• Nie Znaleziono Wyników

Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution

N/A
N/A
Protected

Academic year: 2021

Share "Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution"

Copied!
11
0
0

Pełen tekst

(1)

Delft University of Technology

Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface

immersed in NaCl solution

Wu, Dequan; Ma, Lingwei; Liu, Bei; Zhang, Dawei; Minhas, Badar; Qian, Hongchang; Terryn, Herman A.;

Mol, Johannes M.C.

DOI

10.1016/j.jmst.2019.12.008

Publication date

2021

Document Version

Final published version

Published in

Journal of Materials Science and Technology

Citation (APA)

Wu, D., Ma, L., Liu, B., Zhang, D., Minhas, B., Qian, H., Terryn, H. A., & Mol, J. M. C. (2021). Long-term

deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution.

Journal of Materials Science and Technology, 64, 57-65. https://doi.org/10.1016/j.jmst.2019.12.008

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

JournalofMaterialsScience&Technology64(2021)57–65

ContentslistsavailableatScienceDirect

Journal

of

Materials

Science

&

Technology

jou rn a l h o m e p a g e :w w w . j ms t . o r g

Research

article

Long-term

deterioration

of

lubricant-infused

nanoporous

anodic

aluminium

oxide

surface

immersed

in

NaCl

solution

Dequan

Wu

a

,

Lingwei

Ma

a

,

Bei

Liu

a

,

Dawei

Zhang

a,∗

,

Badar

Minhas

a

,

Hongchang

Qian

a

,

Herman

A.

Terryn

b,c

,

Johannes

M.C.

Mol

c

aBeijingAdvancedInnovationCentreforMaterialsGenomeEngineering,InstituteforAdvancedMaterialsandTechnology,UniversityofScienceand

TechnologyBeijing,Beijing100083,China

bDepartmentofMaterialsandChemistry,ResearchGroupElectrochemicalandSurfaceEngineering,VrijeUniversiteitBrussel,Brussels,Belgium

cDepartmentofMaterialsScienceandEngineering,DelftUniversityofTechnology,Delft,theNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28October2019

Receivedinrevisedform

30November2019

Accepted3December2019

Availableonline8January2020

Keywords:

Lubricant-infusedsurface

Anodicaluminiumoxide

Deterioration EIS

a

b

s

t

r

a

c

t

Thisstudyinvestigatedthedeteriorationofalubricant-infusedanodicaluminiumoxidesurfaceina 1MNaClsolutionfor∼200days.Directobservationbycryo-SEMandquantitativeanalysesbyUV spec-troscopyandEISrevealedthatthelong-termdeteriorationofthelubricant-infusedsurfacewasdivided intotwostages:thesurface-adheredlubricantlayergraduallydissolvedataconstantrateuntilthe substratewasexposed;afterwardsthelubricantinfusedinthenanochannelsbegantodiffuseandwas depletedafter∼200days.TheEISresultsalsorevealedthatthedefectsreducedthecorrosionresistance ofthelubricant-infusedsurfaceconsiderably.

©2020PublishedbyElsevierLtdonbehalfofTheeditorialofficeofJournalofMaterialsScience& Technology.

1. Introduction

Creatingdurablesurfacesforaluminiumanditsalloysthat with-standcorrosioninunderwaterenvironmentsisofgreatimportance formarineandenergy-relatedapplications[1–3].Surface anodiza-tionhasbeenwidelyusedtoimprovethecorrosionresistanceof aluminiumbyformingprotectiveanodicaluminiumoxides(AAO) consistingofathinandcompactbarrierlayerandathickporous layer[4,5].However, thehigh-aspect-rationanochannels ofthe porouslayerispronetoabsorband retaincorrosivemedia[6]. Tosolvethis problem,variousmaterialshavebeenusedtoseal theporesincludingchromates,nickelsalts,organicacidsand sol-gels[7,8]. Lubricantssuchashigh-viscosityoilsorgreases have alsobeenusedassealingmaterialstoimprovesurfacelubricity undertribologicalenvironment[9,10].Nevertheless,theeffectof lubricant-sealingonthecorrosionresistanceisrarelyreported.

Inspiredby Nepenthes pitcherplants, anew typeof surface calledthelubricant-infusedsurface(LIS)orslipperyliquid-infused poroussurface(SLIPS)hasbeeninventedbyinfusinglubricantwith lowsurfaceenergyintoporousmicro/nanostructures[11,12].The capillaryforceoftheroughnanostructurelocksthelubricantinthe

∗ Correspondingauthor.

E-mailaddress:dzhang@ustb.edu.cn(D.Zhang).

poroussubstrate,formingacontinuousandsmoothlubricant sur-face[13,14].Thelowsurfaceenergyoftheliquidlubricantenables thesurface a slipperyfeature usefulfor thereductionof water condensation,microbialfoulingandicenucleation[15,16]. Addi-tionally,theseamlessfeatureofthehydrophobiclubricantlayer mayalsoprotect thesubstrate frombeingattackedbyexternal corrosivemedia,makingLIS/SLIPSanemergingsurfacetechnology forwidepotentialapplicationsincorrosiveunderwaterconditions [17–20].Generally,thecriteriaofdesigning aLISareextremely rigorous:i)thelubricantmustfullywetthemicro-/nanoporous surfaceoftheLISsubstrate;ii)thelubricantisimmisciblewiththe fluidsitcontacts;andiii)thecontactingfluidscannotpenetrate intotheLISsubstrate[21–23].

Recent studies have shown an increasing interest in devel-oping LIS/SLIPSonvariousmetalsubstratessuchasaluminium, magnesium, zinc and steels for enhanced corrosion protection [24–28].Forexample,Wangetal.havedevelopedaLISby infus-ingperfluoropolyether(PFPE)lubricantintoa superhydrophobic hydrothermally-treatedzincsurface[17].After10daysof immer-sionintheNaClsolution,theLISexhibitedamorestablebarrier propertythanthesuperhydrophobicsurfaceinwhichthe protec-tiveairlayercouldberapidlyreplacedbytheaqueoussolution. Morerecently,LISwaspreparedbyinfusingPFPEintothe layer-double hydroxide (LDH)film grown onthe plasma electrolytic oxidisedAZ91Dmagnesiumalloy.Frompolarisationtests,the

cor-https://doi.org/10.1016/j.jmst.2019.12.008

(4)

58 D.Wuetal./JournalofMaterialsScience&Technology64(2021)57–65

rosionrateoftheLIS-protectedAZ91Dwasfiveordersofmagnitude lowerthanthebaremetal,and twoordersof magnitudelower thanthemetalprotectedbyasimilarlypreparedsuperhydrophobic surface[27].

