 1996] [Domon et al. 2010; 2011; 2013a; 2013b] [Golczak et al. 2001; 2004; Pikula 2003; Buzhynskyy et al. 2009]

Nucleotide binding properties Identification of a putative consensus sequence for the nucleotide-binding site in AnxA6 GTP-induced ion channel activity of AnxA6

[Kirilenko et al. 2002; 2006; Bandorowicz-Pikula 2003; Bandorowicz-Bandorowicz-Pikula et al. 2003]

Intracellular functions

Lateral organization of plasma membrane – microdomains Transport and storage of cholesterol

Catecholamine and interleukin-2 secretion Biomineralization and matrix vesicles biogenesis

[Domon et al. 2012]

[Bandorowicz-Pikula et al. 2012] [Podszywalow-Bartnicka et al. 2007; 2010; Strzelecka-Kiliszek et al. 2008] Pathogenesis Lipid storage in Niemann-Pick type C disease associated with mitochondrial dysfunction [Wos et al. 2016; 2018]

(4)

of the annexin family of proteins resembling genuine

cholesterol-interacting proteins. Our studies indicate

particularly that AnxA6 intracellular localization and

membrane binding at low pH is determined by

choles-terol. Although, the overall picture of possible AnxA6

functions still requires further studies to

identify/clari-fy/completely unveil physiological and/or pathological

processes involving AnxA6 ability to change membrane

permeability to ions or mechanisms of membrane repair.

To sum up, step should be taken to elucidate the overall

importance of AnxA6 for the whole organism as it may

form specific target to identify and cure human diseases

in which AnxA6 may play a significant role.

REFERENCES

Alvarez-Guaita A, Vilà de Muga S, Owen DM, Williamson D, Magenau A, García-Melero A, Reverter M, Hoque M, Cairns R, Cornely R, Tebar F, Grewal T, Gaus K, Ayala-Sanmartín J, Enrich C, Rentero C (2015) Evidence for annexin A6-dependent plasma membrane remodelling of lipid domains. Br J Pharmacol 172: 1677-1690

Balcerzak M, Malinowska A, Thouverey C, Sekrecka A, Dadlez M, Buchet R, Pikula S (2008) Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics 8: 192-205

Bandorowicz-Pikula J (2003) The nucleotide face of annexins. In: Annex-ins: Biological Importance and Annexin-Related Pathologies (Bandor-owicz-Pikula J, ed.), pp. 234-256, Kluwer Academic/Plenum Publish-ers, New York, NY & Landes Bioscience, Georgetown, TX

Bandorowicz-Pikula J (1998) A nucleotide-binding domain of porcine liver annexin VI. Proteolysis of annexin VI labelled with 8-azido-ATP, purification by affinity chromatography on ATP-agarose, and fluores-cence studies. Mol Cell Biochem 181: 11-20

Bandorowicz-Pikula J, Awasthi YC (1997) Interaction of annexins IV and VI with ATP. An alternative mechanism by which a cellular function of these calcium- and membrane-binding proteins is regulated. FEBS Lett 409: 300-306

Bandorowicz-Pikula J, Pikula S (1998) Modulation of annexin VI-driven aggregation of phosphatidylserine liposomes by ATP. Biochimie 80: 613-620

Bandorowicz J, Pikuła S, Sobota A (1992) Annexins IV (p32) and VI (p68) interact with erythrocyte membrane in a calcium-dependent manner. Biochim Biophys Acta. 1105: 201-206

Bandorowicz-Pikula J, Sikorski AF, Bialkowska K, Sobota A (1996) Inter-action of annexins IV and VI with phosphatidylserine in the presence of Ca2+: monolayer and proteolytic study. Mol Membr Biol 13: 241-250

Bandorowicz-Pikuła J, Wrzosek A, Pikuła S, Awasthi YC (1997a) Fluo-rescence spectroscopic studies on interactions between liver annexin VI and nucleotides - a possible role for a tryptophan residue. Eur J Biochem 248: 238-244

Bandorowicz-Pikula J, Wrzosek A, Makowski P, Pikula S (1997b) The relationship between the binding of ATP and calcium to annexin IV. Effect of nucleotide on the calcium-dependent interaction of annexin with phosphatidylserine. Mol Membr Biol 14: 179-186

Bandorowicz-Pikuła J, Wrzosek A, Danieluk M, Pikula S, Buchet R (1999) ATP-Binding site of annexin VI characterized by photochemical re-lease of nucleotide and infrared difference spectroscopy. Biochem Bio-phys Res Commun 263: 775-779

