• Nie Znaleziono Wyników

Model tests with 3 bottom trawl otterboards

N/A
N/A
Protected

Academic year: 2021

Share "Model tests with 3 bottom trawl otterboards"

Copied!
11
0
0

Pełen tekst

(1)

l.b. y.

Scheepbouwkundt

Technische

1-logeschool

Reprinted from Norwegian Fishing and Maritime

NewP-l963.

NORWEGIAN SHIP MODEL EXPERIMENT TANK

THE TECHNICAL UNIVERSITY OF NORWAY

MODEL TESTS WITH

3 BOTTOM TRAWL

OTTERBOARDS

BY

H. AA. WALDERHAUG

A. AKRE

NOR\vI:(;IAN SHIP MODEL EXPERIMENT TANK PUBLICATION NO. 69

(2)

LIST OF CONTENTS

Page

Abstract i

Definitions I

Scale effects 2

Free stream tests 3

Bottom tests 4

Comments to the test results .. 5

(3)

.9-MODEL TESTS WITH 3 BOTTOM TRAWL OTTERBOARDS

By H. AA. WALDERHAUG & A. ÄKRE

NORWEGIAN SHIP MODEL EXPERIMENT TANK - THE TECHNICAL UNIVERSITY OF NORWAY ABSTRACT

In this report are described some results of otter-board hydrodynamical tests carried out at the

Nor-wegian Ship Model Experiment Tank and sponsored by the Norwegian working group for development of one-boat pelagic trawl (APE). The test results were

presented at the first meeting of the International

group for pelagic fishing methods and gear (IF), the

Hague, 6. to 8. November 1962.

DEFINITIONS

The otterboards tested are all designed for bottom trawis, and following notation is used:

Rectangular otterboard of orthodox design (Fig. 1).

Oval otterhoard (Matrossow board) with one

vertical slot at the centre of the board (Fig. 2).

Oval otterboard with 3 slots (Fig. 3).

B 2 a: As B 2, but with 2 slots, one at the centre

and one at the leading edge (Fig. 4).

Section A-A Suct,on side. L31Qa n

4-Fig. 1. Otter Board B 1 (Rectangular otter board).

Weight: 1100 kilogram. Area: 456 m2. tu: 0,0355. Repnolds' number at towing speed 3,5 knot: 5,5 X 10°.

B 2 b: As B 2, but with a streamlined leading edge,

NACA wing section (Fig. 4).

B 2 c: As B 2, but without slot.

B I a and B 2 d: As B i and B a respectively, but

without fittings such as brackets, strengthening strips

and -edges, hooks, links for back strops, bolts, pints etc.

B 3 a, b, c: As B 3, but with slot angles equal to

40° 45° and 50° respectively.

The slot angle for B 3 is 42°, where the slot angle

is defined as the angle between the after slot corde

line and the otterboard corde line (Fig. 3).

The following definitions were made in order to

relate otterboard model tests to tests with the

com-plete trawl gear:

The tangent plane is defined as the piane tangent to the pressure side of the otterboard. Some examples of tangent planes are shown with dotted lines in the

sketch. For the otterboards described in this report

the tangent planes and pressure sides are synonymous.

Fig. 2. Otter Board B 2. Ovale otter board with one

slots. Weight: 950 kilogram. Area: 4.55 m2. tu: 0.055.5. Repnolds' number at towing speed 3.5 knot: 5,56 X 10°

(4)

The reference plane is defined as a vertical plane

parallel to the speed direction (speed vector).

During the tests described in this report the angle

of inclination and the angle of tilt, were both zero,

so that the tangent plane was always vertical.

The angle of attack, a is measured in a plane

through the speed vector and perpendicular to the

tangent plane.

The following nondimensional coefficients are used:

CL =

'/2p AV2

CD D dragcoefficient

p AV2

LID lift/drag ratio

where L = lift force in the plane of the agnle of

attack and perpendicular to the speed vector.

L

Suction Side.

= liftcoeffieient

I. 2OSu

Fig. 3. Otter Board B 3. Ovale otter board with three

slots. Weight: 290 kilogram. Area: 2035 m2. t/l: 0.0498.

Reynolds number at towing speed 3.5 knot 3.6 X 10'. 4

29p

3t20

btte,- board 02 a.

Fig. 4. Otter Board B 2 a, B 2 b. Modifications of

otter board B 2.

During the tests described in this report, the lift and spread forces are syllonymous.

D = drag force in the speed direction.

p = mass density

A = projected area of otterboard in the tangent

plane.

V = velocity.

