• Nie Znaleziono Wyników

Utilization of geothermal energy as a renewable source. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu = Research Papers of Wrocław University of Economics, 2014, Nr 334, s. 141-148

N/A
N/A
Protected

Academic year: 2021

Share "Utilization of geothermal energy as a renewable source. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu = Research Papers of Wrocław University of Economics, 2014, Nr 334, s. 141-148"

Copied!
14
0
0

Pełen tekst

(1)

Publishing House of Wrocław University of Economics Wrocław 2014

Local and Regional Economy

in Theory and Practice

PRACE NAUKOWE

Uniwersytetu Ekonomicznego we Wrocławiu

RESEARCH PAPERS

of Wrocław University of Economics

Nr

334

edited by

Małgorzata Markowska, Dariusz Głuszczuk,

Beata Bal-Domańska

(2)

Copy-editing: Elżbieta and Tim Macauley Layout: Barbara Łopusiewicz

Proof-reading: Barbara Cibis Typesetting: Adam Dębski Cover design: Beata Dębska

This publication is available at www.ibuk.pl, www.ebscohost.com, Lower Silesian Digital Library www.dbc.wroc.pl,

and in The Central and Eastern European Online Library www.ceeol.com as well as in the annotated bibliography of economic issues of BazEkon http://kangur.uek.krakow.pl/bazy_ae/bazekon/nowy/index.php Information on submitting and reviewing papers is available on the Publishing House’s website

www.wydawnictwo.ue.wroc.pl

All rights reserved. No part of this book may be reproduced in any form or in any means without the prior written permission of the Publisher © Copyright by Wrocław University of Economics

Wrocław 2014

ISSN 1899-3192 ISBN 978-83-7695-496-7

The original version: printed

Printing: EXPOL, P. Rybiński, J. Dąbek, sp.j. ul. Brzeska 4, 87-800 Włocławek

(3)

Contents

Preface ... 9 Beata Bal-Domańska: Convergence of Central and Eastern European regions –

spatial aspect ... 11

Barbara Dańska-Borsiak: The determinants of migration outflows from

Polish sub-regions in both internal movement and abroad – identification and comparison ... 22

Anna Golejewska: Rethinking regional competitiveness. The role of

productivity ... 33

Małgorzata Golińska-Pieszyńska: Intellectual capital as an important

element of knowledge management ... 43

Piotr Hajduga: Special economic zones in the Lower Silesia region as a

regional development stimulator during the crisis ... 56

Petr Hlaváček: Analysis of the development processes of the city of Ústí nad

Labem as an example of the social and economic transformation of cities in the Czech Republic ... 66

Anna Jasińska-Biliczak, Jan Buleca: Participation of economic

self-government in the process of the promotion of entrepreneurship – case study of Poland, Germany and Slovakia... 78

Małgorzata Karczewska: Diversity of the gross expenditure on R&D in

GDP by sources of funds in Poland against the background of the European Union ... 89

Artur J. Kożuch, Janusz Sasak, Kamilla Noworól: Target costing and

participatory budget in Territorial Self-Government Units ... 97

Alina Kulczyk-Dynowska: National park as an element fostering the

sustainable development of the region – the example of the Tatra municipalities ... 108

Iwona Ładysz: The regional dimension of economic security in the age of

globalisation using the example of the Lower Silesian Voivodship ... 118

Krzysztof Malik: Smart specialisation and Key Enabling Technologies in the

New Regional Development Policy ... 128

Štefan Marsina, Pavol Oravský: Utilization of geothermal energy as

a renewable source ... 141

Anna Mazurek-Kusiak, Julia Wojciechowska-Solis: Noticeability and

effectiveness of tourism promotion in Lublin province ... 149

Grygorii Monastyrskyi, Tetyana Monastyrska: Modernization of local

self-government in Ukraine ... 160

Alicja Olejnik: Prospects and frontiers of Multidimensional Panel Spatial

(4)