Bandorowicz-Pikula J, Buchet R, Pikula S (2001) Annexins as nucleotide-binding proteins: facts and speculations. Bioessays 23: 170-178 Bandorowicz-Pikula J, Kirilenko A, van Deursen R, Golczak M, Kühnel

M, Lancelin JM, Pikula S, Buchet R (2003) A putative consensus se-quence for the nucleotide-binding site of annexin A6. Biochemistry 42: 9137-9146

Bandorowicz-Pikuła J, Woś M, Pikuła S (2012) Do annexins participate in lipid messenger mediated intracellular signaling? A question revis-ited. Mol Membr Biol 29: 229-242

Bottini M, Mebarek S, Anderson KL, Strzelecka-Kiliszek A, Bozycki L, Simão AMS, Bolean M, Ciancaglini P, Bandorowicz-Pikula J, Pikula S, Magne D, Volkmann N, Hanein D, Millán JL, Buchet R (2018) Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, proper-ties, functions and biomimetic models. Biochim Biophys Acta 1862: 532-546

Boye TL, Maeda K, Pezeshkian W, Sønder SL, Haeger SC, Gerke V, Si-monsen AC, Nylandsted J (2017) Annexin A4 and A6 induce mem-brane curvature and constriction during cell memmem-brane repair. Nat Commun 8: 1623

Buzhynskyy N, Golczak M, Lai-Kee-Him J, Lambert O, Tessier B, Gou-nou C, Bérat R, Simon A, Granier T, Chevalier JM, Mazères S, Ban-dorowicz-Pikula J, Pikula S, Brisson AR (2009) Annexin-A6 presents two modes of association with phospholipid membranes. A combined QCM-D, AFM and cryo-TEM study. J Struct Biol 168: 107-116 Cairns R, Alvarez-Guaita A, Martínez-Saludes I, Wason SJ, Hanh J,

Na-garajan SR, Hosseini-Beheshti E, Monastyrskaya K, Hoy AJ, Buechler C, Enrich C, Rentero C, Grewal T (2017) Role of hepatic Annexin A6 in fatty acid-induced lipid droplet formation. Exp Cell Res 358: 397-410 Cairns R, Fischer AW, Blanco-Munoz P, Alvarez-Guaita A, Meneses-Salas

E, Egert A, Buechler C, Hoy AJ, Heeren J, Enrich C, Rentero C, Grewal T (2018) Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS One 13: e0201310

Cmoch A, Strzelecka-Kiliszek A, Palczewska M, Groves P, Pikula S (2011) Matrix vesicles isolated from mineralization-competent Saos-2 cells are selectively enriched with annexins and S100 proteins. Biochem Biophys Res Commun 412: 683-687

Cornely R, Rentero C, Enrich C, Grewal T, Gaus K (2011) Annexin A6 is an organizer of membrane microdomains to regulate receptor localiza-tion and signalling. IUBMB Life 63: 1009-1017

Cornely R, Pollock AH, Rentero C, Norris SE, Alvarez-Guaita A, Grewal T, Mitchell T, Enrich C, Moss SE, Parton RG, Rossy J, Gaus K (2016) Annexin A6 regulates interleukin-2-mediated T-cell proliferation. Im-munol Cell Biol 94: 543-553

Creutz CE (1992) The annexins and exocytosis. Science 258: 924-931 Cubells L, Vilà de Muga S, Tebar F, Wood P, Evans R, Ingelmo-Torres M,

Calvo M, Gaus K, Pol A, Grewal T, Enrich C (2007) Annexin A6-in-duced alterations in cholesterol transport and caveolin export from the Golgi complex. Traffic 8: 1568-1589

Cubells L, Vilà de Muga S, Tebar F, Bonventre JV, Balsinde J, Pol A, Gre-wal T, Enrich C (2008) Annexin A6-induced inhibition of cytoplasmic phospholipase A2 is linked to caveolin-1 export from the Golgi. J Biol Chem 283: 10174-10183

Danieluk M, Pikuła S, Bandorowicz-Pikuła J (1999) Annexin VI interacts with adenine nucleotides and their analogs. Biochimie 81: 717-726 Demonbreun AR, Quattrocelli M, Barefield DY, Allen MV, Swanson KE,

McNally EM (2016) An actin-dependent annexin complex mediates plasma membrane repair in muscle. J Cell Biol 213: 705-718

Domon M, Matar G, Strzelecka-Kiliszek A, Bandorowicz-Pikula J, Pikula S, Besson F (2010) Interaction of annexin A6 with cholesterol rich mem-branes is pH-dependent and mediated by the sterol OH. J Colloid In-terf Sci 346: 436-441

