• Nie Znaleziono Wyników

Atlas of extinction curves derived from ultraviolet TD - 1 spectre of bright stars

N/A
N/A
Protected

Academic year: 2021

Share "Atlas of extinction curves derived from ultraviolet TD - 1 spectre of bright stars"

Copied!
79
0
0

Pełen tekst

(1)

Problem y M atem atyczne

13 (1992), 53-131

Atlas of extinction curves

derived from ultraviolet

T D

— 1 spectra of bright stars

Jacek P a p a j1, Walter Wegner2, Jacek Krełowski1

The paper presents a collection of 178 extinction curves derived from the published set of low-resolution spectra acąuired with the aid of the spectrometer aboard the T D — 1 satellite. The bright stars, included in the sample of T D — 1 materiał are very likely to be, in many cases, obscured by single interstellar clouds, especially when characterized by Iow reddening. The latter case reąuires a very careful selection of unreddened standards for the extinction law determination. The special techniąue has been applied to get rid of the possible effects of spectral mismatch, making possible the derivation of extinction curves even in cases of very smali Eb- vs. The survey o f such extinction curves

contains thus many “pecułiar” cases— strongly differing from a “mean interstellar extinction curve” . The observed differences are certainly related to different parameters of interstellar grains contained in these clouds. The curves are presented in the form of plots, normalized to

Eb- v = 1.

1. Introduction

Interstellar dust particles are unąuestioned source of the continuous extinction of starlight. Their physical andór geometrical properties are evidently responsible for the wavelength dependence of the interstellar extinction. The observed extinction law (extinction curve) is thus the

(2)

54 Jacek Papaj, Walter Wegner, Jacek Krelowski

main source of information concerning the properties of smali dust par- ticles such as their Chemical composition, crystalline structure, shapes, sizes etc. Unfortunately this curve is typically rather featureless (Sav- age and Mathis, 1979) and thus the identification of many, possibly different grain parameters is difficult. It is thus of basie im portance to try to investigate possible differences between extinction curves origi- nated in different clouds. Only the parameters of single clouds may be considered as physically meaningful. It is now rather well proved that their absorption spectra differ very substantially (see e.g. Krelowski, 1989 for review).

It is to be emphasized, however, that a great m ajority of observa- tionally determined extinction curves (see Aiello et al. 1988, Fitzpatrick and Massa 1990) concerns relatively distant, heaviły reddened objeets. Such objeets are very likely to be obscured by severał interstellar clouds situated along the same line of sight, differing seriously in their physical parameters andór dust content (Krelowski and Wegner, 1989). The ex- tinction curves derived from their spectra are ill-defined averages over all observed clouds and thus useless as a source of information concern­ ing physical parameters of dust particles contained in any of them. The same concerns several “mean extinction curves” (averaged usually over the available samples)— they are not to be used to determine structural details of interstellar grains.

It is thus of basie importance to derive extinction curves from the spectra of slightly reddened stars— they are most likely to be obscured by only single clouds and thus most useful for any physical consider- ations. This is why we decided to deal with the pretty old, published many years ago, set of low-resolution T D — 1 spectra (Jamar et al. 1977, Macau-Hercot et al. 1978). These spectra are available in the form of magnetic tape from the Center of Stellar Data in Strasburg. This Atlas is restricted to very bright objeets only, because of the Iow limiting mag- nitude ( ~ 6) of the instrument. It includes many bright stars of very Iow reddenings— almost certainly caused by single interstellar clouds. We must say, however, that Iow reddening does not prove that a star is obscured by just a single cloud but generally the probability of this situation grows rapidly when reddening lowers.

The extra-atmospheric ultraviolet is the most interesting spectral rangę as it contains the famous maximum of the curve— the 2 20 0 A

(3)

At l a s o f e x t i n c t i o n c u r y e s 55

bum p, the only strong feature in the extinction curve. It is important to determine and present the resultant curves in a uniform way allowing direct comparisons. It is also very important to check possible effects of spectral mismatch when the curves are determined using the pair method. This project applies the special procedurę of selecting proper standards for any Sp (Papaj, Wegner and Krelowski, 1990 — hereafter Paper 1). The standards derived from the T D — 1 samples of several

Sp classes allowed to determine extinction curves in cases of 178 bright

0 9 - 5 5 dwarf and giant stars. It is the most extensive and homogeneous atlas of extinction curves ever published. We are not going to discuss our results here, but only to show a reliably derived set of extinction curves— many of them certainly originated in single interstellar clouds.

Let us mention also that, despite the Iow resolution, the T D — 1 materiał is sometimes superior to that of IUE. The noisy spectra of the latter instrument allowed Aiello et al. (1988) to determine their extinction curves only in cases of relatively high reddenings. Many Iow reddening objeets or those which are known to be obscured by single clouds (er S co, ( Oph) are too bright to be observed in Iow resolution by IUE and thus their extinction curves are not to be determined from the IUE materiał. On the other hand a great majority of very bright (=n earby) stars are included into the T D — 1 sample. Thus “pecu- liarities” (deviations from published mean extinction curves) are much more likely to be observed in T D — 1 than in IUE spectra.

2. Selection of objeets and determination of standards

The sample of stars considered in the present study contains all 0 9 -

B 5 stars of luminosity classes V - I I I included in the T D — 1 materiał.