Reynolds' number is defined as

Vc

Re =

V

where

c = length of otterboard (corde)

= kinematic viscosity.

SCALE EFFECTS - MODEL SIZE

The first problem in model testing is to find a rela-tion between model and prototype as regards forces

and moments. The forces involved when an

otter-board is towed deeply submerged in water, are fric-tional forces and inertia forces, and the streamlines around the model and prototype are geometrically si-Otter board 2 b

(5)

- llI 441F r - i rj 1 flifi r -1 44

J_

-Ii r.. - Hh rdP* i-

l-T1

iiI

--I - 91144 I]11W I], r IF I

-i--- WIk J

- IhJ1

E'Î

j

I PI S'

irrrr

III 41 III' i iilI L IIIIii 1IIlIh1 I r 111111 II! P I Ii

114 115 110 I?1O 50 117 W U

Diagram no. 1. Freestream tests, otter board B I and

B 2. Force coefficient as function of Reijnolds' number.

milar if Reynolds' number is the same for model and prototype. This can not easily be realized in a model tank, but fortunately the force- and moment coeff

i-cienta are practically

in-dependent of Reynolds'

number 'variations for Re

larger than 0.5 X 10° i X 10°. As model scale

for B i and B 2 were

chosen i : 5, and for B 3, which is a smaller

otter-board, were chosen the

scale i 4. With these

models the critical

Rey-nolds' number mentioned

above, are reached in

the model tank.

Diagram no. 2.

Free-stream tests, otter board B 1, B 2 and B 3. Force coefficient and liftdrag

iatio of otter board as

function of angle of

attack.

___.J I1IIIIIII IllIfiIIlIiiilil11IIIllI WIP.IHIIIIIII IllIII i

i

IIIIPPI1PPIIIÍI lIIIbPPlI lili IIPIOIIIIIPIUII I P1111 IIfflII1IIIIP II II

11111IIIPPIIIIi IPIIIIP1IIIII IP IIIiIiiiIPIliI 1111111 IPIIIPISII lili Pli

HI1PHlPifl4PIPPPIPPIlRiU! jj5ThIp

!PIIIIPIIPPPSIIIIPIIP

11PIIPII1 lIP PillIlil IIIIllliIIIIiiiIIiii

lilt IPlIPPIb lIIIP1lilPlIiUIlIlI'ilIiIlII

WIIIIPPP IP

lPlil

IIPflPilI AI1IPIlPPPifflIlIltlIIllltPlIPl IP lIP IlIi, sPIll

PdIPPllIPIIItII

" lIPPulIPIlIW IllIlIllilLIP 1llIflIHIiilP!i 44i1Ø1111, 1441 11iIIlL

' 11114411 lIPPPï.Ii0i lPIi1olI lIlIPIP PP

4444 P 1111dB 144 k

BIIIIIUIIIILIL

-

r

.

ILl

F4__ - URSUUYIIIlPW 1144111 - .. -. up 44IlW

-

up UPu i i . i - I

1 REE STREAM (OPEN WATER) TESTS

In Diagram i are shown the force coefficients of otter.boards B i and B 2 as a function of Reynolds'

number. B 2 is tested in this series at two angles of attack, i.e. 28° and 38°, and for this board the force coefficients will be approximately independent of Re for Re larger than 0.65 X 106. The critical Re for the

rectangular otterboard B i is lower, approximately

0.5 X 106. The higher critical speed of B 2 than that

of B i may be due to the shape of the otterboard as well as the effect of the slot.

Based on this test series and on results of airfoil

tests (see f. ex. the British Shipbuilding Research

Association, Reports No. 70 and 142) it is expected that full scale behaviour of otterhoard in open water

may be predicted from model test carried out at a

Re of at least 0.65 X 106.

The force coefficients and lift/drag ratios as a

func-tion of angle of attack is given in Diagrams 2, 3 and 4.

Only the angles of attack between 20° and 45° have

been considered of practical interest; however, the efficiency or lift/drag ratio of the otterboards will

have a maximum at an angle of attack less than 20°. It may be observed from the curves that otterboard

B 3 has the highest L/D ratio, whereas B 2 has the

highest lift-coefficient.

Concerning the modified otterboards, it is shown in Diagram 3 that B 2 a as well as B 2 b has a 12-13 %

higher lift/drag ratio than B 2.

In Diagram 4 is shown the effect of varying the

slot angle for B 3. The effect is quite marked with a maximum lift/drag ratio at a slot angle between

42° and 45°.

Results of the open water streamline tests are

4.5

(6)

Diagram no. 3.

