• Nie Znaleziono Wyników

On the function of oscillation

N/A
N/A
Protected

Academic year: 2021

Share "On the function of oscillation"

Copied!
6
0
0

Pełen tekst

(1)

Problemy Matematyczne 14 (1995), 15 - 20

On the function of oscillation

Zbigniew Duszyński

Throughout tliis paper we will use the following denotations, facts and definitions (see [1], [2]):

IR will denote the set of all real numbers.

Definition 1 Let Bq be a non empty family of non empty sets E C IR such that

aj if E € Bq , then for every t > 0, E fi (O.f) € Bq .

a2 Ei U £ 2 € Bq if and only if E\ € Bq or £ 2 € Bq.

For ever\7 set E C IR and x € IR we shall write

E + x = { y : V {y = u + z) j , - E -■= { y : - y <E E ) . a ^ E

Then the family Bo is defined as

Bó = { E : - E € B + }.

For every x € IR let

B +T = { £ : ( £ - x) € B + } , B ; = { £ : - £ € £ 0+ }- and BT = Bq) U B ~ . Now let B = \Jxę n B x.

(2)

D efinition 2 The number i/o is called a 5 -lim it num ber o f a function f : IR —* Ul at a point xo <ż IR if for every e > 0 the set

{ x : |f ( x ) - g \ < £ ] b elon gs to Bxo.

Let L s ( f , x ) denotes the set o f all ZTlimit num bers o f a function / at a p oin t x.

For every function / : IR —* IR and every point a.’o €1 IR there exists at least on e £Mimit number of the function / at the point x 0. For every x € IR the set L & ( f , x ) is closed.

D efinition 3 We will say that the fam ily B fulfils the con d ition M 0, if for everv j 0 and a sequence { x n} such that x n \ x 0 and for every sequence o f sets { B n} such that B n € BXn the set E0 = U^=i Bn belonges to the fam ily K

-It is easy to see. that each familly B fulfiling the condition M 0 fulfils the co n d itio n M i too.

Let us w rite for a bounded function / : IR —> IR.

m e { f , x ) min x)

w here = L $ ( f , x ) U { / ( z ) } . We shall say that the fu n ction / is u p p er Z3-semicontinuous (lower 5-sem icon tin ou s) at a point x 0 if

M e ( f , x ) < f ( x o), > f ( x 0).

F rom theorem 14 ([2]) we infer the follow ing characterization:

for an arbitrary bounded function / , M e { f ), ( m g ( / ) ) is upper 5 -se m ico n ti- nuous (low er B-sem icontinous) if and only if the fam ily B fulfils the con d ition M\. Let V { x 0) = { p G IR x IR : p — ( z o ,y ) } . Let / : IR —» [0,1] be an arbitrary function. Let Bq = A!’,+ be the fam ily o f sets for which 0 is a point o f right-sided accum ulation. It is obvious that the fam ily W defines ordinary lim it num bers.

(3)

O n T H E F U N C T I O N OF O S C I L A T I O N 17 T h e sym bol uij (x) will denotes the oscillation o f / at a point x. i.e.

uJj( x ) = m ax L ’ ( f . x ) — min L*{ f , .7-). Let us put H j ( y ) — {.7* : to f ( x ) g e q y } for each y 6 [0,1]. T h e follow ing facts are known for an arbitrary function f :

1. T h e set f i /( t /) is closed on IR (with natural to p o lo g y ), for each y £ [0.1]. 2. If ?/! < 7/2, then f l /( t /2) C ft /(t /i).

3. T h e set

U

(ftj(y)

x {

y

})

y€[o.i) is closed on the piane IR x IR.

Let now fam ily oi subsets o f IR fulfils the follow ing condi-tions:

Qi T h e set H{ y ) is closed on IR (with usual to p o lo g y ), for each y € [0,1], q 2 If t/i < 7/2, then Q( y 2) C fi(y i).

0 3 T h e set

U

W y

) x {,v})

v€[0,l]

is closed on the piane IR x IR. 04 fl(0 ) = IR.

In this paper there is given the p roof o f the follow ing

T h e o r e m For an arbitrary fam ily { ^ ( y ) } o < y<i fulfiling con d ition s ( o i ) — — ( o 4) there exists a function f : IR —> [0,1] such that for each 0 < y < 1 we have:

( o 0 )

tl{y)

= f 2 / ( y ) .

In the p ro o f we shall apply well known Cantor - Bendizson theorem :

every closed set A can be represented as a sum o f tw o sets A 2. the first o f w hich consists o f all points o f condensation o f A (it is perfect set) and the second one is denum erable; A\ fi A 2 = 0.

(4)

For each y G [0.1] let

Q( y ) = A ( y ) U B ( y ) . A { y ) fi B ( y ) = 0: where A { y ) is perfect and B (y ) is denum erable.

N otice. that if for sorne y' G (0 .1 ],.r G A( y ' ) then x G A{ y ' ) then x G A ( y ) for each 0 < y < y ' . If x G B ( y ' ) , x n eedn’ t belong to each B ( y ) for 0 < y < y'. However, if x G B [ y " ) for som e y " < y' then, x G B ( y ) for each y " < y < y ' . Let us define (for each a G ]R) the set B a as follows: B a = { y G [0.1] : a G B { y ) } . Let F be the set o f all a G IR. which for B a is n on degenerate interval.