6 Spis treści

Pavol Oravský, Štefan Marsina: Infrastructure of energetics and its

diversification ... 180

Alina Piątyszek-Pych: The cluster development policy in Poland ... 190 Zbigniew Piepiora: Occurrence of natural disasters in Africa and international

cooperation in the field of counteracting their effects ... 200

Renata Pisarek: The importance of passenger air transport and high-speed

rail for regional development ... 210

Małgorzata Rogowska: The quality of public space in the development of

urban areas ... 223

Joanna Szafran: Public-private partnership in Poland and the European

Union ... 231

Ewelina Szczech: Is there a creative city in Poland? Defining and measuring

the concept in Poland ... 242

Andrzej Sztando: Twelve rules for the construction of planning documents

prepared by self-government units ... 252

Maciej Turała: Institutional capacity in Polish communes. Strategic, financial

and spatial planning dimension ... 264

Alla Vasina: Management of the investment potential of Ukraine’s regions in

the process of regional structural policy realization ... 275

Svitlana Veleshchuk: Strategic development of the region in the context of

the branding concept ... 285

Marcin Bogdański, Wioletta Wierzbicka: Socio-economic potential of

Polish voivodship cities ... 295

Marcelina Zapotoczna, Joanna Cymerman: Application of selected

synthetic measures in the assessment of the level of satisfied housing needs in Poland ... 306

Summaries

Beata Bal-Domańska: Konwergencja regionów (NUTS-2) Europy

Środko-wo-Wschodniej – aspekt przestrzenny ... 21

Barbara Dańska-Borsiak: Determinanty krajowych i zagranicznych

odpły-wów migracyjnych z podregionów – identyfikacja i porównanie ... 31

Anna Golejewska: Rozważania na temat konkurencyjności regionalnej. Rola

produkcyjności ... 42

Małgorzata Golińska-Pieszyńska: Kapitał intelektualny jako ważny

ele-ment zarządzania wiedzą... 55

Piotr Hajduga: Specjalne strefy ekonomiczne na Dolnym Śląsku jako

(5)

Spis treści

7

Petr Hlaváček: Analiza procesów rozwojowych miasta Ústí nad Labem jako

przykład społecznych i ekonomicznych transformacji zachodzących w miastach Republiki Czeskiej ... 77

Anna Jasińska-Biliczak, Jan Buleca: Partycypacja samorządu

gospodar-czego w procesie wspierania przedsiębiorczości – analiza przypadku Pol-ski, Niemiec i Słowacji ... 87

Małgorzata Karczewska: Zróżnicowanie udziału wydatków na B+R w PKB

w Polsce według źródeł finansowania na tle krajów Unii Europejskiej .... 96

Artur J. Kożuch, Janusz Sasak, Kamilla Noworól: Rachunek kosztów

do-celowych a budżet partycypacyjny w JST ... 107

Alina Kulczyk-Dynowska: Park narodowy jako element wspierający

równo-ważenie rozwoju regionu – przykład gmin tatrzańskich ... 117

Iwona Ładysz: Regionalny wymiar bezpieczeństwa ekonomicznego w dobie

globalizacji na przykładzie województwa dolnośląskiego ... 127

Krzysztof Malik: Specjalizacje inteligentne i technologie wiodące w Nowej

Polityce Rozwoju Regionalnego ... 140

Štefan Marsina, Pavol Oravský: Utylizacja energii geotermalnej jako

źró-dła odnawialnego ... 148

Anna Mazurek-Kusiak, Julia Wojciechowska-Solis: Zauważalność i

sku-teczność promocji turystyki w województwie lubelskim ... 159

Grygorii Monastyrskyi, Tetyana Monastyrska: Modernizacja samorządu

lokalnego na Ukrainie ... 169

Alicja Olejnik: Perspektywy i ograniczenia panelowego wielowymiarowego

autoregresyjnego modelu przestrzennego ... 179

Pavol Oravský, Štefan Marsina: Infrastruktura energii elektrycznej i jej

dy-wersyfikacja ... 189

Alina Piątyszek-Pych: Polityka rozwoju klastrów w Polsce ... 199 Zbigniew Piepiora: Występowanie katastrof naturalnych w Afryce i