Atpresentmoststudiesinthisfieldfocusonthefabricationof theLIS/SLIPSwithdelicatemicrostructuresorsuperiorfunctional performances,whereasthelong-termstabilityanddegradationof theLIS/SLIPSintheproposedserviceenvironmenthasrarelybeen studied.Forexample,theLISspreparedforcorrosionprotection [29,30]oranti-foulingapplications[23,31]havebeenstudiedonly fora short period oftime rangingfrom severaldays toweeks. However,becauseofthehighmobilityoftheliquidlubricant,the stabilityofLIS/SLIPSasaprotectiveorfunctionalsurfaceduring long-termenvironmentalexposureisquestionable[32–34].Partial dissolution,whichisacommonlyobservedphenomenonbetween organicandaqueousliquids,mayresultinaslowlubricantloss dur-inglong-termimmersion[35,36]Forexample,typicallubricants suchas Krytoxfor LISpreparation weremeasuredwitha solu-bilityrangingfromseveralnanogramstomilligramsperlitrein water[37–39].Weakfluctuationandanisotropicpressureofthe immersingsolutionmayfurtherpromotethediffusionofthe liq-uidlubricanteveninstaticunderwaterconditions[40].Inaddition, somesilicone-basedandKrytox-basedlubricants,whichhavehigh waterimmiscibilityandarewidelyusedinLISdevelopment,have beenalsofoundtocloakthedepositedwaterandberemovedas waterslidesofffromthesurface[41–43].Moreimportantly, quan-titativeandinsituanalyticaltechniquesbywhich theextentof LIS/SLIPSdeteriorationcanbemonitoredunderimmersed condi-tionshaveseldomlybeenreported.Duetotheliquidnatureofthe infusedlubricant,itisalsodifficulttodirectlyobservethelossof lubricantfromtheporoussubstrate[46].Althoughseveralstudies haveshownthatthesurfacehydrophobicitywoulddeterioratedue tothedepletionoftheinfusedlubricant[44],ithasbeendifficultto identifythequantityofthelostlubricantandthetransitionpoint fromwaterslidingtowaterpinningonthesurface[41].

WehaverecentlyreportedthedevelopmentofLISbyinfusing mineraloillubricantintothehigh-aspect-rationanochannels of AAOsurfaceviaavacuumimpregnationmethod[45]. Thework highlightedtheimportanceof rationaldesign in theLIS prepa-rationandthevacuumimpregnationmethodwhichwasproved tobemoreefficientinfillingdeepporesthansimpleimmersion. The obtained surface demonstrated self-healing effects against mechanicaldamages(e.g.wearingandcracking)andanimproved corrosion resistanceover a relatively short exposure(85 days) underaqueousimmersion.

Inthepresentstudy,weaimedtounderstandthedegradation mechanismofthistypeofLISunderlong-termimmersionin1M NaClsolutionforover200daysbycarryingoutacombinationof microscopic,spectroscopicandelectrochemicalanalyses.During theimmersion,thechangeinthesurfacehydrophobicityoftheLIS wasevaluatedbywatercontactanglemeasurements.Thelubricant lossoftheLISwastrackedbydirectobservationusingcryogenic scanningelectronmicroscopy(cryo-SEM)andconfirmedby ultra-violet(UV)spectroscopy.Electrochemicalimpedancespectroscopy (EIS)wasemployedasaninsitumeasurementtechniqueto cor-relatethelossoflubricantwiththedegradationoftheprotective properties.

2. Experimental

2.1. Materials

Rolledaluminiumfoilswithapurityof99.999wt.%were pur-chasedfromtheBeijingInstituteofNonferrousMetals(China).A mineraloillubricant(ShellAdvancedAX5,Shell)waspurchased

fromShellGlobal.Deionisedwaterwasusedinalltheexperiments. Otherchemicalreagentsemployedinthisworkwerepurchased fromSinopharmandwereofanalyticalgrade.

2.2. LISpreparation

AAOwasfabricatedbyatwo-stepanodisingmethod.Thefirst anodisationstepwasperformedin0.3Mphosphoricacidat195V via a DC source (N8741, Keysight, Ameirca) using an electro-polishedaluminiumfoilastheanodeandadegreasedaluminium foilasthecathode.After60min,thefirstanodicfilmwasimmersed inamixturesolution(6wt.%phosphoricacid,1.8wt.%chromicacid, anddeionisedwater)at60◦Cfor30min.Then,thesecond anodi-sationstepwasperformedunderthesameconditionsfor2h.The obtainedAAOhasaporediameterof∼200nmandaporedepthof ∼50␮masobservedbySEM.

TheLISwasfabricatedbyinfusingthelubricantintotheAAO nanochannelstructurethroughavacuumimpregnationmethod, asdescribedinourpreviousstudy[45].Thefabricationprocesscan bedescribedbrieflyasfollows.TheAAOspecimenswereplaced inavacuumchamber(∼3Pa)for5htocompletelyremovetheair inthecontainerandnanochannels.Subsequently,oilwasinjected intothecontainer,and theoilcoveredtheAAOspecimen.After soakinginvacuumconditionfor1h,thelubricantinfusedintothe nanochannelswithouttheresistanceofcompressedairtrappedin pores.Whenthevacuumchamberwasrefilledwithair,the atmo-sphericpressurefurtherpushedthelubricanttodeeplyinfuseinto thenanochannels.

2.3. Cryo-SEM

Cryo-SEM was carried out using a microscope (FEI Helios

NanoLabG3UC)toobservethesolid–liquidinterfaceoftheLIS directly.First,thespecimenwasfixedtoa copperholderusing conductiveglueandmountedonacryo-cellholder.Then,the cryo-cellholderwasplungedintoliquid nitrogenfor∼10stofreeze theinfusedoil.Thespecimenwasbentreciprocallybytweezers tobreakthespecimenandexposeafreshcrosssection.The cryo-cellholderwasthentransferredintothespecimenchamber,which waspre-frozento−140◦C.Beforetheobservation,thespecimen

shouldbesublimatedat−90◦Cfor25mintoremovetheicecrystals

formedduringliquidnitrogensubmersion.Afterthis,thecryo-SEM observationchamberwasmaintainedatapressureof∼1.02×10−4 Paandatemperatureof−140◦C.Then,thespecimenwassprayed

withgoldatacurrentstrengthof10mAfor60s.TheLISwasmilled byafocusedionbeam(FIB)atabeamenergyof30keVandacurrent strengthof2.5nAwithadwelltimeof100nsperpixel.Next,the specimenwassprayedwithgoldagain.SEMimageswereobtained byusingbackscatteredelectrons(2keVand60pA).