L e m m a T h e set F is denum erable. P r o o f o f lemma.

S uppose that F is a nondenum erable set. For each a G F let j/*1* and y[]2) fulfil the ineąualities

inf B a < y [ l) < y[ 2) < s u p B a. For an arbitrary a G F let

^ = { y € [ 0 , l ] : y i l ł < y < y i 2)}.

For n > 2 (n G JN), by F n we will dem ote the set o f all a £ F . such that diam B'„ > - . It is easv to see, thatQ n

F = U

Fn-n > 2

It follow s im m ediately from our assum ption that starting from a cer-tain p ositive integer all sets Fn are nondenum erable ( F n C F n+1). Let F no be the nondenum erable set. Then at least one of the points yk = ( k = 0 ,1 , 2 , . . . , 2n0), belongs to nondenum erable subfam ily o f the fam ily { B a } a € F n o

-H ence there exists a point a0 € B( yk0) which is the point o f condensation o f fl(j/fc0) and accordin gly a0 G A( yk0). But the sets A ( y ko) and B{ y k0) are disjoin t, so we ha.ve a contradiction.

Let us define the function / . Let U = Q fi [0.1], where Q is the set of all rational numbers. For an arbitrary set f)(t/) (y G U), A' ( y ) will denote denum erable and dense set on f i( y).

(5)

O n T H E F U N C T I O N OF OS C I L A T I O N

19

Oui function f can be now defined as follows.

( su p { y e U : a- € A ' ( y ) } for x 6 (J A \ y )

f { r ) = < veu

[ 0 otherwise

It is obvious that 0 is an ordinary limit num ber o f / at each point x £ IR- First we sha.ll prove the inclusion f l j { y ) C ft[y). Let y0 be a given point from (0.1]. Let x e f t f { yo) be. m ax L " { f , x ) > y0.

(I ) if f ( x ) > yo > m ax L ( f . x ) . then from the definition o f / and con d ition (0 3) it follows, that x £ f l ( f ( x ) ) . Since Cl ( f ( x ) ) C bl(yo) hence x £

fi(yo)-(II)

if yo < ma.XjL ( / , .r), then from the definition o f / and con dition ( 0 3 ) we have

x £ ff(m a x L( f . a:)).

(N otice that in this case we can only have yo < f ( x ) ) . Since

fi(m a x L ( f . x ) ) C f l (3/0)- therefore x £ S7(j/o)- W e shall now prove the inclusion Q( y ) C H /(y ). Let"s take on arbitrary point yo € U \ { 0 ) . ( H I ) Let x £ A'(yo)-, then from the definition o f / we obtain x £ Q/( y0 ). (IV ) Let x € A ( y 0) \ A' ( y 0).

From the definition o f / we obtain:

y0 < m& x p y ( V ( x ) O ( (J ( j 4 ( y ) x { y } ) ) ) < m a\ L ( f , x ) < m ax L " ( f . x )

y €[o,i]

Hence x £ Cl/{yo)- Let us take now y0 from [0,1] \ U. (V ) Let x £ v4(j/o). Here the p roof is similar to (IV .) (V I) In the case x £ B ( y 0) we see at once that x £ Q j ( y 0).

Rem ark T h e function / defined in this paper is o f the second class o f Baire.

(6)

References

[1] Jędrzejewski J.M , On limit numbers o f real fu n ctio n s, Fund. M a th ., L X X X II I (1974;, pp. 269 - 281.

[2] Jędrzejewski J.M . O granicy i ciągłości uogólnionej. Z esz y ty Nauk. Un. L ód z., Seria II (52), (1973), pp. 19 - 38.

[3] Sikorski R ., Funkcje rzeczyw iste t.l, W -w a 1958.

[4] Banach S., W stęp do teorii funkcji rzeczyw istych, W -w a - W rocła w 1951. P E D A G O G I C A L U N IY E R S IT Y

IN S T IT U T E O F M A T H E M A T 1C S Chodkiewicza 30

85-064 Bydgoszcz Polan d

Cytaty

Powiązane dokumenty

A new approach is presented for constructing recurrence rela- tions for the modified moments of a function with respect to the Gegenbauer polynomials...

For general k the proof is very long and involved (it is worth mentioning that the proof offered by Marcinkiewicz and Zygmund has a lacuna filled by Fejzic and Weil [3]).. The

The purpose of this paper is to prove the following

In the present paper, we give a similar formula for real quadratic fields F.. Denote by N the set of all

Introduction. Taking just the first two terms and using an asymptotic formula for Bessel functions we obtain an equation which is similar to the one of Knessl and Keller.. .) where

But there are some difficulties connected with the choice of a suitable version of this theorem, caused by the occurrence of singular points and by the necessity of integrating

We give some necessary and sufficient conditions for an n−1 times differen- tiable function to be a generalized convex function with respect to an unrestricted n- parameter

Our version of the proof does not use the Poisson integral representation of harmonic functions in the unit disk D2. In order to make our method easily understandable, we have