• Nie Znaleziono Wyników

Application of the Higher Order Aberration to the Optical System Calculation

N/A
N/A
Protected

Academic year: 2021

Share "Application of the Higher Order Aberration to the Optical System Calculation"

Copied!
3
0
0

Pełen tekst

(1)

In variant two the starting system was of arbitrarily accepted powers of particular elements, the other (fixed) parameters being identical with those of the standard system.

In variant three the quality of the standard system has been improved after a short correction, resul­ ting in a merit function twice less than the original one.

The programme may be easily generalized by intro­ ducing some additional parameters (for instance

lens radia or other shape parameters) and adding some other conditions to the merit function (for instan­ ce, including the estimation of the geometrical aber­ rations) to make it more useful for further correction. Also, there exists a possibility of introducing the ex­ pression characterizing systems of variable magnifi­ cation. When computing system of these types the advantage of automizing the lay-out calculation may by succesfully exploited.

Miron Gaj, Anna Magiera, Leon M agiera

*

Application of the Higher Order Aberration

to the Optical System Calculation

Wave aberrations are a basis for a number of image quality criteria. One of the estimation methods of the wave aberrations exploits an existing dependence between transversal aberrations and wave aberra­ tions. Practical realisation of the method consists in expressing the coefficients of the wave function development into series by the transversal aberra­ tion coefficients. It is convenient to use the expressions for the transversal aberrations in the form given by H. A. Buchdahl [1] and the developement of the wave function as proposed by Nijboer [2]. Clearly, the accuracy of the calculations depends on the aberra­ tion order. Juan L. Rayces and Hsiao-Hung Hsieh [3] gave a relation between the Nijboer coefficients and those due to Buchdahl, taking account of con­ tributions to the aberrations of third order and fifth order, only (first and second order due to Buchdahl).

As for many systems such an accuracy is insufficient, the formulas for Nijboer coefficients taking ac­ count of the contributions coming from the se­ venth order terms, in addition to the lover order terms, have been derived in the following form

- r n20 = + Tl8+ T l9H* —RNo <Hrr2 , ftio - / * 1 1 „ 4 , t l i Z Î iÎ-H 6 2 4 4 - R N31= a2H + ^ H 3ĄT15 + T l6 Jf5 4 -RN, u — u n ™8 · 9 TJ3 j ____15 ‘ 2 r , c+ 2t, , — 3r,_16 17 jjs 6 24

*) Instytut Fizyki Technicznej Politechniki Wrocławskiej, Wrocław, Wybrzeże S. Wyspiańskiego 27, Poland.

- R N . °1 ■ r 4 8Tl l + 3Ti a~ 3T14g 4

4 4 23

(2)

-^« = XJÏ2+IlV!·14

h4 -fW ,, = — — X44 32— H -R M . = ^ / / + 2 r 7 + 2 T8 + 5 r 9 + 7 ! l 2 j y 3 51 2 20 2T7 + 2T8 - 5T9 - 3T10 - ^ , 3 = 20 H 3 u . t. — 3r „ —2 t, -RN = - T i ---5---6-H2 60 6 12 T. — -RN < = ---- - / / 2 - i W ,

Fig. lb. The graphs o f the wave aberration for the field angle 6°

-R N 80 g where

R — reference sphere radius, N„m — Nijboer coefficients,

o’,· — Buchdahl coefficients of the first order, lit — Buchdahl coefficients of the second order, Tj — Buchdahl coefficients of the third order. The derived relations have been varyfied by calcu­ lating a triplet as an example, its parameters being given in table. The results of the calculations have been presented in Figs, la, lb, lc. The line” · denotes the wave aberrations obtained from the transversal aberrations of the third order, the lin e ---denotes the aberrations obtained from the coefficients of the

pf/ofj

i

.-02 -.01 .01 .01

Fig. la. The graphs o f the wave aberration for the field angle 0°

Fig. lc. The graphs o f the wave aberration for the field angle 12°

third and fifth order, the lin e --- denotes the results obtained, by superponing the third order terms with those of the fifth order and seventh order, the line --- denotes the aberrations obtained from the trigonometric calculations. At the present A time an analysis of optical systems with respect to the seventh order aberrations is being under study. The detailed results will be published later.