mię-dzynarodowa współpraca w zakresie przeciwdziałania ich skutkom ... 209

Renata Pisarek: Znaczenie pasażerskiego transportu lotniczego i kolei

du-żych prędkości dla rozwoju regionalnego ... 222

Małgorzata Rogowska: Jakość przestrzeni publicznej w rozwoju

aglomera-cji miejskich ... 230

Joanna Szafran: Partnerstwo publiczno-prywatne w Polsce i w Unii

Euro-pejskiej ... 241

Ewelina Szczech: Czy w Polsce istnieje miasto kreatywne? Próba definicji

i pomiaru zjawiska w Polsce ... 251

Andrzej Sztando: Dwanaście zasad budowy dokumentów planistycznych

jednostek samorządu terytorialnego ... 263

Maciej Turała: Sprawność instytucjonalna polskich gmin. Wymiar

(6)

8 Spis treści

Alla Vasina: Zarządzanie potencjałem inwestycyjnym regionów Ukrainy

w realizacji regionalnej polityki strukturalnej ... 284

Svitlana Veleshchuk: Strategia rozwoju regionu w kontekście koncepcji

brandingu ... 294

Marcin Bogdański, Wioletta Wierzbicka: Potencjał

społeczno-gospodar-czy miast wojewódzkich w Polsce ... 305

Marcelina Zapotoczna, Joanna Cymerman: Wykorzystanie wybranych

miar syntetycznych do oceny zaspokojenia potrzeb mieszkaniowych w Polsce ... 316

(7)

PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU

RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 334 ● 2014

Local and Regional Economy in Theory and Practice ISSN 1899-3192

Štefan Marsina, Pavol Oravský

University of Economics in Bratislava, Slovakia

UTILIZATION OF GEOTHERMAL ENERGY

AS A RENEWABLE SOURCE

Summary: The paper analyses a renewable energy source – geothermal energy – from a

world-wide and Slovak perspective. The world-wide view is focused on the installed capacity of electric and thermal energy production by continents and the comparison of the installed capacity of the thermal energy production of selected countries in the world. The world-wide view is applied also in the overview of the various categories of the direct use of geothermal energy. Two overviews of the results of the geothermal wells drilled in Slovakia by areas and by counties show the big potential for utilizing geothermal energy as an alternative source to fossil fuel consumption. Nowadays the task of research should be focused on the efficiency of the renewable energy sources exploitation and the diversification of the energy sources utilization.

Keywords: geothermal water, geothermal energy, thermo-energetic potential, geothermal

source of energy, installed capacity, geothermal wells, yield. DOI: 10.15611/pn.2014.334.13

1. Introduction

A high concentration of geothermal energy in the crust of the Earth is found in areas of recent volcanism (Iceland, Italy, Japan, the Philippines, New Zealand, Indonesia, Chile, etc.) and young orogenous zones. In these areas the temperature at a depth of 100 to 1000m reaches more than 250 ̊C. For example in Japan the measured reservoir temperatures in high heat regions range from 190 ̊C on Kyushu Island (localities Otake, Siginoi) to 350 ̊C in the Kakkonda region on Tahoku island. The value of the total amount of geothermal sources calculated from the volume of geothermal water with a temperature of more than 200 ̊C, occuring up to a depth of 3 km, shows 24 600 MWe [Kawazoe, Shirakura 2005]. For these areas the accepted term is ‚geothermal field‘, which has an analogy in oil geology (crude oil or oil fields), just as the term ‚deposit of geothermal water‘ expresses the anomalous high value of temperatures latent to a relatively small geological area compared with the neighbourhood.