Earlier types have been excluded as their spectral types and luminosity classes are usually rather uncertain. Supergiants are very scarce among so bright stars and thus it is typically very difficult to determine their standard intensity distributions; the same concerns later type stars— only a few of them are reddened which excludes the method of standard determination proposed in Paper 1.

The first step of our procedurę consists of the determination of intrinsic flux distributions in the above mentioned spectral types. The m ethod of using two-color diagrams is described in Paper 1. That paper presents the results in the form of “artificial standards” derived as means from the whole samples of given Sp classes. Our spectra have

(4)

56 Jacek Papaj, Walter Wegner, Jacek Krelowski

been normalized to the 2740

A

band and the “artificial standards” are given in the same normalization. The “artificial standards” are very useful, being morę certain than real, unreddened stars as in the latter case both stars may be classified erroneously. W hen using an “artificial standard” only the star under consideration may suffer an incorrect Sp determination.

Let us add the fact of basie importance: our procedurę of extinction curve determination (using pair method with “artificial standards” ) de- scribed in Paper 1, allows a check of the match between the spectral and luminosity class of the star and the chosen standard after the curve is derived. Let us consider the typical extinction curve presented in Fig. 1. The high ąuality spectrum of IJD 144217 was divided by “ arti­ ficial standards” of B 0 V and B I V spectral types. The strong spectral feature of C I V (between 1 / A = 6.0 and 1/A = 7.0) is apparently ob- served either in absorption or in emission in the two curves. The mean curve does not contain any remnant of this feature and, in fact, the star /J1 S co, is classified as B0.5V. Let us mention also that, when the spectral type of the standard is later, a smali depression between the normalization point (2740

A)

and the next one (2540

A)

may be created. This feature, when present, may be considered as the result of mismatch because it is evidently hard to find any physical reason for the “blueing” of the star under consideration right after the point of normalization. In several cases, determining our extinction curves, we proposed slightly different spectral types of the considered stars to get rid of the above mentioned characteristic features that may be created by the mismatch (see Tables 1 and 2). The special difficulty concerning the T D — 1 spectra is the fact the data have been acąuired in 3 segments and thus points around 1740

A

(5.75 /im -1 ) and 2140

A

(4.67 /im - 1 ) may be considered as uncertain. Sometimes whole segments are cali- brated in ąuite different ways, producing misfits as shown in Paper 1. Thus a shift of a whole segment of extinction curve (also marked in Fig. 1) may be simply caused by an instrumental effect or just by some error in data acąuiring procedurę. This is also why we have not used real stars as standards — an error of this kind could be then repeated in all curves derived using such erroneous standard.

(5)

At l a s o f e x t i n c t i o n c u r y e s 57

E b - v = 0 does not guarantee that a stellar spectrum is really free of any obscuration. Very smali dust particles do not contribute to the visual extinction (not affecting the color excess) but they can produce some far-U V (shortward of 2200 A ) extinction. Choosing a standard we should be ąuite sure that it is not reddened neither in visual nor in the far-U V spectral ranges. Our “artificial standards” seem to obey this reąuirement being thus superior to the real stars of E b ~ v — 0. Moreover their varying spectral gradients behave as should be expected in the case of varying temperatures. Using these standards we may be ąuite safe that we don’t introduce any unexpected effects of non- stellar origin. Not all spectra, recorded aboard the T D — 1 satellite are, unfortunately, of good signal-to-noise ratio. The noisy spectra, especially in cases of Iow Eb~v values, are completely useless as sources o f reliable extinction curves. We had to eliminate thus many slightly reddened objeets from our sample. The noise in spectra is not so much a nuisance in cases of higher reddenings but these cases are less interesting as possible candidates for being obscured by single clouds.

It is to be emphasized we may conclude reliably that a star is ob ­ scured by a single cloud only when high resolution profiles of some in­ terstellar atomie or molecular lines do not show any Doppler splitting but these data are usually hardly available. It may be rather interest­ ing now to check whether the most “peculiar” objeets of our sample are really single cloud cases.

3 . Results

The stars included into our program are listed in Table 1 and Table 2. They give the H D number, spectrum and luminosity classes: these given in the “Bright Star Catalogue” (Hoffleit and Jaschek 1982) —

M K and those, following the best match in our resultant extinction

curves (Sp), the observed colour index and the Eb~v following our best match (Paper 1 includes also our recommended intrinsic colours). The stars in both Tables are ordered as their H D numbers grow. The reason to divide the data into two sets was following: several stars show the extinctions varying in exceptionally wide rangę; they are included into Table 2 and also in another Figurę to make the plots of the m ajority of curves much more elear. The colour excesses rangę from few hundredths to few tenths of magnitude; in majority of cases our sample stars are much less reddened than those of Aiello et al. (1988) or Fitzpatrick and

(6)

58 Jacek Papaj, Walter Wegner, Jacek Krelowski

Massa (1990).

The resultant extinction curves are shown as plots presenting extinc- tion curves in the form of the ratios of colour excesses E {\ — 2 7 4 0 )b -v plotted vs. 1/A (in /im " 1). The vertical bars represent the photom etric errors calculated from the following formulae:

1 ~ (.B - 1/)* - (B - V ) 0 X \ O « C 2 9 K2 C2 0 2 i ° A , 2740 2 AS “rTi 7T T 7T T (ln io )2F X T(ln 10 ) 2F 2 2740 where 2740 — FxSl° 100 sfJi F2740S2740 lo o y h : (.B — V ) * — photoelectric B — V colour,

( B — y ) 0 — intrinsic B — V color from Paper 1,

F\ — flux in erg cm -2 s _1 A -1 at wavelength A,

- i’oot-mean-square deviation of the observations used to compute the mean flux at wavelength A given in per cent, T2740 — flux in erg cm -2 s-1 A -1 at wavelength 2740 A ,

^2740 — root-m ean-square deviation o f the observations used to com pu te the m ean flux at wavelength 2740 A

given in per cent,

n — the num ber of averaged observations,

Sa s — “artificial” standard error from Paper 1.