Freestream tests otter board B 2. Force coeffi-cients and lift-drag ratio

of otter board as func-tion of angle of attacc.

shown in photograph no. i and 2. The

3-dimensio-nal flow at the top and

bottom of the otterboard

is easily observed. This

effect

will reduce the

lift considerably

compa-red with 2-dimensional

lift.

BOTTOM TESTS

During these tests the otterboards were towed

very close to the bottom (maximum distance about 5 mm) but without actually touching the bottom. Mechanical

fric-tion was therefore not involved, and the law

of similarity between model and prototype mentioned earlier is still valid.

In Diagram 5 is shown the effect of Reynolds'

num-ber variations on the force coefficients.

It will be

observed that the critical Re are higher than those

for the open water tests. This effect is more

pronoun-lIT ' iiiirliki!lJJB Hie;ulllll :. 5li.i5i VIIh lH. IuherdHhll iirr-hHuIL4 t!l:i::IWbliljIIj iHHLrllllrluI IhllHffl U'liíi

O i",Illi 11111 II IIhUIlUIIllIlI bIlIIIlI1I I! ilI ISfiIISUiShIIIIihh;F,hiiii:Ii0ii:::;::i.iibiiiIiHilIrnHflhiHtlIiuhiHMhiIIrnH,iI Ir,,L ,HhIIp,,IiflhIli:iii.

j

__..I__.j!_,.

h

3...i

-

i,:

i om !b b

2... ¡'.%Ì

±L.

j-.

JI

'LI!pMJJ

i

L,

--.

t. msi 6 30 35

hlUfluIflUIUUlhIUi UWhlUIflhflhIUUhUIhhI UIUffUuUh

I hUh ilUI.UIiiI im el:Ismm

;iaii

-.'-- .- . UIILIIU iiIHffhliihUIii . .ç HUii 15 ir Ihn, lUUIhIll .i.I15llUIlUIUU th-i115II11u11ihhiUIU il 11 iIUIIUIII1IIiUII1UUI i. J 1 - ifmhUUIr,n lIiIIliIhIii ihilib r,,0' 11111 UIIIiU15IIIIU 1huïUIUUiiUtliiUIiiiiUIfl. 40 45

ced for B i than for B 2, which might have been

ex-pected since B i has a horizontal bottom line. The

critical Re for B i and B 2 will be approximately

0.8 X iOfl.

The effect of variations in angle of attack is shown in the Diagrams 6, 7, 8, 9 and 10. It will be observed

that the maximum lift

for the three parent

at-terboards (Diagram 6)

will be reached

at a

smaller angle of attack

than during the open

water tests. This effect

might have been expect-ed since stalLing is

de-layad by 3-dimensional

effects.

As for the open water

tests the maximum

Lift-drag ratio will occur at an angle of attack less

than 20°, and the

rectan-gular otterboard is still

inferior to the other two. Streamlining the

lead-ing edge of the

otter-board will increase the

Freestream tests, otter

board B 3. Force

coeffi-cients and lift-drag

ratio of otter board as

function of angle of

(7)

48-

A4-

02-0e L

Diagram no. 5. Bottom test, otter board B 1, B 2.B 2. Force coefficient of otter board as

function of RelJnolds' number.

Et-drag ratio about 6 í at the stalling point

(Dia-gram 8). Further the stalling angle is increased about 4.

The effect of the slot in B 2 is comparatively small as shown in Diagram 9. At the point of maximum

lift, the

slot seems to increase the lift/drag ratio

about 5 %.

Removing the otterboard fittings has a very marked effect on the lift characteristics as shown in Diagrams 7 and 10. The lift is increased by 10 % - 15 %, and

the lift/drag ratio is increased by 5 % - 7 96.

Fur-ther the stalling angle is reduced 3° for B 2. The

in-crease in drag may be the net result of a reduced

-n

JitWv1

fl

I IlllBlIIIIIwIi Vhi IIi III ililfll!ll E

IøBIlfthijJuI llllIlllhiIUBIaWWIlli

j R'5IIIIIII im sitCliii IfiBUW thU .. lIIIIIil IlllIIII 'iiIM ! iMl II

F' IEIII

I ff11 IIlEIIItIIII'I iWi tuIlE iSt 4ltil rHIII! lui I Il

il 1511 illillIlirifi 11111115 lilfililufil 'liSiulrHuIfiul lutu'IIiIU IlilfibLilhI

In U I ¡rj I IlIHirUllhhil iiUillIhprilr5hluhfl 5'IMiI

fi luPrIIIr.i! IlfihIthilfi Ifilut' I UI WIUi tuuHflhi1flflulhI 1511111 iiiiiIIl1IIUii rIll'

!ik

lt illS Iill IIlilI ill II Hfl WI Hr IW ii III III III tulirritfiliii Wfl ' iii 11UWI1 H ii EH!