2.4. Surfacewettability

Thesessilewatercontactangle(WCA)and slidingangle(SA) weremeasuredusingacontactanglemeter(OCA20,Dataphysics) toevaluatethesurfacewettabilityofthespecimens.Thespecimens (∼1cmindiameter),whichwereimmersedinthe1MNaCl solu-tion,wereretrievedandairdriedfor30min.ThesessileWCAwas measuredbyplacingadeionisedwaterdroplet(∼5␮L)onthe spec-imensurface.TheSAwasrecordedbytiltingthesurfaceslowlyuntil a10␮Lwaterdropletcouldslideoff.Theresultswereobtainedby averagingfivemeasurementsondifferentareasofthespecimens. 2.5. Electrochemicaltests

EIS measurements were performed using a

(5)

D.Wuetal./JournalofMaterialsScience&Technology64(2021)57–65 59

asaninsitumethodtotrackthelubricantlossunderimmersion in the 1M NaClsolution at 25◦C. The LIS specimen(∼1cm in diameter)wastheworkingelectrode.Thereferenceandcounter electrodeswereasaturatedcalomelelectrodeandPtfoil, respec-tively. The impedance spectra were measuredin the range of 10−2–105Hzwithanamplitudeof20mV.Tosimulatetheinner

structureoftheLIS,datafittingwascarriedoutusingZSimpWin software. Allthe tests were performedat least twice toverify reproducibility.

2.6. UVspectroscopy

UVspectroscopy wascarriedout usinga spectrophotometer (U3900H,Hitachi)tomeasurethequantityofoilremaininginthe LISspecimens.Dichloromethanewasusedasanextractionsolvent todissolvethelubricantintheLISandasareferenceblank solu-tiontomeasureabsorbance.ThespecimensimmersedintheNaCl solutionfordifferenttimeswereretrievedandthensubmergedin 5mLdichloromethaneunderultrasonicationforlubricant extrac-tion.Theextractionsolutionwastheninjectedintoaquartzdish andscannedunderthespectrophotometer.Toobtainthe relation-shipbetweentheoilconcentrationandpeakintensity,aseriesof standardoilsolutions(lubricantconcentration:0,0.4,0.8,1.2,1.6, 2,2.4,2.8,3.2,3.6,4mg/mL)werepreparedandtested.

3. Resultsanddiscussion

3.1. Cryo-SEMmorphology

TostudythedeteriorationoftheLIS,cryo-SEMwasemployed fordirectlyobserving thetopviewand crosssectionof theLIS duringthelong-termimmersion.Cryo-SEMallowstoimagethe liquidlubricantinitsfrozencondition,whichcannotberealized byconventionalSEMoropticalmicroscopy.AsshowninFig.1(a1) and(a2),theas-preparedLISspecimenconsistedoftheAAO sub-stratecoveredbyacontinuousandsmoothlubricantlayerwitha thicknessof∼7␮m.AfterimmersionintheNaClsolutionfor20 days(Fig.1(b1)and(b2)),thelubricantlayerdecreasedslightlyin thicknessandremainedlargelycontinuous,althoughlesslubricant coveragewasobservedinlocalspots.After60days,thenanoporous surfacewasexposedandsomeporesbecamevisibleinthetopview ofthesurface(Fig.1(c1)),suggestingthatthesurfacelubricantlayer wascompletelylost.However,thecross-sectionalview(Fig.1(c2)) indicatedthatthenanochannelswerestillalmostfullyfilledwith thelubricantatthisstage.

After90daysofimmersion,allporesontheAAOsurfacewere exposed (Fig. 2(a1)) and the cross section showed that a few micronsoftheinfusedlubricantwerereleasedfromthe nanochan-nels(Fig.2(a2)).After150daysofimmersion,aroughporousAAO surfacewasobserved(Fig.2(b1))andthecrosssection(Fig.2(b2)) showed that the lubricant had been released from pores with depthsof20–30␮m.Thelubricantintheupperportion(Fig.2(b3)) oftheLISwaslargelydepleted,whereasthenanochannelinthe bot-tomportion(Fig.2(b4))wasstillfilledwiththelubricant.After210 days,thelubricanthadfurtherdepletedfromthenanochannels, manyofwhichbecamecompletelyempty(Fig.2(c)).

3.2. Surfacewettability

TheWCAreflectsthesurfacewettability,whichisdetermined bythechemicalcompositionandroughnessoftheunderlying sub-strate[46].AsshowninFig.3(a),whenasmoothlubricantlayer fullycoveredtheAAOsurface,theWCAontheinitialLISwas∼99.5◦.

Whenthesurface-adheredlubricantwascompletelywipedoff,the waterdropletcontactedwithacompositesurfaceconsistingofthe exposedaluminiumoxidesurfaceandthelubricantfilledinthe

AAO nanochannels.ThecorrespondingWCAdecreased to∼76◦.

Whenthelubricantwaspartiallyremovedfromthenanochannels, thewaterdropletwasessentiallyincontactwiththeporoussurface ofAAO,whichconsistedofaluminiumoxideandtheairtrapped insidethenanochannels.TheWCAinthiscasewas∼68◦.