From the aspect of utilizing geothermal water, there is an important depth of ceiling and base of geothermal water reservoir underground, the nature of rocks,

(8)

142 Štefan Marsina, Pavol Oravský their genesis, age, the chemical composition of substances dissolved in geothermal water, the content of gas, the hydraulic and thermo-physical characteristics of hydrogeological geothermal water collectors. From the economic point of view, we can define a reservoir with a minimal depth, which is the lowest temperature economically usable by the prospective user and with the maximum depth, which is the maximum accepted price of a geothermal well as a source of geothermal water.

The key problem of the research study is based on the need to pay more attention to renewable energy sources (RES). The purpose of the article is to approach a worldwide, regional, and national review of RES production by continents, countries, and the Slovak counties. The European context of the article is given by the Directive of the European Parliament and Council 2009/28/EC dated 23rd April, 2009 about the support of the utilization of Renewable Energy Sources. This is a strategic document which targets the period up to the year 2020. It creates a basis for the ongoing sustainable development of the utilization of RES even further. The EU member states have become obliged to develop their own legal acts complying with the above mentioned regulation and the consequent directives.

The article is a fundamental document of the research on the social-economic impact of renewable energy sources production and utilization. The research is carried out by project VEGA No.1/0787/11, supported by the Slovak Ministry of Education, entitled “Prospects of participation of the small and medium-sized enterprises in the diversification of energy infrastructure“.

2. Geothermal energy in the world

From the global point of view, geothermal energy is at the forefront of renewable sources of energy. In the year 2000 its share in the generation of electricity and production of heat showed more than 50% of all RES [Rybach 2010]. In 2008, wind and solar energy, because of their exponential progress, overtook geothermal energy [Renewables…, 2009]. But one must realize that geothermal energy can be used permanently, whereas the production of electric energy from solar and wind energy is limited by weather conditions.

Geothermally fueled electric power is being generated in 21countries of the world [Huttrer 2000]. Installed capacity while generating electric energy from a geothermal source was 7974 MWe in 2000 and 10 716 MWe in 2010 (Table 1).

During the analysed ten years, the growth of electric energy production from these sources was 25.6%, whereas the shares of individual continents for the given period of years remained more or less the same. For example, the share of America in the production of electric energy from geo-thermal sources in 2000 was 42.6% and the same 42.6% was reached also in 2010. The largest producers of electric power in 2010 were – in America the USA (3093 MWe ), in Asia – the Philippines (1904 MWe) and in Europe – Italy (843 MWe).

(9)

Utilization of geothermal energy as a renewable source 143

Table 1. Installed capacity of electric energy production and heat in the world in 2000 and 2010

Production of electric energy Production of heat

2000/2010 2000/2010 MW(e) % MW(t) % Africa 54/174 0.7/1.6 121/130 0.7/0.3 America 3390/4561 42.5/42.6 5954/14293 34.7/28.3 Asia 3095/3661 38.8/34.2 5151/11555 30.0/22.8 Europe 998/1635 12.5/15.2 5630/24178 32.8/47.8 Oceania 437/685 5.5/6.4 318/427 1.8/0.8 TOTAL 7974/10716 100/100 17174/50583 100/100 Sources: [Huttrer 2000; Bertani 2010; Lund, Freeston 2000; Lund et al. 2010].

Power which is generated by geothermal steam is produced only in some European countries such as Iceland, Italy, Russia, Turkey, France (Guadeloupe), and Portugal (Azores). In 2010 the European production of geothermal power reached 15.2% of world production, which was an increase of 2.7% compared with the year 2000 [Huttrer 2000; Bertani 2010; Lund, Freeston 2000; Lund et al. 2010].

It is supposed that the generated electric power from geothermal sources can cover 8.3% of world electric energy consumption, thereby it meets the needs of 17% of the world population. In 31 countries of the world, mainly in Africa, Middle America, and Oceania, it is possible to cover the production of electric power up to 100% from geothermal sources [Dauncey, Mazza 2001].