IIIi lii II W 11H01 WI liii lt 1111W in U II hull I lUhIllhlfiullIlI Ihhi 111.1111Ill iII rira ill

IIillll Ik9fMllllllill I

T'''

li 1111111111111 HIIHIIIWWIM WIhIflhllW'uullIL ' '11W illuilhlhllil t lIB

lut 1551111111? luriWillill W fltuilhhHlSSlSBlIfi'fllut1im11l flUIti

IiIi!iIÌIIIIIIr!flInMIIIi iiI!

IOHI

lIt luth i Ill-I W 1h11 li4r1111 lItI Wifliffr, i ' "tui t w tu lot nitsi.'Iltillul

P' I15b liti liliIll Ii it tE,rlliluIilhtI0UirIlUuIhIilWI 11H01 II thINtIfliflil ilHluilmEtW1h

III 11111111l'il, ilIlillIhillEHIllfi hiluliluuhlil lui illuililt Ifiullul ii filI lt

lilifilfilil IlIlhII'ihil'tlI iiU,,lhlhulUIUtifilfiuJiIlilt 11111 IlfilfihIfimilhIul filth

Jliiilli!ll '

hIIIUW MIW'Itui11fl 0lEW1'Iut013J!Il

,lltIililBtu 1

11111 OII1 23

il II IlIS II L' 111111 't IuIhlhlhIhhhl I 111111 ilfiI hIlIlIulfiffI 11111111 I II I 15111,1 rl

liii 111111::! u IIIIIIIHII1flI't fihIthili OlI 15h 111111111

111111W 11111 hr 'HhiIhilllflW 1111115101 Alu ItlIuulUfilIt

...

---

---ihIlIWSI Hl Il SIOWIhIllI !ìI11IHuIflW WWIW thl!ltdIltIluIuUliluiUIh1ltth i I WHlillI,lïi

t'Bl HIUUW I WlWfllIWl11 111h1l11511111111AlWhfllu luflWfl1flU U.Hio,iLE ¿1 11 iltIuluhlIlIllI

IiIi r' ii1

I 111111 III W 111111 WEIl lI1lIll,h i 'lll IllIhIliUllI lurOn, 3U!fi5 iIhhIIhill11IlHhlIltjWlflil'W htIl hr W1IIIII'JlIllli' 11111

0",i11tl W 01111 111V' rL'! 150111hIlt Ululi ln,t!lflt 111 I I11fiIhJIl ,. 1111110111 Ii 11 ilhll'JI!11IIilhiI'rill

Irr,riH1lllu Il hIilHIIl r,, Hp,!,, '1111,5,11 lItI IlUflUIflllIlllfltItOlOtlllIhlIu filfififil tIll ntIiU Eh 111111 hhi,iEI,PIO

s!,',, r,n, On nr onn,.nIl,orr rr,,,,rrnen r r-n, !onsrnrUnr OnifUsorIrIn, ifin, nSL OUr OUrIOrIO nuwnnr nrrIrU!-nrrorlr,r,r,rr

liluIhlIhIl luI 0 Ei 011111111 111010 rl III tIll hIWI " 1111110 IIIIlItttl 01110111101111111 nr.11111111 HOI! 1111111 It III WtIHhiII WI, 111

1I11l!rWlWllIi '. Ill With 51 1111111 J I Ill hIlf lotI thHhi MilO 1111111111 W 1111111 WI 111 lIlIIr 11111 1111111011fill IPIIr, IlIlilhIlilIlli 111111 H S'il' tudIIt i'luilu'lthItil H'l101W ,iei tu 1ti01411r5l 1111111110 llliUlulIti II hhPi WO 5 1h11 110W W lu11fllu10tIt51lIflIBWHIl1P

I11ilfii'iüi I Wh01ItlIhi15WtW1JJirïlL SUUihIHI,lOIlr'III iI'JtIJuIIIIIhIlIIiHIIIOIll 11111111- lilI.5!u1111iUhl i WlWIIflIliIlOritOiiilIiIIlIlI

111W!'Ir lull lOI 0111111 ljII9ilq r1 'III 'lillO' Ill I'tlr511f11 II IHhlirlIBhlI II, 1'5I lIlt ,,III'OIIIIH r -''II LI 11111511 III'

Irr 5,1' IHn 111111 H 1111111 1ilr 111110111 1111111 lU 'II iii, IhI 1111110 lilII il I 1111 111111 II ' u lIt, Iil,,i,llII, .1!III

11ES 'tI 111111- I i hilihililEl IO UililililiIlHW

tEl lIli 11111 Iii I lililillIll ill IlihIllIlIhIlIli

Ii1i

li

M IIk ftll1 I

Diagram no. 7. Bottom tests, otter board B 1. Force coefficient and lift-drag ratio of otter board as function of angle of attack. frictional resistance and an increased induced

resi-stance.