There-fore,thedeteriorationofthesurfaceconditionsoftheLIScanbe indirectlyestimateduptoacertainstagebythevariationofthe WCA.Fig.3(b)showstheWCAoftheLISafterimmersioninthe 1MNaClsolutionfordifferenttimes.After1 dayofimmersion, theWCAdecreasedfrom∼99◦to87,whichmightbeattributedto

theresidualmoistureonthelubricantsurfaceafterimmersion.The WCAcontinuedtodecreaseslightlyinthefollowing60days.From the60thdaytothe90thdayofimmersion,theWCAdecreased remarkablyfrom78◦to69◦,whichwasattributedtotheexposure oftheAAOporoussubstrate.Itisnoteworthythatthetwodivided coloursinFig.3(c)indicatedthatthetransitionfromthedissolution ofsurface-adheredlubricantlayertotheexposureofAAOsubstrate tookplacesomewherebetweenthe60thdayand90thdayinthe immersion.TheWCAalmostlevelledoffat65◦after120days.The furtherreleaseofthelubricantstoredintheinteriornanochannels couldnotbedetectedbytheWCAbecausetheWCAreflectsonlythe surfacewettability.AsshowninFig.3(c),theSAoftheLISincreased from∼10◦to∼85duringtheinitial60daysofimmersion.Onthe

90thday,thewaterdropletswerefoundtobepinnedontheLIS, evenwhentheLISwastiltedby90◦.Thetransitionfromdroplet slidingtodropletpinningindicatedtheexhaustionofthetop lubri-cantlayerandtheexposureoftheporousAAOsubstrate.Basedon thecombinationoftheWCAmeasurementandthedirect obser-vationbycryo-SEM,theLISdeteriorationprocesscanbedivided intotwostages,i.e.thedissolutionofthesurface-adheredlubricant layer,andtheleachingofthelubricantinfusedinthenanochannels duringthesubsequentimmersion.

3.3. LubricantlossdeterminedbyUVspectroscopy

UVspectroscopywasusedtoprovideamoreaccurate quan-tification ofthelubricantloss duringthelong-termimmersion. BecausetheUVabsorptionisdirectlyproportionaltothesolution concentrationaccordingtotheBeer–Lambertlaw[47],a quantita-tiverelationshipcanbeestablishedbetweentheUVabsorbance and lubricantconcentration to quantify the lubricant in pores.

Fig. 4(a)shows the normalisedUV spectraof theLIS with dif-ferent concentrations of the lubricant extracted from the AAO poresindichloromethane.Thetypicalabsorptionwavelengthsof the lubricantwere in therange of 220−400nm, and the char-acteristic peakwaschosentobe282nm.Thelinear correlation betweentheabsorbanceandlubricantconcentrationisshownin

Fig.4(b). Fig.4(c) showsthevariation in theUVspectraof the lubricantextractedfromtheLISafterdifferentimmersiontimes. Basedonthesespectra,theamountoflubricantremainingintheLIS nanoporeswasestimated.Thequantityofthelubricantwasfound todecreaseataconstantrateinthefirst60daysofimmersion (Fig.4(d)).Associatedwiththevariationofthesurfacewettability (Fig.3),themasslossduringthisperiodcouldbeattributedtothe dissolutionofthesurface-adheredlubricantlayer.After60days, therateofmasslossofthelubricantintheLISspecimenslowed down.From180–210days,only∼2.7mgoflubricantresiduewas leftinthenanochannels.

3.4. EISmeasurements

EIShasbeenfrequentlyusedtodetectinformationpertainingto thesurface/interfaceofbareandcoatedmetals[48].Inthisstudy, EISwasusedtounderstandthedeteriorationprocessoftheLIS dur-inglong-termimmersion.UnlikeUVspectroscopy,whichreflects thelubricantlossintheentirespecimen,EIScandetectthe

(6)

dete-60 D.Wuetal./JournalofMaterialsScience&Technology64(2021)57–65

Fig.1. Cryo-SEMimagesshowing(1)topviewand(2)crosssectionofLISduringimmersionin1MNaClsolutionfor(a)0,(b)20,and(c)60days.

Fig.2. Cryo-SEMimageofLISduringimmersionin1MNaClsolutionfor90(a),150(b)and210(c)days.(a1)Topview,(a2)uppercrosssection.(b1)Topview,(b2)entire

crosssection,(b3)uppercrosssection,and(b4)bottomcrosssection.(c1)Uppercrosssection,(c2)bottomcrosssection.

Fig.3.(a)WCAonsurfacecoveredbyoillayer(a1),solidandoilcompositesurface(a2),andsolidandaircompositesurface(a3).WCA(b)andSA(c)ofLISduringdifferent

(7)

D.Wuetal./JournalofMaterialsScience&Technology64(2021)57–65 61

Fig.4.ChangeinlubricantmassofLISduringlong-termimmersion.(a)UVabsorptionspectraofstandardlubricantsolutionswithdifferentlubricantconcentrations(0.4,

0.8,1.2,1.6,2.0,2.4,2.8,3.2,3.6,and4.0␮L/mL)indichloromethane,(b)linearcorrelationbetweenUVabsorptionintensityandlubricantconcentration,(c)UVabsorption

spectraofextractedlubricantindichloromethane,(d)changeinlubricantmassinLISduringdeteriorationprocess.

Fig.5. (a)Impedancemodulusplotsand(b)phaseangleplotsforLISwithcontrolledtoplayerlubricantthicknesses(0,1,3,5and7␮m),bareAAOimmersedin1MNaCl

solutionfor0day(theNaClsolutionwasjustinfusedintothenanochannel),andbareAAOimmersedin1MNaClsolutionfor20days.(c)Impedancemodulusplotsand(d)

(8)

62 D.Wuetal./JournalofMaterialsScience&Technology64(2021)57–65

riorationoftheprotectivepropertyoftheLISeveninaverysmall area.Tomoreclearlyidentifythedeteriorationstages,EISwasfirst carriedoutontheLISwithexcesssurfacelubricantofdifferent thicknesses(0−7␮m)tosimulatethegraduallossofsurface lubri-cant.Additionally,theimmersionsolution(1MNaClsolution)was infusedintothenanochannelsofbareAAOtosimulatethesituation inwhichtheimpregnatedlubricanthadcompletelydiffusedoutof thenanochannels,andthebareAAOwasimmersedinthe1MNaCl solutionfor20daystosimulatethesituationinwhichthebarrier layerwasattacked.TheEISresultsforthesestandardspecimens areshown inFig.5(a)and (b).Accordingtopreviousstudieson sealedAAOsuchasthosebychromatesorhydrothermaltreatment, thelow-frequencyrangeoftheimpedancespectramainlyreflected theinnerbarrierlayerofAAO,whereasthehigh-frequencyrange correspondedtotheouterporouslayer[49,50].In Fig.5(a),the impedancemodulivalueinthehigh-frequencyregiondeclinedas thethicknessofthesurfaceoillayerdecreased[51].InFig.5(b),the phaseangleplotsoftheLISshowtwotimeconstants:thecrestin thehighfrequenciesreferstothelubricantlayer,andthecrestin thelowfrequenciesreferstothebarrierlayer[52].Whenthepores wereinfusedwiththeNaClsolution,theimpedancemodulusplot (Fig.5(a))becameastraightlineandonlyonetimeconstantcould beobservedovertheentiremeasuredfrequencies[53,54].After AAOwasimmersedinthe1MNaClsolutionfor20days,the mod-ulusvalueinthelowfrequenciesdecreasedremarkably,indicating corrosionofthebarrierlayer[55].BasedontheEISresults,the dete-riorationoftheprotectivepropertyoftheLIScouldbedividedinto threestages:(I)thedissolutionofthesurface-adheredlubricant untilthesubstratewasexposed,(II)thediffusionoftheinfused lubricantfromtheAAOnanochannelsuntilthebarrierlayerwas exposed,and(III)thecorrosionattackofthebarrierlayer.