In 2010 the geothermal energy was produced in 78 countries of the world. The installed thermal capacity for selected countries utilizing geothermal sources for heat production is displayed in Table 2. In 2000, the total installed capacity was 17 174 MWt and in 2010 it reached already 50 583 MWt., which means an increase in heat production from geothermal sources of 66% during the past 10 years. The biggest share in this growth was the utilization of heat pumps for space heating, which was not included in the statistics for the year 2000. We can illustrate this with the example of Germany and Sweden. When in 2000 the installed capacity for heat production in Germany was 397 MWt, in 2010 it was already 2485 MWt, whereas the share of heat pumps was 2230 MWt, which was almost 90%. Similarly as in the case of Sweden, where there was in 2000 the installed capacity for heat production of 377 MWt,while in 2010 it was already 4460 MWt, whereas the share of heat pumps was 4230 MWt, i.e. almost 95% of total production.

According to data presented at the World Geothermal Congress in 2000 [Lund, Freeston 2000], geothermal energy was utilized for heat production in 28 European countries. Geothermal sources in Europe are characterised, above all, by low temperature sources which are latent mainly on sedimentary formations. In 2000 the total installed capacity in Europe was 5630 MWt, which represented 35% of the world production. The largest share from the European direct utilization of geothermal energy occurred in Iceland and Turkey (Table 2). Among the first 22

(10)

144 Štefan Marsina, Pavol Oravský countries of the world from the aspect of installed capacity is the Slovak Republic with an installed heat capacity of 164 MWt.

Table 2. Installed capacity for heat production in selected countries of the world

in 2000 and 2010 in MWt Country 2000 2010 1. USA 5 366 12 611 2. China 2 814 8 898 3. Iceland 1 469 1 826 4. Japan 1 159 2 099 5. Turkey 820 2 084 6. Switzerland 547 1 061 7. Germany 397 2 485 8. Hungary 391 655 9. Canada 378 1 126 10. Sweden 377 4 460 11. France 326 1 345 12. Italy 326 867 13. New Zealand 308 393 14. Russia 307 308 15. Austria 255 663 16. Georgia 250 24 17. Mexico 164 156 18. Jordan 153 153 19. Romania 152 153 20. Slovak Republic 132 164 21. Croatia 113 67 22. Bulgaria 107 98

Source: [Fendek et al. 2011].

A development review of geothermal energy utilization in individual economic categories within the period of 1995 to 2010 is presented in Table 3.

(11)

Utilization of geothermal energy as a renewable source 145

Table 3. Categories of utilization of geothermal energy world-wide in the period1995 to 2010

(Capacity MWt) 1995 2000 2005 2010 Heat pumps Space heating Greenhouses Pond heating Agricultural drying Industrial uses Bathing and swimming Cooling and snow melting Others 1 854 2 579 1 085 1 097 67 544 1 085 115 238 5 275 3 263 1 246 605 74 474 3 957 114 137 15 384 4 366 1 404 616 157 484 5 401 371 86 35 236 5 391 1 544 653 127 533 6 689 368 41 TOTAL 8 664 15 145 28 269 50 583

Source: [Fendek, Bágelová, Fendeková 2011].

3. Geothermal energy of Slovakia

The Country update report of the Slovak Republic presented at the 2010 World Geothermal Congress in Bali, Indonesia, approaches the situation of geothermal energy utilization, especially the direct use diversification, by counties and categories.