We have not produced the extinction curves adding data from different spectral ranges (optical or IR ) in order to show a very homogeneous set of results. Let’s emphasize that the standards have been derived from the same samples of spectra as the resultant curves. We have not used data from another instrument to play the role of standards (as done by Aiello et al. 1988) which makes our Iow reddening extinction curves more reliable.

The plots show a great variety of the shapes of extinction curves. In spite of curves identical with the “mean” of Savage and Mathis (1979)

(7)

At l a s o f e x t i n c t i o n c u r y e s 59

( H D 170740) we observe steep fa r-[/V rise (e.g. H D 48434) as well as

the lack of any rise (e.g. H D 147165). Some of the curves contain very strong extinction bump (e.g. II D 180968 or 23180) — some of them do not contain it at all (e.g. H D 202904 or 200120). In certain cases a kind o f “bum p” seems to be present shortward of 2000

A

( H D 41335).

Let’s emphasize that the latter case must not be a result of mismatch. An improper standard may change the gradient of the curve (espe- cially f a r -I /y — see Fig. 1) but not the position of a spectral feature. If the observecl feature is the displacecl bum p— our result contradicts the Massa and Savage (1989) statement that the bump wavelength varies in the rangę ± 1 7

A

around the typical location: 2175

A.

The “mean extinction curve” given already by Savage and Mathis (1979) is plotted as the broken line in all our plots— for comparison. We may see that just a few of real extinction curves resemble this “mean” .

Our results seem to be ąuite different from those of Aiello et al. (1988) and Fitzpatrick and Massa (1990)— their extinction curves do not deviate so much from the “mean galactic” . However, the com par­ ison of our Table 1 and the Table VII of Aiello et al. shows 6 stars com m on in the two samples. They are H D ’’s: 37367, 48434, 53974, 147933, 154445 and 209339. We present also 5 targets common with the sample of Fitzpatrick and Massa (1990), H D ’s: 37367, 147933, 149757, 154445 and 193322. The extinction curves from all three sources are evidently very similar when compared to the “mean” extinction curve which proves the results are not method-dependent.

Let’s emphasize once again that these stars are their “slightly red­ dened” objeets whereas in our sample they are situated in the rangę of “high reddenings” . The three sets are thus practically compłemen- tary. Let’s mention once again that strong effects suffer usually much less the noise contained in the spectra which makes the results much less sensitive to any of the possible errors. It is rather elear that high reddenings are usually “composite cases” — the extinction is originated in several clouds and thus the extinction curves deviate much less from what is determined as “ average galactic extinction curve” . The idea of the latter is, in fact, incorrect, as in practically every case the published extinction curves are averaged not in the Galaxy but in the sample of rather randomly chosen stars. Such a sample may be not representative for the Galaxy as a whole. An “a.verage galactic interstellar extinction

(8)

60 Jacek Papaj, Walter Wegner, Jacek Krelowski

curve” should be derived from spectra of distant objeets only— distant enough to be obscured by representative samples of all possible kinds of interstellar clouds.

It is to be emphasized that spectra of many slightly reddened stars have not been observed using the T D — 1 satellite or are recorded with Iow S ratio. Thus ąuite a lot of single cloud extinction curves remains unknown. Their clerivation woulcl be of basie importance for any analy- sis of the physical properties of interstellar dust particles. The materiał presented in this Atlas allows at least one important concłusion: differ- ent I S clouds are populated by grains of different properties— how far their chemical composition, crystalline structure,sizes and shapes may differ, depends on the assumed models. A model, applied to a “mean interstellar extinction curve” must produce non-physical results as the

“ mean” involves many, very different contributions.

The main reason to build up such a set of data was to make a kind of sky survey of the interstellar extinction. As already shown (Krelowski, 1989) the shape of single-cloud extinction curve changes together with ratios of certain diffuse interstellar bands, column clensities of interstel­ lar molecules and, may be, also with polarization properties and deple- tion patterns in the intervening clouds. It is now most easy to spot the most interesting objeets for observing programs, analyzing a survey of extinction curves which are available from the extensive, published ma­ teriał. Thus our results are very useful for planning futurę observations of diffuse bands andór molecular lines as well as atomie resonance lines and polarization properties of I S clouds.

The computer-readable version of this Atlas is available from Stellar Data Center in Strasburg.

Acknowledgem ents. This project has been supported partially by

the Nicolaus Copernicus University of Sciences under the grant 264A.