Domon M, Besson F, Bandorowicz-Pikula J, Pikula S (2011) Annexin A6 is recruited into lipid rafts of Niemann-Pick type C disease fibroblasts in a Ca2+-dependent manner. Biochem Biophys Res Commun 405:

192-196

Domon M, Nasir MN, Matar G, Pikula S, Besson F, Bandorowicz-Pikula J (2012) Annexins as organizers of cholesterol- and spingomyelin-en-riched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 69: 1773-1785

Domon MM, Besson F, Tylki-Szymanska A, Bandorowicz-Pikula J, Pikula S (2013a) Interaction of AnxA6 with isolated and artificial lipid micro-domains; importance of lipid composition and calcium content. Molec Biosyst 9: 668-676

Domon MM, Nasir MN, Pikula S, Besson F (2013b) Influence of the 524-VAAEIL-529 sequence of annexins A6 in their interfacial behavior and interaction with lipid monolayers. J Colloid Interf Sci 403: 99-104

(5)

Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, Koese M, Grewal T (2011) Annexin A6-linking Ca2+ signaling with

choles-terol transport. Biochim Biophys Acta 1813: 935-947

Enrich C, Rentero C, Grewal T (2017) Annexin A6 in the liver: from the endocytic compartment to cellular physiology. Biochim Biophys Acta 1864: 933-946

Filipek A, Wojda U (1996) p30, a novel protein target of mouse calcyclin (S100A6). Biochem J 320: 585-587

Filipek A, Gerke V, Weber K, Kuźnicki J (1991) Characterization of the cell-cycle-regulated protein calcyclin from Ehrlich ascites tumor cells. Identification of two binding proteins obtained by Ca2+-dependent

af-finity chromatography. Eur J Biochem 195: 795-800

Filipek A, Wojda U, Leśniak W (1995) Interaction of calcyclin and its cyanogen bromide fragments with annexin II and glyceraldehyde 3-phosphate dehydrogenase. Int J Biochem Cell Biol 27: 1123-1131 García-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M,

Con-way JR, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghra-bi YA, Pol A, Tebar F, Murray RZ, Timpson P, Enrich C, Grewal T, Rentero C (2016) Annexin A6 and late endosomal cholesterol modu-late integrin recycling and cell migration. J Biol Chem 291: 1320-1335 Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signaling to

membrane dynamics. Nat Rev Mol Cell Biol 6: 449-461

Golczak M, Kicinska A, Bandorowicz-Pikula J, Buchet R, Szewczyk A, Pi-kula S (2001) Acidic pH-induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB J 15: 1083-1085

Golczak M, Kirilenko A, Bandorowicz-Pikula J, Desbat B, Pikula S (2004) Structure of human annexin a6 at the air-water interface and in a mem-brane-bound state. Biophys J 87: 1215-1226

Grewal T, Wason SJ, Enrich C, Rentero C (2016) Annexins - insights from knockout mice. Biol Chem 397: 1031-1053

Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C, Rentero C (2017) Annexin A6 - A multifunctional scaffold in cell motility. Cell Adh Migr 11: 288-304

Hayes MJ, Rescher U, Gerke V, Moss SE (2004) Annexin-actin interac-tions. Traffic 5: 571-576

Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T (2014) Annex-ins - scaffolds modulating PKC localization and signaling. Cell Signal 26: 1213-1225

Kapustin AN, Shanahan CM (2016) Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol 594: 2905-2914

Kirilenko A, Golczak M, Pikula S, Buchet R, Bandorowicz-Pikula J (2002) GTP-induced membrane binding and ion channel activity of annexin VI: is annexin VI a GTP biosensor? Biophys J 82: 2737-2745

Kirilenko A, Pikula S, Bandorowicz-Pikula J (2006) Effects of mutagenesis of W343 in human annexin A6 isoform 1 on its interaction with GTP: nucleotide-induced oligomer formation and ion channel activity. Bio-chemistry 45: 4965-4973

Kodavali PK, Dudkiewicz M, Pikuła S, Pawłowski K (2014) Bioinformat-ics analysis of bacterial annexins-putative ancestral relatives of eukar-yotic annexins. PLoS One 9: e85428

Koese M, Rentero C, Kota BP, Hoque M, Cairns R, Wood P, Vilà de Muga S, Reverter M, Alvarez-Guaita A, Monastyrskaya K, et al. (2013) An-nexin A6 is a scaffold for PKCα to promote EGFR inactivation. Onco-gene 32: 2858-5872