The streamlines for the otterboards at the bottom are shown in the Photos 3-10. From the pressure side streamlines of B i (Photo no. 4) it will be noticed that the flow at the keel of the board has more

2-dimen-sional character than at the top. This will explain

the increased lift/drag ratio during the bottom tests. At 28° angle of attack this increase amounts to about

6 %. The flow at the suction side is very confused due to eddies being developed here.

The difference in open water and bottom flow for B 2 may be observed from the Photos 1, 2 and 5, 6.

It is interesting to note that despite the slot effect,

there is reversed flow at the suction side of the keel of the board during bottom tests. However, these tests were run at the stalling angle, and large eddies may be expected at this point.

From Photos no. 7 and 8 it is observed that closing the slot of B 2 results in increased eddy formation at the suction side. The flow at the suction

side of B 3 seems to be quite stable (Photo

9 and 10). However, this test was run at an angle of attack of 29° compared with the stalling angle 36°.

COMMENTS TO THE TEST RESULTS

Let us first consider Diagram 2. It may

be observed from these curves, valid in open water, that otterboard B 3 has the highest L/D ratio, whereas B 2 has the

highest lift-coefficient. Which is the best

otterboard it not obvious. However, we

Diagram no. 6. Bottom test, otter board

B 1, B 2 and B 3. Force coefficients and lift-drag ratio of otter board as function

of angle of attack.

30 35 'ç

i, 5H10h11 iIfllïh!iiIlliWllUhMlIhHlhWI I'ïEHr,lll 511111W 1i lull 'Ill Il -i11iiiiiJIiii,lIIIL

H Ii Ii tuFi,ltIlH WIlli 111111 Ili 51155111 ItlIthUll Ii lIt IlIlMi,. III i 111,1,11

IIItI 11111111

kIl iD I,Hl IIII ;IL'

I

IlIrilil 1151111 lW 11510101 'ElIP'li11litI1Ith i11111511 15 fi{tiWll51lIIWIWhWE III Ill IIIiiihi!lEdìll Ill ,ilhIlEHuflH, ho-5151 II !ithIhl 05 oH!11l051515151111 11115151

i:1 3,!

Il1I'llll IIliiiiI [ 11

IIkI4IIII Ir ijlhll1OuIlllh }jh,fllrIj1fIfl

Ik11I hi I I r

(8)

may compare the boards on a basis of

constant area or constant lift-coefficient when the speed is regarded as constant.

In that case we draw a horizontal line through f. ex. the lift-coefficient of B 2 at a = 300. Where this line crosses the

CL curves of B 3 and B i we proceed ver-tically downwards to the respective L/D

ratio curves. We then f:ind that B 2 is approximately 9 % better than B 3 and

approximately 40 % better than B 1. The corresponding angle of attack of B 3 and

B i

is approximately 350 and 36.5° re-spectively.

We may also compare B 2 and B 3 on a

basis of constant angle of attack, f.ex. 30°.

If the two bards shall have the same lift at this angle of attack, we find by oonsi-dering the definition of lift-coefficients, that the areas of the two boards must be

inversely proportional to the

lift-coeffi-cient, i.e.

A3 CL2

A2 CL

At a =

30° the area of B 3 must be approximately 12 % greater than the area of B 2, but at the same time its LID ratio is approximately 7 % better. During this comparison the speed is of course kept

constant.

Proceeding to Diagram 3, we find that based on constant iift-coefficient (or

con-stant area) the otterboard B 2 a with a

leading edge slot lis approximately 25 %

better than B 2 at a

30°. Comparing

B 2 a with the rectangular otterboard B i of Diagram 2 we find that on a constant :area basis, the board B 2 a at a = 30° is

approximately 80 % better than B 1. The

corresponding angle of attack of

B i

is

approximately 39°.

In connection with Diagram 6 it may be

observed that the maximum

lift-coeffici-ents are smaller than those of the open water tests, and further that maximum

lift is reached at a smaller angle of attack. Both these results are in agreement with

the observations of Dickson on tests by

Gawn and Yakovlev.