References

[1] Aiello S., Barsella B., Chlewicki G., Greenberg J.M ., Patriarchi P., Perinotto M., Astron. Astrophys. Suppl. Ser. 73, 1988, 195 [2] Blanco V .M ., Demers S., Douglass G .G ., FitzGerald M .P.,

(9)

Pub-At l a s o f e x t i n c t i o n c u r y e s 61

lications U.S. Naval Obseruatory, Second Series, Vol. 21, 1970

[3] Fitzpatrick E.L., Massa D., Astrophys. J. Suppl. Ser. 72, 1990, 163

[4] Hoffleit D., Jaschek C., The Bright Star Catalogue, 1982 — dis- tributed by the CDS Strasbourg

[5] Jamar C., Macau-Hercot D., Monfils A., Thompson G.I., Houzi- aux L., Wilson R., Ultrauiolet Bright — Star Spectrophotometric

Catalogue, ESA SR-27, 1976

[6] Jaschek C., Hernandez E., Sierra A., Gerhardt A., Catalogue of

Stars Obserued Photoelectrically, Astronomical Obseruatory La Plata, Serie Astronomica, Tome X X X V III, 1972 Kennedy P.M.,

Buscom be W ., M K Spectral Classifications Euanston 1974

[7] Krelowski J., in Interstellar Dust, L.J. Allamandola and A .G .G .M . Tielens (eds), Kluwer Academic Publishers, Dordrecht, IAU 135, 1989, p.67

[8] Krelowski J., Wegner W ., Astron. Nachr. 310, 1990, 281

[9] M acau-Hercot D., Jamar C., Monfils A., Thompson G.I., Houzi- aux L., W ilson R., Supplement to the Ultrauiolet Bright Star Spec­

trophotometric Catalogue, ESA SR-28, 1978

[10] Massa D., Savage B.D., in Interstellar Dust, L.J. Allamandola and A .G .G .M . Tielens (eds), Kluwer Academic Publishers, Dordrecht, IAU 135, 1989, p. 3

[11] Mermilliod J.C., Catalogue o f UBVphotoelectric photometry, 1974 [12] Papaj J., Wegner W ., Krelowski J., Mon. Not. R. Astron. Soc.

(10)

62 Jacek Papaj, Walter Wegner, Jacek Krelowski

[13] Savage B.D., Mathis J.S., Ann. Rev. Astron. Astrophys., 17, 1979, 73.

Bn s t y t u t a s t r o m o n i i 2i n s t y t u t m a t e m a t y k i

Uniwersytet M. Kopernika Wyższa Szkoła Pedagogiczna

Chopina 12 Chodkiewicza 30

(11)

At l a s o f e x t i n c t i o n c u r y e s 63

Figurę captions

Fig. 1.

a) The extinction curves derived from the T D — 1 spectrum of

H D 144217 (/T Sco) with the aid of B 0 V artificial standard

(dotted line) and B I V artificial standard (solid line). Note the presence of the remnants of the strong C I V spectral feature in the form of emission or absorption “spectral lines” absent in the mean curve (open circles). The borders of spectral segments (see text) are marked with arrows.

b) The extinction curve of /31 Sco calculated with the aid of

B 3 V standard. Open circles— the same as in a). Note

the “blueing” between 2740

A

and 2540

A,

the change of 2200 bump depth and the growing intensity of remnant C I V feature— the results of spectral mismatch. The bump posi- tion remains unchanged.

c) The mean ( B 0.5F ) ext.inction curve of (31 Sco (crosses— their vertical sizes represent errors) plotted together with the “m e­ an galactic” (broken line) in the same frame as all resultant curves shown in Figs. 2 and 3. The label “extinction” stands for the color excesses ratio: £ h -2740B -v , 1 / A denotes the reciprocal wavelength in micrometers.

Fig. 2. The resultant extinction curves ordered with growing H D num-

bers of the considered stars. All frames as in Fig. lc ), stellar data in Table 1.

Fig. 3 The resultant extinction curves covering much wider rangę than

(12)

T a b le 1. P rimary data for the target stars.

H D number Sp/L MI< 5 - 1 / 5 ( 5 - V ) Ref.

593 51 V 51 V 0.03 0.260 2 2083 B I 1/ 5 1 1/ 0.03 0.260 2 3901 B 2 V 5 2 1/ -0 .1 1 0.100 1 10516 B I V 5 2 Vep -0 .0 4 0.170 1 21428 B 4 V 5 3 K -0 .0 9 0.090 1 21856 B 2 V 5 1 V -0 .0 6 0.170 1 22192 5 5 V 5 5 Fe -0 .0 6 0.090 1 22951 5 0 .5 V 5 0 .5 1/ -0 .0 1 0.230 1 23180 B I I I I 5 1 I I I 0.05 0.260 1 23478 5 3 1/ 5 3 71/ 0.09 0.270 23625 5 2 .5 V 5 2 .5 V 0.08 0.275 1 24131 5 1 V 5 1 1/ 0.00 0.230 1 24263 5 5 V 5 5 1/ 0.06 0.210 1 24534 0 9 .5 V 09 .5 Vep 0.29 0.560 1 24640 5 1 .5 V 5 1 .5 V -0 .0 3 0.190 1 25204 5 2 V 5 3 V + A4 71/ -0 .1 2 0.060 1 25539 5 2 .5 V 5 3 V 0.06 0.240 25940 5 3 V 5 3 l/e -0 .0 3 0.150 1 26912 5 2 .5 V 5 3 71/ -0 .0 6 0.120 1 27192 5 2 V 5 1 .5 71/ -0 .0 1 0.210 1 27396 5 4 V 5 4 71/ -0 .0 3 0.130 1 28446 5 1 I I I 5 0 777 0.18 0.410 1 30076 5 2 V 5 2 l/e -0 .1 1 0.100 1 30870 5 5 V 5 5 1/ 0.08 0.230 1 32990 5 2 V 5 2 1/ 0.06 0.270 1 32991 5 2 V 5 2 l/e 0.19 0.400 1 34748 5 1 .5 V 5 1 .5 l/n -0 .1 1 0.110 1 34989 5 0 .5 V 5 1 1/ -0 .1 3 0.100 1 35149 5 1 1/ 5 1 1/ -0 .1 5 -ł 0.080 1 35411 5 0 .5 K 5 1 1/ + 5 2 l/e -0 .1 7 0.060 1 35532 5 2 V 5 2 l/n -0 .0 8 0.130 1 36576 5 2 1/ 5 2 I V - V e 0.01 0.220 1 36819 5 2 .5 V 5 2 .5 71/ -0 .0 9 0.105 1 37367 5 2 1/ 5 2 7 1 /-!/ 0.16 . 0.370 1

