• Nie Znaleziono Wyników

Index of /rozprawy2/10887

N/A
N/A
Protected

Academic year: 2021

Share "Index of /rozprawy2/10887"

Copied!
4
0
0

Pełen tekst

(1)

Contents

List of Figures v

List of Tables ix

1 Introduction 1

2 Motivation and problem statement 5

2.1 Selection of a proper structural material . . . 7

2.2 Selection of a joining technique for multi-material structures . . . 8

2.3 Goals of the dissertation . . . 11

2.4 Contents of chapters . . . 12

3 Structural materials in automotive design 15 3.1 Automotive structural materials survey . . . 19

3.1.1 High-strength steels . . . 21

3.1.2 Aluminum alloys . . . 22

3.1.2.1 Aluminum foams . . . 24

3.1.3 Magnesium alloys . . . 26

3.1.4 Plastics and composite materials . . . 28

3.2 Discussion on modern trends in material selection in the automo-tive design . . . 32 4 Optimization theory 34 4.1 Optimization basics . . . 34 4.2 Structural optimization . . . 38 4.2.1 Geometry optimization . . . 40 4.2.2 Material optimization . . . 45

4.3 Optimization type: mono- and multi - objective approaches . . . . 50

(2)

CONTENTS

4.3.1 Mono-objective problems . . . 50

4.3.2 Multi-objective problems . . . 53

4.4 Data uncertainty and robust optimization . . . 60

4.5 Model reduction and approximation methods . . . 62

4.5.1 Design of experiments . . . 62

4.5.1.1 Factorial design . . . 63

4.5.1.2 Central composite design . . . 63

4.5.1.3 Uniform Latin hypercube design . . . 64

4.5.2 Metamodeling . . . 65

4.5.2.1 Polynomial models . . . 66

4.5.2.2 Radial basis functions . . . 67

4.5.2.3 Shepard - k-nearest method . . . 68

4.5.2.4 Gaussian processes . . . 69

4.6 Discussion and proposal of the multi-material structural optimiza-tion scheme . . . 72

5 Multi-material structural optimization: aluminum panel dynamic response 75 5.1 Optimization assumptions . . . 76

5.1.1 Design objectives . . . 76

5.1.2 Design variables . . . 77

5.1.3 Additional limitations . . . 78

5.2 Physical model preparation and testing . . . 79

5.3 Numerical model preparation and testing . . . 81

5.4 FE model refinement . . . 88

5.4.1 Sensitivity analysis . . . 88

5.4.2 Numerical model refinement . . . 90

5.4.3 Comparison of vibration mode shapes . . . 92

5.4.4 Preparation of the multi-layered sandwich model . . . 92

5.5 Multi-material optimization . . . 94

5.5.1 Robustness assessment . . . 96

5.6 Optimization results . . . 99

5.6.1 Quasi-optimal solution fabrication and testing . . . 100

5.6.2 Refinement of FE model of quasi-optimal solution . . . 101 5.6.3 Testing of additionally manufactured multi-material panels 103 5.7 Discussion of the multi-material optimization case study results . 105

(3)

CONTENTS

6 Multi-material optimization of a bus body structure 108

6.1 Multi-material structural optimization: bus structure modifications 110

6.1.1 Design variables . . . 111

6.1.2 Objective functions . . . 112

6.1.2.1 Correlation of the objective functions . . . 114

6.2 Preparation of the RS models . . . 115

6.2.1 Response surfaces accuracy . . . 116

6.3 Optimization run and results . . . 117

6.4 Discussion on the results of the presented case study . . . 119

7 Structural adhesives 122 7.1 Preparation of the specimens . . . 124

7.2 Temperature-humidity aging . . . 125

7.2.1 Class I of SAE/USCAR-2 standard . . . 127

7.2.2 Class V of SAE/USCAR-2 standard . . . 129

7.2.3 Thermal FE analysis of the multi-material specimens . . . 130

7.3 Strength testing conditions . . . 136

7.4 Strength tests results . . . 137

7.5 Elaboration of the FE cohesive zone models (CZM) . . . 144

7.5.1 FE analyses of the adhesively bonded joints . . . 147

7.5.2 Validation of the CZM model . . . 151

7.6 Discussion . . . 152

8 Structural adhesives 155 8.1 Introduction to optimization of a self - dumping semitrailer design 155 8.2 Definition of the optimization problem . . . 159

8.2.1 Design variables . . . 159

8.2.2 Design constraints . . . 160

8.2.3 Load scenarios . . . 161

8.2.4 Design objectives . . . 162

8.2.5 Design of Experiment and correlation between the objectives163 8.2.6 Metamodeling . . . 164

8.2.7 Optimization and selection of quasi optimal solutions . . . 165

8.2.8 Robustness evaluation and selection of the final quasi-optimal design . . . 167

8.2.9 Discussion multi-material structural optimization of a self-dumping semitrailer . . . 169

(4)

CONTENTS

9 Conclusions and future work 170

9.1 Future work . . . 175

References 177

Cytaty

Powiązane dokumenty

Г In the compensating computation the so-called compensation of the direct conditioned observations leads to looking for corrections V fulfilling conditions (3),

Wodór może być transportowany rurociągami, ale również – w zakresie, w jakim jest to technicznie możliwe – za pośred- nictwem innych środków transportu poza

Using Pspice simulator plot the static output and input characteristics of the 2n3904 transistor for the common emitter circuit with the emitter area increased 0.61 times..

Nie bez znaczenia jest tak¿e fundamentalna, kluczowa dla ¿ycia kwestia dobra i z³a, które dzieje siê równie¿ przy wspó³udziale ludzkiego cia³a, czy wprost w ludzkim

W³¹czenie siê w ¿ycie spo³eczne jest nie tylko prawem, ale te¿ staje siê obowi¹zkiem wyp³ywaj¹cym z wezwania do publicznego dawania œwiadectwa swej wiary..

To przekonanie, ¿e ukszta³towaniu siê cia³a dziecka z zap³odnionej zygoty musi towarzyszyæ bezpoœrednia interwen- cja Boga, stwarzaj¹cego duszê dziecka, bierze siê

[r]

Modified Surface Mesh & Gradient Aerodynamic Observations Cost, Constraints & Gradients Design Variables Optimizer CAD Modeler CFD Solver Cost Gradient Volume Mesh