Fig.5(c)and(d)showtheEISresultsfortheLISpreparedinthis studyover200daysofimmersioninthe1MNaClsolution.Inthe first60days,theimpedancemoduliinthehigh-frequencyregion (Fig.5(c))declinedclearly,whichwasattributedtothedissolution ofthetoplayerlubricantcoveringtheLIS[52].Thisresultagreed wellwiththecryo-SEMobservationinFig.1.From90–210days,the impedancemoduliinthehigh-frequencyregion(Fig.5(c))declined gradually,whichwasattributedtothecontinuouslossofthe lubri-cantfromthepores.ThecorrespondingphaseangleplotsinFig.5(d) showthatthecrestinthehighfrequenciesflattenedasafunction of immersion time, which also indicated the loss of the lubri-cantlayer.However,theimpedancemoduliinthehigh-frequency regiondidnotdisappearcompletely.Theexistingtimeconstantsin thehigh-frequencyregion(Fig.5(d))indicatedthatsomelubricant stillremainedinthenanochannels.Theseresultsagreedwiththose obtainedbyUVspectroscopy.AsshowninFig.5(c),theimpedance modulusplotsinthelow-frequencyregionoverlappedwiththe |Z|0.01Hzvaluesremainedalmostunchangedandthephaseanglein

thelow-frequencyregionremainedatahighvalueofaround∼80◦

duringtheentiredurationof120days,indicatingthatthebarrier layerwaswellprotectedbytheinfusedlubricantintheinitialtime. After150days,amajordecreasewasobservedinthe|Z|0.01Hzvalue

andthephaseangleinthelow-frequencyregiondecreasedto∼50◦,

suggestingthatthebarrierlayeroftheAAOfilmwasattacked[55]. Noticeably,thefactthat|Z|0.01Hzvaluesbegantodecreaseafter

150daysofimmersiondidnotagreewiththeobservationsfrom cryo-SEMorUVspectroscopy,whichindicatedthatthe nanochan-nelsbecameemptyafter210daysofimmersion,beforewhichthe barrierlayerofAAOmighthavebeenprotectedbythelubricant leftinthenanochannels.Wepostulatedthatthisdiscrepancywas causedbythedefectsintheAAOsurface[55].Duringfabricationor storage,theformationofporedefectsorcracksintheAAOnanopore arrayisinevitable.Thesurfacemayalsohavecracksfromwhichthe lubricantcouldmorerapidlyleachout[5].Byusingcryo-SEM,we foundthatintheinitialstageofimmersion(Fig.6(a)and(b)),the

nanochannelsofAAOandthedefectscouldallbefilledbytheliquid lubricant,makingitdifficulttodifferentiatethembyEIS.Inthelater stageofimmersionperiod,asthetoplubricantlayerdisappeared, theoilcoulddepletefromthecracksmorerapidlybecausethesize ofthecrackswasconsiderablylargerthanthatofthe nanochan-nels(Fig.6(c)and(d)),makingthedamagedaluminiumsubstrate exposetotheNaClsolutionfinally.

Toconfirmthatthedecreased corrosionresistanceafter150 daysofimmersionwasindeedtheresultofthesurface defects, additionalEIStestswereperformedonLISspecimensthatwere artificiallycrackedbybendingthemaroundacylinderwitha diam-eterof5mm.Tosimulatethedifferentstagesofthedeterioration, thedepletionofthelubricantfromthecrackedLISwas acceler-atedbyplacingitunderflowingwaterfor10minorbycarrying outultrasonicationfor 10min.For comparison,we alsoinfused the1MNaClsolutionintoacrackedemptyAAOsurface(without employingsurfaceprotectionorimpregnatingthesurfacewitha lubricant).Asshown inFig.7(a),thecrackedLISexhibitedclear impedancemoduliinthehigh-frequencyregion,whichindicates thecoverageofthesurfacebythelubricantlayer.Afterthe speci-menwaswashedorultrasonicallytreated,thelubricantstoredin thecracksreleasedquicklyandthepartiallubricantlockedinthe nanochannelsstillremained,whichresultedinthediminishingof theimpedancemoduli.Whenthelubricantwaslostcompletely andreplacedbytheNaClsolution(asshownintheplotlabelled as‘AAO-solutioninfusion’inFig.7),thehigh-frequencyregionof theImpedancemodulusplotalmostbecameastraightline.Inthe low-frequencyregion,theImpedancemodulusplotofthecracked LISoverlappedwiththatoftheLISbecausethecrackswere cov-eredbythelubricantflowingintothem[4◦].AfterthecrackedLIS

waswashedorultrasonicallytreated,thecracksordamaged bar-rierlayerwereexposedtothesolution,leadingtoamajordecrease inthe|Z|0.01Hzvaluecomparedtothecorrespondingvalueforthe

undamagedAAO.Theseresultsshowedthattheexistenceofcracks couldbedetectedbyEISevenwhentheLIShadnotcompletely deteriorated.

Cryo-SEM, UV spectroscopy, and EIS have different advan-tages/limitationsinthestudyofLISdeterioration.Thecryo-SEM methodcanprovidesurfaceandcross-sectionalinspectionofthe lubricantinfusedinsmallarea(eveninindividualnanochannels), butthedetectionofdefectshiddeninthenanoporearrayisnoteasy. UVspectroscopymeasurestheamountoflubricantintheentire filmincludingthesurfaceadheredlubricantlayerandtheamount oflubricanttrappedinthenanochannelsorcracks.Incontrast,EIS candetectsmalldefects intheLISowingtothelow-frequency impedance,which isoftenusedtoreflecttheonsetofcorrosion andthedeteriorationoftheprotectivepropertyoftheLIS.