(13)

65 T a b le 1. — contimied

H D number Sp/L MI< 5 - y 5 ( 5 - V ) Ref.

37490 B2 I I I 5 3 I I I e -0 .1 1 0.050 1 37711 B2 V 5 3 / V -0 .1 3 0.050 1 37967 5 2 .5 V 5 2 .5 Ve -0 .0 6 0.135 1 40111 BO I I I 5 0 .5 / / -0 .0 6 0.160 1 41335 B2 V 5 2 Kejz -0 .0 6 0.150 1 44458 5 1 V 5 1 Vpe -0 .0 2 0.210 1 45314 0 9 .5 V 0 9 pe 0.15 0.450 45725 5 2 V 5 3 F e -0 .1 0 0.080 1 45726 5 2 V 5 3 ne -0 .0 7 0.110 1 45995 5 2 V 5 2 V : nne -0 .0 8 0.130 1 46064 5 1 .5 V 5 i . 5 y -0 .1 5 0.070 1 47417 BO V 5 0 / y 0.01 0.265 48434 5 0 .5 I I I 5 0 I I I -0 .0 2 0.210 1 48917 5 1 .5 I I I 5 2 I I l e -0 .1 2 0.070 1 50083 5 2 V 5 2 e 0.06 0.270 2 51756 5 0 .5 V 5 0 .5 / y -0 .0 7 0.170 2 52266 0 9.5 V 0 9 .5 y -0 .0 1 0.260 2 52721 5 1 V 5 2 e 0.06 0.270 2 53755 5 0 .5 V 5 0 .5 y + 5 5 I I I -0 .0 5 0.190 1 53974 BO V 5 0 .5 / y 0.05 0.290 1 54764 5 1 I I I 5 1 I I 0.06 0.270 1 57150 5 2 V 5 2 y + 5 3 / y n e -0 .1 0 0.110 1 58343 5 2 1/ 5 2 .5 I V e -0 .0 5 0.145 1 58978 5 0 V BO I V : pe -0 .1 3 0.125 1 60325 5 1 V 5 1 y -0 .0 4 0.190 1 60606 5 2 V 5 3 y n e -0 .0 6 0.120 1 63462 BO V 5 0 V : pe : -0 .0 5 0.200 1 63578 5 1 V 5 i . 5 / y -0 .1 4 0.080 1 63949 5 1 V 5 i . 5 / y -0 .1 4 0.080 1 65875 5 2 V 5 2 .5 V e -0 .0 7 0.125 1 66546 5 2 1/ 5 2 / y - y -0 .0 4 0.170 1 68761 5 0 .5 I I I 5 0 .5 7 / / - / y -0 .0 7 0.150 3 68980 5 1 I I I 5 1 .5 / / / e -0 .1 1 0.090 1

(14)

66 T a b le 1. — continued H D number Sp/L M K

5 - y

5 ( 5 - V ) Ref. 69144 B 2 1/ 5 2 .5 JV - 0 .1 4 0.055 1 70930 B I V 5 1 1/ -0 .1 5 0.080 1 78764 B 1.5 V 5 2 I V e -0 .1 5 0.060 1 83183 5 5 I I I 5 5 / / 0.01 0.160 1 88661 5 2 V 5 2 IV p n e - 0 .0 8 0.130 1 91465 5 2 V 5 4 Vne - 0 .0 9 0.070 1 124471 5 1 I I I 5 1 .5 I I I -0 .0 6 0.140 1 128293 5 1 V 5 3 Vne -0 .0 1 0.170 3 131492 5 2 V 5 4 Vnpe 0.00 0.160 1 135160 5 0 .5 V 5 0 .5 Ve -0 .0 8 0.160 1 138485 5 2 V 5 2 -0 .1 4 0.070 1 141318 5 2 I I I 5 2 I I 0.06 0.250 1 141637 5 2 V 5 3 V -0 .0 5 0.130 1 142096 5 2 V 5 2 .5 V -0 .0 1 0.185 1 142114 5 2 V 5 2 .5 Vn -0 .0 7 0.125 1 142184 5 2 .5 V 5 2 .5 Vne -0 .0 4 0.155 1 142378 5 5 V 5 5 V -0 .0 1 0.140 1 142883 5 3 V 5 3 1/ 0.02 0.200 1 142990 5 3 V 5 5 JV -0 .0 9 0.060 1 143018 5 0 1/