Geothermal direct-use is distributed in eight counties in the country with Nitra County (southwest of the centre of the country) having the highest number of locations (19), and Trnava County (western Slovakia) having the highest amount of thermal energy used. The smallest number of facilities is in Kosice County (eastern Slovakia) with five locations, however this area has the highest potential for geothermal use in the country, including the generation of electricity. Greenhouse heating is found in 11 locations, two of which receive heat at the end of a cascaded system. Vegetables and cut flowers are the main products grown in these greenhouses. These are 19 installations using geothermal energy for individual space heating and two locations for district heating. The main district heating system is for heating blocks of flats and a hospital in Galanta. There are 59 locations using geothermal water for swimming pools, both outside and inside. The combine utilization (cascaded use) of the energy is for greenhouse heating, district heating and, finally, for bathing – in Topolniky and Podhajska. Two locations use geothermal energy for fish farming. There are also 9 locations using geothermal heat pumps with a total of 16 units installed. The various direct-uses include: 16.7 MWt and 381.1 TJ/yr for individual space heating; 10.8 MWt and 232.0 TJ/yr for district heating; 17.6 MWt and 461.1 TJ/yr for greenhouse heating; 11.9 MWt and 271.0 TJ/yr for fish farming; 73.6 MWt and 1708 TJ/yr for bathing and swimming; and 1.6 MWt and 13.5 TJ/yr for geothermal heat pumps. The total for the country is 132.2 MWt and 3067.2 TJ/yr [Fendek, Fendeková 2010].

(12)

146 Štefan Marsina, Pavol Oravský

Table 4. Geothermal water utilization in the Slovak Republic – diversification by counties

County Number of exploited localities

Proven water yield Installed heat capacity Overall Exploitable Overall Exploitable Exploitable

l.s-1 l.s-1 (MW t ) (MWt ) (%) Bratislava 1 30.8 12.0 4.12 1.71 1.04 Trnava 13 369.2 199.7 83.01 45.84 27.98 Nitra 19 617.5 382.1 89.65 39.65 24.20 Trenčin 10 140.8 111.1 12.48 10.89 6.65 Zilina 14 388.3 268.4 39.91 32.12 19.6 BanskaBystrica 13 211.9 151.8 18.84 13.33 8.13 Prešov 7 267.8 172.3 36.09 19.08 11.64 Kosice 5 241.6 44.9 80.82 1.24 0.76 TOTAL 82 2 267.9 1 342.3 364.92 163.86 100 Source: [Fendek et al. 2011].

Table 4 shows that the highest installed exploitable heat capacity, 45,84 MWt, is located in Trnava county. The most significant is Galanta with heating of a housing estate and hospital. This represents 27,98% of the total Trnava county exploitable heat capacity [Takács, Grell 2005].

According to available documentation, the first borehole, FGG-1, was drilled at Galanta in 1975 as a part of a survey on thermal water existence. At a depth of 1990 m water was found with a temperature of 62 ̊C and yield of 3.2 l/s. Therefore in 1983 and 1984 two more survey boreholes, FGG-2 and FGG-3, were drilled to prove geothermal water parametres. At depths of 2100 and 2102 m respectively, the temperature of the water was 80 ̊C, and 77 ̊C. The heat capacity of the wells is 6.8 and 6.29 MWt.

In 1990, the political changes enabled the financial support of the North Environmental Finance Corporation Helsinky and Orkuveita Rejkjaviktur (Iceland) with the know-how to design and implement the successful project for the exploitation of geothermal energy. In 1996, the newly established local limited company Galantaterm Ltd., was a guarantee for sustainability of the project results.

As mentioned above, the smallest number of facilities is in Kosice County with five locations. However this area has the highest potential for geothermal use in the whole country. The parameters of the potential exploitation of geothermal water at Durkov (temperature 125 ̊C, yield 65 l/s, and a total heat capacity of three wells of more than 70 MWt ) includes the prospect of heating 11 000 households in the nearby Kosice city (12 km) and furthermore, with an installed capacity 3.5 MWe to generate 23 GWh/yr of electric energy. In doing so the Slovak Republic would become the 22nd country in the world utilizing geothermal energy for power generation.