(3)

U -.2073 -1.3264 -.6079 .1954 3.2181 -.6 8 4 4

Ni 1 1.6162 1 1.5725 1 1.6162

di .0403 .01685 .0096 .1387 .0313

Entrance pupil position p = .1134.

References

[1] Buchdahl H. A., Optical Aberration Coefficients (1954), Oxford Press University.

[2] Nijboer B. R. A., Thesis University o f Groningen (1942). [3] Rayces, Juan L., Hsiao Chung-Hsieh, Annual Meeting

of the O. S. A. 1970.

Janina Bartkowska

*

On the Correction of Pancratic Systems

Pancratic systems are often composed of not too thick lenses. Their focal lengths and their separations result from the conditions of the stabilisation of the image and entrance pupil position. If the apertures and fields in which the variable part of the system works are not too great, these systems possess mainly the third order aberrations. For the correction of these systems the method of “main parameters” with some modifications, has proved to be useful.

The following symbols are now introduced

S x...Ss — Seidel’s coefficients,

A, B — parameters of spherical aberration and coma,

P, W — main parameters determining the spherical aberration and coma, the focal length being reduced to unity, the object lying for each component in infinity, the entrance pupil in the component plane, h, a — heights and angles of the aperture ray, y, P — heights and angles of the principal ray, J — ay — p/i — Lagrange — Helmholtz invariant, / — focal length of the lens components.

Among the parameters A, B and the main para­ meters P, W there occur approximate relationships

h3 A = —P-P 4ah2 h , - j ^ - W + a - j ( 5 A a - a ) h2 2.7ah B = — W-\--- . P f

These relationships are valid with sufficient accu­ racy if the magnifications of several components are less than the unity. For magnifying components these formulae lose their usefulness, since their accuracy deteriorates. In these cases one can intro­ duce “reversed” parameters P and W, determining the spherical aberration and coma, the image lying for each component in infinity. Among the parame-ters A and B and the reversed parameparame-ters P and W there occur approximate relationships

/>3 /j2 /j

A =y-3p - 4 a ' - w + a y ( 5 A a - a )

*) Centralne Laboratorium Optyki, Warszawa, ul. Kamion­

ko wska 18, Pol and. B

h2 P

* _ a'h

W+1JT

Cytaty

Powiązane dokumenty

A set of object functions — absorption spectrum curves of several chemical compounds — are made in the form of photographic negatives on the ORWO NP-15

Zastosowanie koncepcji opcji rzeczowych w ocenie projektów inwestycyjnych jest zasadne w przypadku przedsięwzięć charakteryzujących się znacznym ryzkiem i

of the process Definitional criteria (^conjunction) knowledge transfer cognitive Production- Creation of potential innovations in R&amp;D sector ^ Use- Transmission of R&amp;D

Cooperation of science and business, national and regional smart specializations, development and innovation implementation are the main elements for developing R&amp;D sector

The third step – based on literature findings, action research and creative thinking – a model of a sustainable information society and a framework of the critical success factors

Przyjmując założenie, że misja banków spółdzielczych przejawia się przede wszystkim w zasadach spółdzielczych, w niniejszym opracowaniu przeprowadzono ogólną analizę

była wydarzeniem o znaczeniu politycznym, w Czytelni Zakopiańskiej były dostępne aż dwa jej egzemplarze. Już w czerwcu tego samego, 1910 roku ukazało się drugie wyda-

nesie – oznaczono zdanie: „W obojętnych murach krajowego Ciemnogrodu pozostał nie- zrozumiany, oczekujący potopu, bezsilnie patrząc, jak spełniają się coraz inne jego