51 y + 52 y

-0 .1 9 0.040 1 143275 5 0 .5 V

50.3 jy

-0 .1 2 0.120 1 144217 5 0 .5 1/

51 y

-0 .0 7 0.160 1 144470 5 1 1/

51 y

-0 .0 4 0.190 1 145502 5 2 V

53 y

0.04 0.220 1 147165 5 1 I I I

52

I I I + 0 9 .5

y

0.13 0.340 1 147933 5 2 V

52 / y

0.24 0.450 1 147934 5 2 V

52 y

0.24 0.450 1 148184 5 2 V 5 2

/y

: pe 0.28 0.490 1 149711 5 2 .5 V

52.5 / y

-0 .0 2 0.175 1 149757 0 9 .5 V 0 9 .5 Vn 0.02 0.230 1 150745 5 1 1/

5 2 / y - y

- 0 .0 9 0.120 1 154445 5 1 V

51 y

0.16 0.390 1 155450 5 1 / / / 5 1 I I 0.07 0.280 1

(15)

67 T a b le 1. — continued H D number Sp/L M K B — V £ ( £ - V) Ref. 155889 BO V BO V -0 .0 2 0.235 3 163472 B2 V £ 2 I V - V 0.09 0.300 1 163685 £ 3 V £ 3 I V -0 .0 8 0.100 1 164284 B 2 V £ 2 Ve -0 .0 3 0.180 1 164432 B2 V £ 2 I V -0 .0 8 0.130 1 164581 B I V B I V 0.12 0.350 . 4 , 5 164852 B 2.5 V £ 3 I V -0 .0 9 0.090 1 164900 £ 3 1/ £ 3 Vn -0 .1 0 0.080 1 165174 BO I I I BO I I In 0.00 0.230 1 165793 B I I I I BI I I -0 .0 3 0.180 1 166182 B2 V £ 2 I V -0 .1 6 0.050 1 168797 £ 3 1/ £ 3 Ve -0 .0 4 0.140 1 170235 B2 V £ 2 I V p e 0.07 0.280 1 170740 B2 V £ 2 V 0.24 0.450 1 170978 B 3 V £ 3 I V 0.04 0.220 171034 B2 V £ 2 I V - V -0 .1 1 0.100 1 173117 B 5 V £ 5 V 0.05 0.200 1 175156 £ 5 I I I £ 5 I I 0.17 0.320 1 476819 B 2 1/ £ 2 I V - V 0.02 0.230 1 176871 £ 3 V £ 5 V -0 .0 8 0.070 1 179406 B3 V £ 3 V 0.13 0.310 1 180554 B i V B i I V -0 .0 5 0.110 1 180968 B 0.5 V £ 0 .5 I V 0.02 0.260 1 181858 B2 V £ 3 I V p -0 .0 3 0.150 1 182568 B3 V £ 3 I V -0 .1 0 0.080 1 183144 B i I I I B i I I I -0 .0 6 0.095 1 184915 £ 0 .5 I I I £ 0 .5 I I I 0.00 0.220 1 185423 £ 3 I I I £ 3 I I I 0.04 0.200 1 185507 B2 V B 3 V + B 3 V 0.03 0.210 1 187879 B I I I I B I I I I + B3 V -0 .0 4 0.170 1 188892 £ 5 V £ 5 I V -0 .0 8 0.070 1 191610 £ 2 V £ 2 .5 V e -0 .1 3 0.065 1 193237 £ 2 I I I £ 2 pe 0.42 0.610 3

(16)

68

T a b le 1. — continued

H D number Sp/L MI< B — V 5 ( 5 - V ) Ref.

193322 0 9 .5 V 0 9 V 0.10 0.400 1 193536 B2 V 5 2 V -0 .1 3 0.080 1 195556 5 2 .5 V 5 2 .5 7R -0 .0 9 0.105 1 197511 B I V 5 2 V - 0 .1 0 0.110 1 198781 5 0 .5 V 5 0 .5 V 0.07 0.310 1 200120 5 1 V 5 1 .5 V enn -0 .0 5 0.180 3 202214 5 0 1/ 5 0 y 0.11 0.365 3 202904 5 2 V 5 2 V ne -0 .1 1 0.100 1 203374 5 0 V BO IV p e 0.31 0.565 2 203467 5 3 V 5 3 I V e - 0 .0 4 0.140 1 203532 5 3 V 5 3 / V 0.13 0.310 1 205139 5 2 I I I 5 1 I I 0.12 0.330 1 206672 5 3 V 5 3 / V -0 .1 2 0.060 1 206773 5 0 V 5 0 Rpe 0.21 0.465 2 208682 5 2 .5 V 5 2 .5 V e -0 .0 6 0.135 1 208905 5 1 V 5 1 0.09 0.320 2 208947 5 2 V 5 2 V -0 .0 5 0.160 1 209339 BO V 5 0 I V 0.06 0.315 1 209481 0 9.5 V 0 9 V 0.06 0.360 1 209744 5 1 V 5 1 V 0.22 0.450 2 209961 5 1 .5 V 5 2 V -0 .0 6 0.150 1 212076 5 2 V 5 2 7 R -V e -0 .1 3 0.080 1 213420 5 2 V 5 2 7V -0 .0 9 0.120 1 214168 5 1 V 5 2 Fe -0 .1 5 0.060 1 215191 5 1 V 5 1 V -0 .0 9 0.140 1 216916 5 1 V 5 2 71/ - 0 .1 4 0.070 1 218376 5 0 .5 V 5 0 .5 71/ -0 .0 3 0.210 1 218440 5 1 V 5 2 V -0 .0 1 0.200 1 218537 5 3 V 5 3 V - 0 .0 2 0.160 1 223128 5 2 V 5 2 I V -0 .0 4 0.170 1 224572 5 1 V 5 1 V -0 .0 7 0.160 1 References:

(17)

(2) Blanco et al. (1970),

(3) Kennedy & Buscombe (1974), (4) Jaschek et al. (1972),

(18)

T a b le 2. Primary data for the additional target stars. 70

H D number Sp/L M I< B - V 5 ( 5 - V ) Ref.