(13)

Utilization of geothermal energy as a renewable source 147

4. Conclusion

In 2000 the total heat capacity was 17 174 MWt and in 2010 it was 50 583 MWt. During ten years the growth of heat production from geothermal sources was 66%. The largest share in this growth belongs to the utilization of heat pumps. This period of time showed the growth of power generation from a geothermal source of 25.6 %, whereas the share of individual continents during these years remained almost the same. What is important is that the Slovak Republic is among top 22 countries of the world with an installed capacity of 164 MWt. According to Fendek, the new revaluated total heat-energetic potential of geothermal waters of Slovakia is 6653 MWt. Of that, 5.48% was provided by geothermal boreholes and only 2.46% exploited by installed equipment. This means 44.9% of the proved potential. Still, 55.1% is available to use [Fendek et al. 2011].

The data presented in this article are mostly of a geological orientation, but they are a significant basis for the further social-economic research on the geothermal energy utilization and its possible inclusion in the diversification plans of the energy infrastructure of the Slovak Republic. Insufficient use of the proven heat-energetic potential creates business opportunities for SMEs’ development, as well as the growth of municipal commitment of the affected regions. Utilization of geothermal heat in the Kosice basin also for power generation is a unique case, which will be closely examined in further research.

References

Bertani R., Geothermal power generation in the world 2005–2010 update report, [in:] R. Horne (eds.),

Proceedings World Geothermal Congress 2010, International Geothermal Association, Nusa Dua,

Bali, 25.-29.4.2010 [CD ROM].

Dauncey G., Mazza P., Stormy Weather: 101 Solutions to Global Climate Change, New Society Publishers, Ltd. Canada 2001, p. 271.

Fendek M., Remšík A., Fendeková M., Aktuálny stav preskúmanosti geotermálnych vôd na Slovensku, Geologické práce. Správy, 2004, č. 110, s. 43-54.

Fendek M., Remšík A., Fendeková M., Metodika vyhľadávania, hodnotenia a bilancovania množstva

geotermálnej vody a geotermálnej energie, Mineralia Slovaca, 2005, Vol. 37, No. 2, pp. 117-121.

Fendek M., Fendeková M., 2010 Country update of the Slovak Republic, [in:] Proceedings of the 2010

World Geothermal Congress, Bali, Indonesia, April 25-29. 2010, paper No. 0139, p.10.

Fendek M., Bágelová A., Fendeková M., Geotermálna energia vo svete a na Slovensku, Podzemná voda, 2011, Vol. XVII, No.1, pp. 74-83.

GEOTHERMAL ENERGY BAROMETER 2007: EurObserver, Available at: http://www.eurobserv-er.org/pdf/baro181.pdf, pp. 49-66.

Huttrer G.W., The status of the world geothermal power generation 1995-2000, [in:] Proceedings of the

world Geothermal Congress 2000, E. Iglesias, D. Blackwell, T. Hunt, J. Lund, S. Tamanyu (eds.),

Kyushu – Tohoku, Japan, 28.5.-10.6.2000, International Geothermal Association and Japanese Organizing Committee for WGC 2000, 2000, International Geothermal Association, Auckland, 2000, pp. 23-37.

(14)

148 Štefan Marsina, Pavol Oravský Kawazoe S., Shirakura N., Geothermal power generation and direct use in Japan, [in:] Proceedings

of the World Geothermal Congress 24-29.4.2005, R. Horne, E. Okandan (eds.), International

Geothermal Association, Antalya, Turkey, 2005.

Lund W., Freeston D.H., Worldwide direct uses of geothermal energy 2000, [in:] Proceedings of

the world Geothermal Congress 28.5.-10.6.2000, E. Iglesias, D. Blackwell, T. Hunt, J. Lund,

S. Tamanyu (eds.), International Geothermal Association and Japanese Organizing Committee for WGC, Kyushu – Tohoku, Japan, 2000, Auckland, International Geothermal Association, 2000, pp. 1-21.