Comparing with Diagram 2 we find that

at an angle of attack of 30°, the LID ratio

of B 2 is slightly better under bottom

con-ditions than under open water condition. The same CL can of course be obtained at

a lower angle of attack, i.e. 27°, and at

this point the LID ratio

is still much

'better.

20 25 30 ' 55 40 ' 45

Diagram no. 8. Bottom tests, otter board B 2. Force coefficient

and lift-drag ratio of otter board as function of angle of attack.

e

I55IHb HJ5!.fflVII5 1bMÏIffl51fflhï5M lI5tVIfflllfl55li HtIsMsrnsMs'" WII5 Wfl' 5

Ii1thirppÍ1iIi 115 it Iii e II5fflIfl 4 S' ilbII1huIiPW5I5 eUstiss 5III5UuI5585Hi 1IIW LW

ii iliHhI!HLlI PH LILLI I I L Ii i '9H tLHII' iIlL !LPIIIIILIW II ir r qSilSIOIlu

10115 I J fflflfflhflLIi WLWIL!ILI ifitfi. il! ih JilItidlWLH1üIth 4W HIILhuhihi ,JIiffluIi Il U JI I iiqdII,ilU 9115 trIi1ij W fl'

'm

IIIIl L W W diul IhIrn sLIthIhUH OIS IIWIIIWVS 0IlïWHflh1tLJ r t

Ilfflhl

i

WIlt,If iidìIi aI,L.'i,1ikh,ldWIInhlilfl 'WIWfflIlluIl1IklWUiÌWHlllIW5WllJ5illl5 fl

I

iLk I'5flW!is iiI ll1flW 9LWWW W !LJjWJ li hW5IW lili Ii,WIUi]itL HIth1JW5W ... '' ' silL

' WIW i ,1h11 jjP 5lLIII IIIIIWW ir IIPLW!i llfluI iliii lWflilLillfl liQl LIII!IIII1 I .... fihiW

i mniti

'111111!i dBl lili'i, 'llllliI Iiil!liiiilW l3Lr , flhiiilllllliIlIilllliIlI 111111 II llïWt'il ifihlifi ill WI WI li lIliilliiliUWi liii 1111111

oeil bIS 5111111 S'Il LilUffi 'WI0Sfl5 ifi HISS 'LllLhliIMllllillI 1115111 W qs#il#fluIlLL 'LIlIIWIIS LL Ill li LlWLWllL IlhulL I

h "I I lWlo s 11111111I Ilil]llllbLIW SlIllilIlillIlilli 'iWllLHIIliil WWl lLW5lLldLIWlffliWlWlWllU ''lllLllllfla ibis WlWlHUlLinlL'uLLl dlLIllJ1flhu1ifllWiilLL 4 IlllllIIlLIIWIIWIWLIIIIIJS1IWIIlI mii 111111 bili Lii i lllIillHlWlL !IlWfliljWf ii"ii:,iP'll lillilhili Ill ull MIIILIIIIILHIIUIIILILLL !lLLLllltolIttlijIllI I111111 Will Wi

II I I L I i 1115111 llliltlIiiÌiiIIiIIii5Flllld' j 111,1 tIll liii lili il WI lUlLS III ilifihiLliW!i IL lIlL,ilIll'IIIIW i WII1IIWILPIW

smiunlW lilililil

.- 'iiW 111511 HhIlllLflhilliIiWlW LWIIWIWIIWI1IIIIWIïW i5jJIIUiILL HI WIILHLLIIII IL lisIIIliiIiiIil iILIIIIIIILWIWIIHILWIIII5IIILIII1 IWI IIq1 I Ii IiWWIiifllIuil'UiWlIIIflIIIifliIIlIWIiW ilS' iWIiiii llilILthalis 5' iI IlilillIllIlIll IIIiIlLlIr'WhWIllIilLI,LllIHsfflill IIIIWULIII

iiitII IWl' WIlt fl 1511 [iIWiIWWIWlI iLII15LIWIII WWIIIHII[ LIISIlL It L i' LlflR IlL!'UIRWJIIIII II I III IIW1 I n i IIi LII

WI'LI!!IIIIIIIIIIIIIIIHII iIIIIlIII'IWILiIIliUiIIhiIIIilIIiiiWfl idIs5iliWlI' WIiiIIi iWlilililili Wo 1111W III IIIIIWUIIIL IiiILIIIII.