19268 5 5 V 5 5 V -0 .0 1 0.140 1 23466 5 3 V 5 3 V -0 .1 2 0.060 1 35708 B2 V 5 2 .5 I V - 0 .1 5 0.045 1 51309 B2 I I I 5 3 I I -0 .0 7 0.090 1 52559 B2 V 5 2 I V - V -0 .0 2 0.190 1 56139 B2 V 5 2 I V ~ V e - 0 .1 7 0.040 1 129557 B2 I I I 5 2 I I I -0 .0 6 0.130 1 158427 B2 V 5 2 V ne -0 .1 7 0.040 1 176162 5 5 V 5 5 I V - 0 .0 4 0.110 1 178175 B2 V 5 2 Re -0 .1 1 0.100 1 183133 5 4 V 5 5 V -0 .0 2 0.140 2 185936 B 5 V 5 5 V -0 .0 8 0.070 1 187567 B2 V 5 2 .5 I V e -0 .1 0 0.095 1 188439 B 0.5 I I I 5 0 .5 I l l n -0 .1 1 0.110 1 References:

(1) Hoffleit & Jaschek (198*2), (2) Kennedy & Buscombe (1974).

(19)

ex

ti

nc

ti

on

ex

ti

nc

ti

on

HD 144217 E (B-V) =0. 17

l/lambda

HD 144217 E(B-V)=0. 17

l/lambda

HD 144217 E(B-V)=0. 17

l/lambda

(20)

6

4

2

O

6

4

2

O 4 5 6 7

HD 3901 E(B-V)=0. 10

HD 593 E (B-V)=0. 26

# ?

i l - i — i LI j i i i —I— i— i— i— i— I— j__ i i i I i u

5 6 7

HD 2083 E (B-V)=0. 26

i i | *— i— i— i— |— i— i— i— i— j— i— i— i— i— j— i— r

\

+ + : II f V V y + ^ V ^ 4 + : z -1 - >¥

>— i— I— i— i— i— i— I— i___ i i i L - I 1--- 1--- 1______ I______ I______ L _

(21)

6

4

2

□ 6 r 42 - O-: 6 r 42 -: 73

HD 10516 E(B-V)=0. 17

—r j r —

i- i

i

| —

i—

i

i

i t i i i i i i

* | ■

T

.

I'"' 1

I"

|.r T “ T 4 5

HD 21428

6

7

E (B-V)

=0. 0 9

-

T

"

| l"l 1 1 | 1

V .

1

l

1

l l l l

1

i i i

|

»

1

i i

i

|

i

r

i”i- i I-Ii . ■

*

* i-

.

1

i i

4 5

HD 21856

6

7

E (B-V)

=0.

17

1 | 1 1 "■

I

"7— | 1 + X H -+h / * __L 1__1__1__ 1--1--1--1__i i i i i | i i i i ] i ł

V +

^V+++#+w+H+ł+H

:

-i—

y -i i i

-l.-ii

i i i 4 5 6 7

(22)

74

HD 22192 E (B-V)=0. 09

HD 22951 E (B-V)=0. 23

6i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— r

ż \

_ Ąt .

■ I I I I I I I I I 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1 L

4 5 6 7

(23)

75

HD 23478 E(B-V)=0. 27

. r. i { i

t i

i

i

-

^

|

1 > ■

A . - ł

V

I . . .

i ■

j ■

j

i i : | i r

+ ^ +(++++++++ ;

4 5 6 7

HD 23625 E(B-V)=0.27

i i j i i i i

:

j Ą . : Z

1 1 1 1 I j I 1 I I 1 1 1

---

:

+h^ +4^ + i , + +++

4 5 6 7

HD 24131 E (B-V)=0. 23

i i | i i i i

:

A

:

A

-^-1-1_1. ..t 1_1-L

-

^ -J f

i j 1 1 1 i } 1 1

W & W + +

= ‘

4 5

6

7

(24)

76

HD 24263 E(B-V)=0. 21

i 1--- 1--- 1--- 1--- 1--- 1--- f

A

u

i

f f ^ l ^ ++ % 4^ +++ + □ - *

■ i i ' ■ i__ i__ i__ i__ i__ i__ i__ i__ i__ i__ i— i__i— i—

i-4 5 6 7

HD 24534 E(B-V)=0. 56

6i— i— i— i— i— i— i— i— i— i— '— i— i— i— i— '— i— i— r 4

-2

-/ N

\ S

■ ■ I '______ I______ I______ I______ I______ I______ I______ I______ I---1--- 1--- 1---1---1--- 1---1--- L .