Lauritzen SP, Boye TL, Nylandsted J (2015) Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin Cell Dev Biol 45: 32-38

Minashima T, Kirsch T (2018) Annexin A6 regulates catabolic events in ar-ticular chondrocytes via the modulation of NF-κB and Wnt/ß-catenin signaling. PLoS One 13: e0197690

Monastyrskaya K, Babiychuk EB, Hostettler A, Wood P, Grewal T, Drae-ger A (2009) Plasma membrane-associated annexin A6 reduces Ca2+

entry by stabilizing the cortical actin cytoskeleton. J Biol Chem 284: 17227-17242

Morgan RO, Martin-Almedina S, Iglesias JM, Gonzalez-Florez MI, Fer-nandez MP (2004) Evolutionary perspective on annexin calcium-bind-ing domains. Biochim Biophys Acta 1742: 133-140

Morgan RO, Martin-Almedina S, Garcia M, Jhoncon-Kooyip J, Fernandez MP (2006) Deciphering function and mechanism of calcium-binding proteins from their evolutionary imprints. Biochim Biophys Acta 1763: 1238-1249

Musiol A, Gran S, Ehrhardt C, Ludwig S, Grewal T, Gerke V, Rescher U (2013) Annexin A6-balanced late endosomal cholesterol controls influ-enza a replication and propagation. MBio 4: e00608-613

Pikula S (2003) Acidic pH-induced ion channels formed by annexin VI – transformation from soluble to membrane integral protein. In: Annexins: Biological Importance and Annexin-Related Pathologies (Bandorowicz-Pikula J, ed.), pp. 182-195, Kluwer Academic/Plenum Publishers, New York, NY & Landes Bioscience, Georgetown, TX Podszywalow-Bartnicka P, Strzelecka-Kiliszek A, Bandorowicz-Pikula J,

Pikula S (2007) Calcium- and proton-dependent relocation of annexin A6 in Jurkat T cells stimulated for interleukin-2 secretion. Acta Bio-chim Pol 54: 261-271

Podszywalow-Bartnicka P, Kosiorek M, Piwocka K, Sikora E, Zablocki K, Pikula S (2010) Role of annexin A6 isoforms in catecholamine secretion by PC12 cells: distinct influence on calcium response. J Cell Biochem 111 168-178

Potez S, Luginbühl M, Monastyrskaya K, Hostettler A, Draeger A, Ba-biychuk EB (2011) Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J Biol Chem 286: 17982-17991

Qi H, Liu S, Guo C, Wang J, Greenaway FT, Sun MZ (2015) Role of an-nexin A6 in cancer. Oncol Lett 10: 1947-1952

Raouf R, Lolignier S, Sexton JE, Millet Q, Santana-Varela S, Biller A, Fuller AM, Pereira V, Choudhary JS, Collins MO, Moss SE, Lewis R, Tordo J, Henckaerts E, Linden M, Wood JN (2018) Inhibition of somatosen-sory mechanotransduction by annexin A6. Sci Signal 11: doi: 10.1126/ scisignal.aao2060

Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C (2018) Annexins - coordinators of cholesterol homeostasis in endocytic path-ways. Int J Mol Sci 9: doi: 10.3390/ijms19051444

Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C (2011) Cholesterol transport from late endosomes to the Golgi reg-ulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 22: 4108-4102

Schloer S, Pajonczyk D, Rescher U (2018) Annexins in translational re-search: hidden treasures to be found. Int J Mol Sci 19: doi: 10.3390/ ijms19061781

Sobota A, Bandorowicz J, Jezierski A, Sikorski AF (1993) The effect of an-nexin IV and VI on the fluidity of phosphatidylserine/phosphatidyl-choline bilayers studied with the use of 5-deoxylstearate spin label. FEBS Lett 315: 178-182

Strzelecka-Kiliszek A, Buszewska ME, Podszywalow-Bartnicka P, Pikula S, Otulak K, Buchet R, Bandorowicz-Pikula J (2008) Calcium- and pH-dependent localization of annexin A6 isoforms in Balb/3T3 fibroblasts reflecting their potential participation in vesicular transport. J Cell Bio-chem 104: 418-434

Swaggart KA, Demonbreun AR, Vo AH, Swanson KE, Kim EY, Fahren-bach JP, Holley-Cuthrell J, Eskin A, Chen Z, Squire K, Heydemann A, Palmer AA, Nelson SF, McNally EM (2014) Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proc Natl Acad Sci USA 111: 6004-6009