oliIii 11111 llIIIlIIIIlIllllIlIWLHlIlWIl!IIIIlIIIIIlii'ItillII IIIIIIIIIIHIIIWiI u ', ' LWIIIII i lW:lL ¡LII' 1111111 il"IIiIII'I IIII 8151 II III 1115111M W iii111111W

lilIEIII 11IILIIIWILLIIWIJLIIIMII °5IIIIIIIHII IILSIIIIWUS ii oilS ¡LIII 111115,1Mm' ,. 'li, M '111111 LIIIIIIII' IlL I II Li Wd

I IiIlLIIiIilii,ilIlili,IiIilIiIllJiiiiBlIIiL5IiM'il5IiihuIIIIIiI 'i jIiIIlL°iIIIllblf'1i:iLHLIII IIi iLiMili.''ilIIIlIII1IIIIIIiIIIiIIIIIIiiiiII 11111151Ml

lItIO lijE 11lll1lIl111i1u,,11WI0LoIi1 Wflhl5l1W '111 II Il I Will III iIUI11IILlLilIHn '° 11111II1IIIIIII 11111151 i III'IIIIIIL'lI 1111111 1111l111111101o1 1W1111U111111 1111 lIli ll''I 1i11111L111111111fl1 11111)11111111 lllflIWI5oLilfl''5hL1WIlIIIlW

il IlL IlIllIlIlLilliL LL't,IiI i' ,

11111111 lIli 1111111 IIIILIIIIIIIIIIIII 11111111111 IlIliliiIiL1llLiIFllIilliII'IlIlLIlUl WlHIlIIïilLiiIILllI 11]Il1l1 I 111111. i11lI1i1L11IIIIllIIlILll1lilIlIlllIiIftl1IliiiIlIlIlflh111IlI'ilIIlliIIlIillII 111111 1111111'11115,111

lIL15J1WWL ¡LII SII 11151 511 iII11ELl11h11lilLWRLu11Il11lLU11IIILlIWlLMSI1111U11IlI51l1M lI11hJIII,IIL 1151115

ii Ill ' '' i, ii 'i, ' io _"

íur

-

Iïr'

i F

i"'

' '«

lIIlIIlIIlIIlIlIIl i 51511111 , W15il11ill 111111 I 1111111'11111 '15115111 il111111iii l5II hi

''ip"u 'I'lli 'mtII111II1IWUfflL 5511111151I '151111111III 11151111111 0 11 ;'l

;" i

iI 115 515115 lWmi1 , i' 11515 511L'WlWIIfl 19551111 IS 11111111 i" ¡fl 1111W IS Ill illili 111111111 15111111151 iLl 11111 15115511 111115

lu i, ,i I'ilL Ill W W III IIWH ¡'JHS 1111 'IIlWIIllIIIHLl IIIllIWlllilllIlWIIIlipIIlillll 11111 LII ItII 11,1111 'liilaiIliiIiI I L I WILlI Ill I ill liilLIllIIliili IW11I1115I 11H11 111111 lilI IIIIIIIIIIIIIiIIIISI1 1111 11W 11

1111l511511515fl51 ,WWIIII11WI 5111111551 1111W 1511i1111°15l . LWl MMIIpIILLI15IIWWIO 1108

18111,1111 SilliLilio i 1011 51111 111111ILI5lIIIiI'J111111 I1-utW11IIm SII11111 Iilil rffluiiWIIL ILLidk ,

Il,,liiIIi 11111 LI III liPlliIIlIILllll I I11i'll11,4lII11 0111511 IllS II

ISolIII II lIdI W I11111111 IiLIILLIIII 11111111111111111 1151111111 I I II IlL lLII11iliIUilIiHIlli o,IIil WillIWililL H L'Li III II i'

IIïlli,lL IIiII1LIIWL i 11111111 lIli 1111115110111 i, 1151111 11IWIl11 i l WSI I 5111181 II flJ ' km

¡lIijIiIlflIJIHIWII ' 51W lili! IliliWlSllIlI '' liilll 11LWi 1111111111 1W5M II '1.sOL I MlL

I! IllII1 I llllFl1illlltlllliFInllfto'110 r11' rIlu9 i11Flllli

11i1111111111111111111111111 III11111111111 IILflillilliUjlLIl liIWIIIlUlillliIIIli111111111 Ii 11IE' Ii 1181115115 11111 I IL

LoI'IL!liiiLiiIiIII ij 1l1iilllll L illIlIlliiL liii 1111111111111 5' II iLiiilp.IIII5 11111111 I

dIollli,l11liiIEl,,I LI h ¡liii ,,

1IIIIII1LrliiiillllII' IM ill 151 o , L,

'Ih ll1' ''i,',j',, i ,, i

i, il Ill 11i111111111111 1111Ii1Ii i i "T

LWWII,1111111111111111 i'1111115 , ,,1,, ',

'

t

,1

-Iii ' i'i OiS" l'il 1111111...

il I 11111111 11h11 ¡III

I'llll'ili III lI1 I "J iWilli I°5tklliLIIl

51Oq"o11111115s 00055 905tIliilili

-,llhiMllJI11 ll'l

20 25 30 35 45

Diagram no. 9. Bottom tests otter board B 2. Force coefficient and lift-drag ratio of otter board as function of angle of attack.