EIScanalsobeusedtoquantitativelyassessthedegradationof theLISbyfittingtheEISresultsintheformofequivalentcircuits, asshowninFig.8.Becauseofthepresenceofinhomogeneityinthe barrierandporouslayers,theircapacitivebehaviourswerebetter simulatedbyconstantphaseelements(Q)thanbysimple capaci-tances(C).TherelationshipbetweenQandCisdescribedinEq.1

[56,57],

C=Q1/nR(1−n)/n (1)

wherevaluesofnareadispersionindexdescribingthenon-ideal behaviourofcapacitance(n=1,Q referstoa realhomogeneous capacitance;n=0,Qreferstoaresistance)[53].

Itiswellknownthatananodicoxidefilmconsistsofathininner barrierlayerandathickouterporouslayer.Theporouslayeris com-posedofporesandwallsintheshapeofhexagonalcells.Therefore, theoxidefilmcanbemodelledbytheequivalentcircuitshownin

Fig.8(a).ThiscircuithasbeenpreviouslyusedforAAOwithsealed poresobtainedbyhydrothermaltreatmentorchemicaldeposition [58–60].Inthiscircuit,Rsisthesolutionresistance.RwandQware

(9)

D.Wuetal./JournalofMaterialsScience&Technology64(2021)57–65 63

Fig.6. DeteriorationprocessofcrackedLIS.(a,b)CracksandnanochannelsinLISstillfilledwithlubricantafterimmersionin1MNaClsolutionfor60days.(c,d)lubricant

dissolvedfromnanochannelspartiallybutfromcrackspredominantlyafterimmersioninNaClsolutionfor150days.

Fig.7. (a)Impedancemodulusplotsand(b)phaseangleplotsofstandardspecimens(intactandcracked)tosimulatedeteriorationprocessofdefectiveLIS.

Fig.8.EquivalentcircuitsformodellingimpedancebehaviourofLISindifferentdeteriorationstages.(a)Nanochannelsinfusedwithlubricant,(b)simplifiedcircuitof(a),

(10)

64 D.Wuetal./JournalofMaterialsScience&Technology64(2021)57–65

Table1

ElectrochemicalparametersfittedfromEISresultsofLISimmersedin1MNaClsolutionfrom0to120days.

Time(d) Qp (×10−10Ssn cm−2) n Cp (×10−10Ssn cm−2) Rp (×103cm2) Qb (×10−10Ssn cm−2) n Cb (×10−10Ssn cm−2) Rb (×109cm2) 2 0 7.38 0.89 3.08 1175 242 0.90 377 2.24 4.5×10−3 20 17.7 0.98 15.3 474.3 308 0.84 675 1.99 2.1×10−3 40 139 0.82 34.7 128.6 369 0.92 549 2.63 6.2×10−4 60 904 0.89 431 27.47 409 0.95 503 1.26 3.3×10−4 90 752 0.98 658 18.7 443 0.92 659 2.16 3.2×10−3 120 2674 0.95 2018 17.9 447 0.94 610 2.91 7.8×10−3 Table2

ElectrochemicalparametersfittedfromEISresultsofLISimmersedin1MNaClsolutionfrom150to210days.

Time(d) Qp (×10−10Ssn cm−2) n Cp (×10−10Ssn cm−2) Rp/ (×103cm2) Qb (×10−10Ssn cm−2) n Cb (×10−10S sncm−2) Rb/(×109cm2) 150 2566 0.80 778 33.0 685 0.95 814 0.39 80 18410 0.67 4640 33.1 738 0.87 1297 0.59 210 12460 0.85 6187 15.2 1650 0.64 14251 0.28 (1-)Qdl(×10−10Ssncm−2) n (1-)Cd (l×10−6Ssn cm−2) Rct/(1-) (×106cm2) 2 284 0.72 126 6110 2.2×10−4 404 0.97 5.02 288 4.3×10−4 416 0.97 4.55 4.55 3.1×10−4

Fig.9. Fittingresultsofparameters(R(orR)andC(orC))of(a)lubricantinporouslayerand(b)barrierlayerduringimmersionin1MNaClsolutionfor210days.

theresistanceandcapacitanceofthehexagonalporewalls,

respec-tively.RbandQbaretheresistanceandcapacitanceofthebarrier

layer,respectively.RpandQparetheresistanceandcapacitance

ofthelubricantintheporouslayer,respectively.RwandQware

usuallyomittedbecauseRwisveryhighandQwislowfortheAAO

porewalls[61,62].Therefore,theequivalentcircuitcanbe

simpli-fiedasillustratedinFig.8(b).For acompletelydeterioratedLIS, thelubricantinthenanochannelwasentirelyreplacedbytheNaCl solution.TheporouslayercouldnotbedetectedbytheEISbecause ofthehighconductivityoftheNaClsolutioninsidethe nanochan-nels.Therefore,theequivalentcircuitelementthatreferredtothe porouslayerwasignored[58],asshowninFig.8(c).Pitting corro-sionorcrackscouldoccuronthebarrierlayeratthebottomof thenanochannels. Suchsurfaceinhomogeneitiescouldbe mod-elledbyintroducingaparametertorepresentthefractionofthe surfacecoveredbytheintactbarrierlayerandaparameter(1-)to representthefractionofthedefectiveorcorrodedsurface[54,55] (Fig.8(d)).Inthiscase,thedouble-layercapacitanceQdlandcharge

transferresistanceRctshouldbetakenintoaccountfortheactive

corrosiononthedamagedbarrierlayer.When=1,thebarrier

lay-ersarenotdamaged.Thealuminiumsurfaceisentirelycovered bytheanodicfilm,soRct andQdl donot exist.When isclose

to0,theporousandbarrierlayersarecompletelyremovedand theequivalentcircuitsrepresenttheexposureofthealuminium substrate.