Sztolsztener ME, Strzelecka-Kiliszek A, Pikula S, Tylki-Szymanska A, Bandorowicz-Pikula J (2010)Cholesterol as a factor regulating intracel-lular localization of annexin A6 in Niemann-Pick type C human fibro-blasts. Arch Biochem Biophys 493: 221-233

Sztolsztener ME, Dobrzyn A, Pikula S, Tylki-Szymanska A, Bandorowicz-Pikula J (2012) Impaired dynamics of late endosome/lysosome com-partment in human Niemann-Pick type C skin fibroblasts carrying mutation in NPC1 gene. Molec BioSyst 8: 1197-1205

(6)

Aneksyna A6, białko wiążące cholesterol i nukleotydy, uczestniczące

w naprawie błon biologicznych i w transporcie pęcherzykowym

Joanna Bandorowicz-Pikuła

*

, Agnieszka Kinga Seliga

Pracownia Metabolizmu Komórki, Instytut Biologii Doświadczalnej im. Marcelego Nenckiego PAN, ul. Pasteura 3, 02-093 Warszawa

*e-mail: j.bandorowicz-pikula@nencki.gov.pl

Słowa kluczowe: aneksyna A6, cholesterol, naprawa błon biologicznych, transport pęcherzykowy

STRESZCZENIE

Aneksyny, rodzina białek wiążących jony wapnia i błony biologiczne, były badane w Instytucie Biologii Doświadczalnej im. Marcelego Nenckiego w Warszawie od wczesnych lat 90. XX wieku. Szczególną uwagę poświęcono strukturze aneksyn, potencjalnym ligandom tych białek oraz ich funkcji, np. w procesie biomineralizacji zachodzącym w normie i w stanach patologicznych. Wyniki badań prowadzonych w wielu laboratoriach na świecie wskazują, że aneksyny odgrywają bardzo ważną rolę w organizacji błon biologicznych. W tym artykule prze-glądowym opisujemy jednego z największych pod względem masy cząsteczkowej przedstawiciela rodziny aneksyn, aneksynę A6 (AnxA6), białko wykazujące zdolność wiązania się z cholesterolem i nukleotydami oraz zmieniające przepuszczalność błony dla jonów w odpowiedzi na obniżenie wewnątrzkomórkowego pH. Dodatkowo, opisano funkcje AnxA6, takie jak udział w tworzeniu mikrodomen błonowych, w naprawie uszkodzeń błony plazmatycznej oraz w regulacji transportu pęcherzykowego.

Tebar F, Gelabert-Baldrich M, Hoque M, Cairns R, Rentero C, Pol A, Gre-wal T, Enrich C (2014) Annexins and endosomal signaling. Methods Enzymol 535: 55-74

Woś M, Szczepanowska J, Pikuła S, Tylki-Szymańska A, Zabłocki K, Bandorowicz-Pikuła J (2016) Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. Arch Bio-chem Biophys 593: 50-59

Woś M, Komiażyk M, Pikuła S, Tylki-Szymańska A, Bandorowicz-Pikuła J (2018) Activation of mTOR kinase and GSK-3β accompanies abnor-mal accumulation of cholesterol in fibroblasts from Niemann-Pick type C patients. J Cell Biochem in press

Cytaty

Powiązane dokumenty

państwa do Kościoła katolickiego w Rzeczypospolitej Polskiej z 18 maja 1989 r. 20 stwierdza się, że „Kościelne osoby prawne mają prawo zakładać i prowadzić szkoły oraz

Wyjaśnienie symboli występujących lokalnie i użytych we wzorze powinno następować bezpośrednio po nim; symbole wspólne dla wielu wzorów, występujące w tekście

Яркими примерами могут служить общественные здания 2000-х годов, в частности,библиотека Варшавского университета и оперный театр Подляски

W interpretacji nasuwają się trzy kwestie: znaczenie bluźnierstwa przeciw Duchowi Świętemu, przyczyna wiecz­ nej utraty przebaczenia przez osobę dopuszczającą się ta­

Through public information, the child’s rights to physical integrity should be emphasised and social attitudes can change to a non-acceptance of physical punishment in families and

Please write down the solutions (transformations, substitutions etc.), and additio- nally provide the final answer in the space specified (the answer should be a number in

In order to obtain the most reliable results, the net calorific value of the marine fuels, in question, was measured by two independent institutions: the laboratory of the

To verify if the identified region of γ-secretase might play a role of the exosite in the substrate binding, we computed the free energy profile for the β-CTF association to the