IIi1IIIIIIIII'I LI HOIIIIII ii,,'II'IiiIj illhIItIMi

Ijj;,, IIjjL.. 1 IV IIIji0'1

11111 IIi805'15l5 l m11nlIIIliiII wIr IiO"'W'll

51151 5 L51Ñ m5'r11fflunI11II WI 115151 lII111

lilli,

ir

i

!II

IiflllV11115

Iftf ' iØVLthI11IIIII i!11I

111111 h11II ..'II,L! 1111115111111515111511'SIIWIiILIiIIIIIiiII

-":' ,, ,i

i

11Jl l, 11h1iJVII1 I11IM

''

r ' ' i

Diagram no 10. Bottom tests, otter board B 2. Force coefficient and lift-drag ratio of otter board as function of angle of attack.

8

IMSÍUIL 5UWUuilI5flW'5WJiLLJWlJ'5lW WW1IWIIW fllWflÌLuIÏuhlflthsmLe oiLsi15sththo IWiWIWW ['J 51

rni:lIhllIi i p fflfIiIi8I WifliHIrlilÌiIW WÎ!WiIffIWP1W SILL HHIW 11H

i IIIL IIII LI IiItflPill iiiPil LjIIIIJ LIHll WIILftLL!tL !WlW' l!Iffli i sLI I ' slitIUW0LIh IJ't.j ILLIIIIISJ i'rn j isis 'lILI is s'is WLWJ '

i

'.- tWILL WF8 IdSIlL i S 1h !WL

J

!I LII h

'a sus °i iwesi

P' j5 WlllWfih5,rrtInasJis'k

5 -

' w WlLIW,ir

eLlLLllIliIiiL'o

i wiu'

IWiWIIUbW 11H11

i'

WI LI USI WIIllIIIR'' iIILfflWIWHI' juil lIï8 ' i W ! l H Io1Wlifllll1 IIflR o ' ' 1i

(9)

B 2 e. STREAMLINES IN OPEN WATER. a = 28°. Re = 0.81 X 10°

Photo no. 1. Suction side.

B 1. STREAMLINES AT BOTTOM. a =

0°. Re = 0.805 X i0.

Photo no. 4. Suction side.

B 2. STREAMLINES AT BOTTOM. a = 28° Re 0.81 X 10°.

Photo no. 5. Suction side.

Photo no. 2. Pressure side.

Photo no. 5. Pressure side.

(10)

STREAMLINES AT BOTTOM. a = 28°. Re = 0.81 )< 1O.

Photo no. 9. Suction side.

lo

Photo no. IO. Pressure side. Photo no. 7. Suction side. Photo no. 8. Presszre side.

(11)

Cytaty

Powiązane dokumenty

przebiegu objawów psychopatologicznych oraz wyników badań dodatkowych można sądzić, iż proces gruźliczy był zaburzeniem pierwotnym, a pojawienie się zespołu

This paper proposes an incorporation of key system thinking tools including; Soft Systems Methodology, Business Architecture and Viable Systems Modelling into the design process

It is shown that the ejection-sweep analogy yields very good results with respect to predicting heat transfer coefficients for different fluids (water, CO 2 , Helium, R22 and

With regards to the smaller reduction in support structures costs using MDAO, three effects are thought to be responsible for the apparent low sensitivity of LCOE to water depth.

hoge temperaturen optreden , mooton de buizen van spec laaI materiaal gemaakt worden.\. Iets over de conv (jrsieruimte te ze gsen is

This article is an attempt to present an argument for the following thesis: firstly, that there are no scientific criteria for evaluating hypotheses in evolutionary psychology;

Publikacja zawiera inwentaryzatorski opis organów znajdujących się w kościo- łach 18 dekanatów, co stanowi połowę opisanych instrumentów diecezji opolskiej (w skład

Preventive Services Task Force oraz American Heart Association – wydały zale- cenia dotyczące poprawy identyfikacji pacjentów z depresją, badań przesiewowych w kierunku depresji