Tables1and2summarizedtheelectrochemicalparametersfor theLISbyfittingtheEISresultsusingtheequivalentcircuitsin

Fig.8(b)and(d),respectively.Thesmallvalueof2indicatedthat

theEISresultswerewellfitted.Thevaluesofnvariedfrom∼0.7 to∼1.Fig.9(a)and(b)illustratedthefittingparametersfromthe EISresultsasafunction oftime.In Fig.9(a),thecapacitanceof thelubricant(CporCp)increasedandtheresistance(RporRp)

decreasedatarelativelyconstantrateduringtheinitial60days ofimmersion;thiscorrespondedtothecontinuousdeterioration ofthesurfacelubricantlayer.Theseresultsagreedwellwiththe cryo-SEMandUVspectroscopyresults.After60days,thechange inthecapacitanceandresistanceofthelubricantsloweddown. Fortheinnerbarrierlayerstructure(Fig.9(b)),thecapacitance(Cb)

andresistance(Rb)remainedalmostunchangeduntil120daysof

(11)

D.Wuetal./JournalofMaterialsScience&Technology64(2021)57–65 65

After120days,theresistance(RborRb)decreasedandthe

capaci-tance(CborCb)increasedclearly,whichindicatedthatthebarrier

layerwasprogressivelyattacked.

4. Conclusion

Inthisstudy,thedeteriorationprocessofatypicalLIS,prepared byinfusingthenanoporesofAAOwithmineraloil,was investi-gatedunderlong-termimmersionin 1MNaClsolutionforover 200days,usingacombinedmicroscopic,spectroscopicand electro-chemicalapproachinvolvingsurfacewettabilityanalysis,cryo-SEM observations,UVspectroscopymeasurements,andEIS measure-ments.Thelossofthelubricantfromthesurfaceandnanochannels wasquantitativelystudied.Theresultsshowedthatthe deteriora-tionoftheLIScouldbedividedintothefollowingstages:inthe firststage,thesmoothsurfacelubricantlayergraduallydissolved ata relativelyconstantrateuntiltheporousAAOsubstrate got exposed.Inthesecondstage,thediminishingof theimpedance moduliinthehigh-frequencyregionoftheEIS resultsindicated thecontinuouslydissolutionoflubricantinfusedinthe nanochan-nels.Thedecreaseinthe|Z|0.01Hzinthisstageimpliedthatdefects

suchascracksontheLIS,whichwereinitiallymaskedinthe elec-trochemicalresponsebysufficient lubricantfillingofthedefect areas,wereexposed and penetratedbytheNaClsolution. Con-sequently,thebarrierlayerunderthedefectswaspreferentially attackedmuchearlierthanthecompletedepletionofthe lubri-cantfromthenanochannels (∼210days).Theresultsfrom this studyprovidedcomprehensiveinsightsofhowatypicalLIScould deteriorateunderlong-termimmersion.Aroot-causeanalysiswas conductedtohighlightthesignificantimpactofAAOdefectson thecorrosionresistanceoftheLIS.Theseunderstandingswouldbe highlyusefulinlightofthegrowinginterestinLISandparticularly theirapplicationsforunderwatercorrosionprotection.

Acknowledgements

This work was supported by the National Key Research

andDevelopment ProgramofChina(No.2016YFE0203600),the NationalNaturalScienceFoundationofChina(No.51771029),the BeijingNovaProgram(Z171100001117076)andthe111Project (B17003).

References

[1]L.Y.Cui,H.P.Liu,W.L.Zhang,Z.Z.Han,M.X.Deng,R.C.Zeng,S.Q.Li,Z.L.Wang, J.Mater.Sci.Technol.33(2017)1263–1271.

[2]L.Guo,W.u,Y.F.Zhou,F.Zhang,R.C.Zeng,J.M.Zeng,J.Mater.Sci.Technol.34 (2018)1455–1466.

[3]Y.Huang,L.Deng,P.Ju,L.Huang,H.Qian,D.Zhang,X.Li,H.A.Terryn,J.M.C. Mol,ACSAppl.Mater.Interface10(2018)23369–23379.

[4]C.S.Chi,J.H.Lee,I.Kim,H.J.Oh,J.Mater.Sci.Technol.31(2015)751–758.

[5]J.Lee,S.Shin,Y.Jiang,C.Jeong,H.A.Stone,C.Choi,Adv.Funct.Mater.27 (2017),16066040.

[6]J.Lee,U.Jung,W.Kim,W.Chung,Appl.Surf.Sci.283(2013)941–946.

[7]J.Lee,D.Kim,C.Choi,W.Chung,NanoEnergy31(2017)504–513.

[8]T.P.Hoar,G.C.Wood,Electrochim.Acta7(1962)333–353.

[9]H.Wang,H.Yi,H.Wang,Appl.Surf.Sci.252(2005)1662–1667.

[10]W.Zhang,D.Zhang,Y.Le,L.Li,B.Ou,Appl.Surf.Sci.255(2008)2671–2674.

[11]T.S.Wong,S.H.Kang,S.K.Tang,E.J.Smythe,B.D.Hatton,A.Grinthal,J. Aizenberg,Nature477(2011)443.

[12]M.Nosonovsky,Nature477(2011)412–413.

[13]C.Zhang,B.Zhang,H.Ma,Z.Li,X.Xiao,Y.Zhang,X.Cui,C.Yu,M.Cao,L.Jiang, ACSNano12(2018)2048–2055.

[14]X.Dai,N.Sun,S.O.Nielsen,B.B.Stogin,J.Wang,S.Yang,T.S.Wong,Sci.Adv.4 (2018)q919.

[15]F.Zhang,P.Ju,M.Pan,D.Zhang,Y.Huang,G.Li,X.Li,Corros.Sci.144(2019) 74–88.

[16]H.Zhao,Q.Sun,X.Deng,J.Cui,Adv.Mater.30(2018),1802141.

[17]P.Wang,T.Li,D.Zhang,Corros.Sci.128(2017)110–119.

[18]M.Tenjimbayashi,S.Nishioka,Y.Kobayashi,K.Kawase,J.Li,J.Abe,S. Shiratori,Langmuir34(2018)1386–1393.

[19]H.Luo,S.Yin,S.Huang,F.Chen,Q.Tang,X.Li,Appl.Surf.Sci.470(2019) 1139–1147.

[20]P.Wang,D.Zhang,S.Sun,T.Li,Y.Sun,ACSAppl.Mater.Interface9(2016) 972–982.

[21]P.Wang,Z.Lu,D.Zhang,Corros.Sci.93(2015)159–166.

[22]C.S.Ware,T.Smith-Palmer,S.Peppou-Chapman,L.R.J.Scarratt,E.M. Humphries,D.Balzer,C.Neto,ACSAppl.Mater.Interface10(2018) 4173–4182.

[23]L.Xiao,J.Li,S.Mieszkin,F.A.Di,A.S.Clare,ACSAppl.Mater.Interface5(2013) 10074–10080.