Lund W., Freeston D.H., Boyd T.L., Direct utilization of geothermal energy 2010 Worldwide review, [in:]

Proceedings World Geothermal Congress, R. Horne (ed.), International Geothermal Association,

Nusa Dua, Bali, 25.-29.4.2010 [CD ROM].

Takács J., Grell Š., Využívanie geotermálnej vody na vykurovanie v Galante, Mineralica Slovaca, 2005, Vol. 37, No. 2, pp. 152-156, [in:] Geotermálna energia vo svete a na Slovensku. Fendek et al., Podzemná voda, 2011, Vol. XVII, No.1, pp. 74-83.

Renewables – Global Status Report, 2009: REN21 (Renewable Energy Policy Network for the 21st Century), Available at: www.ren21.net.

Rybach L., The advance of geothermal heat pumps worl-wide, IEA Heat Pump Centre Newsletter, 2005, Vol. 23, No. 4, pp. 13-18.

Rybach L., Status and prospects of geothermal energy, [in:] Proceedings World Geothermal Congress 2010, R. Horne ed., International Geothermal Association, Nusa Dua, Bali, 25.-29.4.2010 [CD ROM].

UTYLIZACJA ENERGII GEOTERMALNEJ JAKO ŹRÓDŁA ODNAWIALNEGO

Streszczenie: Celem artykułu jest analiza odnawialnego źródła energii – energii

geotermal-nej – z punktu widzenia sytuacji na świecie i na Słowacji. Podejście globalne skupia się na mocach zainstalowanych wytwarzania energii elektrycznej i termalnej w odniesieniu do poszczególnych kontynentów oraz na porównaniu mocy zainstalowanych wytwarzanej ener-gii termalnej z podziałem na wybrane kraje świata. Perspektywa globalna została również zastosowana do przeglądu różnych kategorii bezpośredniego wykorzystania energii geoter-malnej. Dwie analizy wyników uzyskanych w przypadku odwiertów studni geotermalnych na Słowacji, z podziałem na obszary i kraje, wskazują na duży potencjał tkwiący w możliwo-ściach wykorzystania energii geotermalnej jako alternatywnego źródła zużycia paliw kopal-nych. Obecnie cel prowadzonych badań powinien skupiać się na efektywności wykorzystania odnawialnych źródeł energii oraz dywersyfikacji wykorzystania istniejących źródeł energii.

Słowa kluczowe: woda geotermalna, energia geotermalna, potencjał termalno-energetyczny,

Cytaty

Powiązane dokumenty

Technologia nie jest zatem nauką, gdyż nauka (jako wcześniejszy etap procesu tech- nologicznego) nie została jeszcze zastosowana w praktyce lub skomercjalizowana. Technologia nie

The second stage of the study included an analysis of the relationship between the extent of maladjustment of the ECB single monetary policy to Poland’s economy and the degree

Dla zapewnienia efektywności działań rozwojowych kluczowe jest więc zapewnienie elastyczności w aktualizacji zrównoważonej karty wyników w oparciu o zasadę ciągłego uczenia

W tym celu zebrano 12 600 danych finansowych ze 150 przemysłowych zakładów mięsnych z lat 2010-2015 w zakresie wartości przychodów ze sprzedaży (netto), środków trwałych,

Bardzo wyraźne różnice wskazuje natomiast struktura odpowiedzi, w przypadku doradztwa świad- czonego przez doradców, którzy zostali wybrani na bazie dobrych doświadczeń

Zadania w zakresie kontroli wykonują instytucje tworzące system zarządzania i kontro- li środków UE w ramach poszczególnych programów operacyjnych oraz system instytucji

Celem artykułu jest przedstawienie branżowych specjalizacji specjalnych stref ekonomicznych w kontekście tworzenia potencjalnych klastrów i inicjatyw klastrowych 2..

ze względu na sposób uregulowania przez ustawodawcę, możliwe staje się wypunktowanie pew- nego rodzaju niedociągnięć, nieprawidłowości, skutkujących osłabieniem zjawiska