[24]J.Zhang,C.Gu,J.Tu,ACSAppl.Mater.Interface9(2017)11247–11257.

[25]Y.Tuo,H.Zhang,W.Chen,X.Liu,Appl.Surf.Sci.423(2017)365–374.

[26]T.Xiang,M.Zhang,H.R.Sadig,Z.Li,M.Zhang,C.Dong,L.Yang,W.Chan,C.Li, Chem.Eng.J.345(2018)147–155.

[27]D.Jiang,X.Xia,J.Hou,G.Cai,X.Zhang,Z.Dong,Chem.Eng.J.373(2019) 285–297.

[28]T.Xiang,S.Zheng,M.Zhang,H.R.Sadig,C.Li,ACSSustain.Chem.Eng.6(2018) 10960–10968.

[29]P.Wang,Z.Lu,D.Zhang,Corros.Sci.93(2015)159–166.

[30]C.S.Ware,T.Smith-Palmer,S.Peppou-Chapman,L.R.J.Scarratt,E.M. Humphries,D.Balzer,C.Neto,ACSAppl.Mater.Interface10(2018) 4173–4182.

[31]A.K.Epstein,T.S.Wong,R.A.Belisle,E.M.Boggs,J.Aizenberg,Proc.Natl.Acad. Sci.U.S.A.109(2012)13182.

[32]M.Fu,M.Hultmark,LubricantRetentionforLiquidInfusedSurfacesExposed toTurbulentFlow,APSMeeting,Boston,Massachusetts,2015.

[33]S.Rowthu,P.Hoffmann,ACSAppl.Mater.Interface10(2018)10560–10570.

[34]H.Qian,D.Xu,C.Du,D.Zhang,X.Li,L.Huang,L.Deng,Y.Tu,A.J.M.C.Mol,H. Terryn,J.Mater.Chem.A5(2017)2355–2364.

[35]D.J.Donahue,F.E.Bartell,J.Phys.Chem.56(1952)480–489.

[36]S.Sett,X.Yan,G.Barac,L.W.Bolton,N.Miljkovic,ACSAppl.Mater.Interface9 (2017)36400–36408.

[37]R.Jeltes,W.A.M.D.Tonkelaar,WaterRes.6(1972)271–278.

[38]C.Howell,T.L.Vu,C.P.Johnson,X.Hou,O.Ahanotu,J.Alvarenga,D.C.Leslie,O. Uzun,A.Waterhouse,P.Kim,Chem.Mater.27(2016),557762294.

[39]A.Vorobev,Curr.Opin.ColloidInterface19(2014)300–308.

[40]Y.Cheng,H.Suhonen,L.Helfen,J.Li,F.Xu,M.Grunze,P.A.Levkin,T. Baumbach,SoftMatter10(2014)2982–2990.

[41]K.Rykaczewski,T.Landin,M.L.Walker,J.H.J.Scott,K.K.Varanasi,ACSNano6 (2012)9326–9334.

[42]S.Anand,A.T.Paxson,R.Dhiman,J.D.Smith,K.K.Varanasi,ACSNano6(2012) 10122–10129.

[43]D.J.Preston,Y.Song,Z.Lu,D.S.Antao,E.N.Wang,ACSAppl.Mater.Interface9 (2017)42383–42392.

[44]J.D.Smith,R.Dhiman,S.Anand,E.Rezagarduno,R.E.Cohen,G.H.Mckinley, K.K.Varanasi,SoftMatter9(2013)1772–1780.

[45]D.Wu,D.Zhang,Y.Ye,L.Ma,B.Minhas,B.Liu,H.A.Terryn,J.M.C.Mol,X.Li, Chem.Eng.J.368(2019)138–147.

[46]S.K.Rawal,A.K.Chawla,R.Jayaganthan,R.Chandra,J.Mater.Sci.Technol.28 (2012)512–523.

[47]D.R.Thompson,E.Kougoulos,A.G.Jones,M.W.Wood-Kaczmar,J.Cryst. Growth276(2005)230–236.

[48]D.Zhang,H.Qian,L.Wang,X.Li,Corros.Sci.103(2016)230–241.

[49]S.Wang,H.Peng,Z.Shao,Q.Zhao,N.Du,Surf.Coat.Technol.286(2016) 155–164.

[50]M.M.Ali,V.Raj,J.Mater.Sci.Technol.29(2013)595–602.

[51]Y.Zuo,R.Pang,W.Li,J.P.Xiong,Y.M.Tang,Corros.Sci.50(2008) 3322–3328.

[52]N.Hu,X.Dong,X.He,J.F.Browning,D.W.Schaefer,Corros.Sci.97(2015) 17–24.

[53]V.Moutarlier,M.P.Gigandet,B.Normand,J.Pagetti,Corros.Sci.47(2005) 937–951.

[54]M.García-Rubio,P.Ocón,M.Curioni,G.E.Thompson,P.Skeldon,A.Lavía,I. García,Corros.Sci.52(2010)2219–2227.

[55]J.Hitzig,K.Jüttner,W.J.Lorenz,W.Paatsch,Corros.Sci.24(1984)945–952.

[56]M.E.Orazem,B.Tribollet,V.Vivier,D.P.Riemer,E.White,A.Bunge,J.Braz. Chem.Soc.25(2014)532–539.

[57]B.Hirschorn,M.E.Orazem,B.Tribollet,V.Vivier,I.Frateur,M.Musiani, Electrochim.Acta55(2010)6218–6227.

[58]J.J.Suay,E.Gimenez,T.Rodrıguez,K.Habbib,J.J.Saura,Corros.Sci.45(2003) 611–624.

[59]V.R.Capelossi,M.Poelman,I.Recloux,R.P.B.Hernandez,H.G.deMelo,M.G. Olivier,Electrochim.Acta124(2014)69–79.

[60]N.D.Nam,J.G.Kim,Y.J.Lee,Y.K.Son,Corros.Sci.51(2009)3007–3013.

[61]L.B.Boinovich,A.M.Emelyanenko,A.D.Modestov,A.G.Domantovsky,A.A. Shiryaev,K.A.Emelyanenko,O.V.Dvoretskaya,A.A.Ganne,Corros.Sci.112 (2016)517–527.

[62]U.Trdan,T.Sano,D.Klobˇcar,Y.Sano,J.Grum,R. ˇSturm,Corros.Sci.143(2018) 46–55.

Cytaty

Powiązane dokumenty