HD 24640 E (B-V)=0. 19

-i— i— |— i— i— i— i— |— i— i— i— i— |— i— i— i— i— r rH/ H -rH- "ti. *

\

/

O

■ i I ■ ■ ■__i__I__ i__ i__i__ i— I— i—-i— i— i— I— i— l_

(25)

HD 25204 E(B-V)=0. 06

HD 25539 E(B-V)=0. 24

t 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- r i 1 I i i i i 1 1 i i i ! i i i i I i L 4 5 6 7

HD 25940 E (B-V)=0. 15

(26)

78

HD 26912 E (B-V)=0. 12

- i 1---1--- 1--- 1---1--- 1--- 1---1--- 1--- 1--- 1---1---1--- 1---1--- 1--- 1---1---r 4 -2 -O - *

* V +

/ + H ^ A +4++H++ ).++++ t ! ' ■w*? t - t i * ---/ / l l I ■ i ■ I I I I I I I I I I I 1--- 1--- L. 4 5 6 7

HD 27192 E (B-V)=0. 21

_T--- ,--- 1--- ,--- 1--- 1--- 1--- j-if / - ^ + M + t+4++H +++ + + + I I I I I I I I---- I I I I I--1--- 1--- 1--- 1---- 1---1----L 4 5 6 7

HD 27396 E(B-V)=0. 13

(27)

79

HD 28446 E(B-V)=0. 41

i

i -j-—i— r t— r ■ j

^ /

:

A - X A

i i I i i _ i i 1

""i -i—--i— i- -1— i— r— i— i— |-

1

-r-4 5 6 7

HD 30076 E (B-V)=0. 10

? J f c V

:

- p

s

:

#

-

X <

i i I i i i i 1

i 1 1 1

|

1 1 1 1

|

. 1 1

< M W ł|- / # ł ł 1

;

4 5 6 7

HD 30870 E (B-V)=0. 23

1 !

|

1 1 l ł

|

1

A

-

X

— i— 1— i— i— i— i— L

I I I I | l l 1 I ] 1 I

k

_______ —

^

łj ^ / + + +V

+ :

— i-1-1— i 1— »— i i i ! i i

(28)

HD 32990 E (B-V)=0. 27

HD 32991 E (B-V)=0. 40

HD 34748 E (B-V)=0. 11

(29)

81

HD 34989 E(B-V)=0. 10

. , ,-^-T-1 '| J j— 7- T-- 1— : f i k / - # "— I i I 1 i i * i_1 1 t “i ■ [ i--1--1--1--1--1--i— 4 5 6 7

HD 35149 E(B-V) =0. 08

i i | i i i i | i 1 i ^ J Ń f c u : J w - + , , > 1 i i i i I i i 4 5 6 7

HD 35411 E (B-V)=0. 06

l 1 | 1 1 ł ! | 1 1 1 l / % £L-J__i__1__i__i__i---1---1__i__i__i_. I | I ! 1 1 | 1 I W w t t f H f H t t ■ i i i i i i i i 4 5 6 7

(30)

HD 35532 E(B-V)=0. 13

—T—, —1 _ , , ,

1—r ,

: A

.

1 1

1 | ł

1 1 j

i t 1

|

:

|

;

:

1

'

4 5 6 7

HD 36576

E(B-V)=0.

22

i

i

|

i

i

i

i

{

i

i

:

:

j<+

ł

~

:

A

- X

I 1

|

1

1

ł

I

{ I

1

^ +4++tt+_

4 5 6 7

HD 36819

E (B-V)

=0. 10

i i |

i i i •

|

i

i

/

^

-

X

< l

_1

_1. L 1 1_1

4

_1

5

-1

_1

^+++%+ł+ł+++wH++ .

t i_1_i

6

_i

_i

_i

_1

7

(31)

—i—i-HD 37367 E(B-V)=0.37

HD 37490 E (B-V)=0. 05

HD 37711 E (B-V)=0. 05

(32)

84

HD 37967 E(B-V)=0. 14

0 i— i— i— |— i— i— i— i— |— i— i— i— i— |— i— i— i— i— ]— i— r

k

ł L 'H‘+ _ l i I I I I I I I I 1--- 1---1--- 1--- 1---1--- 1---1---L

HD 40111 E (B-V)=0. 16

0 1 --- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1 r 1--- 1--- 1--- 1--- 1--- r 4 5 6 7

HD 41335 E (B-V)=0. 15

(33)

85

HD 44458 E(B-V)=0.21

HD 45314 E (B~V)=0. 45

-i 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1 j 1--- 1--- 1--- 1--- 1--- 1--- r4 -2-

&

* * * * * * O h / f

■ l I ■ ■ l l I______I I I— i— I---- 1---1--- 1--- 1---1--- 1----1--- L.

4 5 6 7

(34)

HD 45726 E (B-V)=0. 11

86

HD 45995 E(B-V)=0. 13

"i— i— |— i— i— i— i— j— i— i— i— i— |— i— i— i— i— j— i— r

j.+ f+ f+ł +f f ł + +

f e * " 41---1--- 1--- 1---1--- 1---1--- 1---1--- 1--- 1___ I___ I___ I___ I___ I___ I___ I___ u

(35)

87

HD 47417 E (B-V)=0.26

HD 48434 E(B-V)=0. 21

(36)

HD 50083 E(B-V)=0. 27

D i

• |

i

* * • |

i i i

—t |

i i

r ■"

"i

1 1

1

- 'i "i1

4-2 : \ / ■ W

o - * ,

,

,

,

4

5

6

7

HD 51756 E(B-V)=0. 17

D l l

|

1

4-i y

□ - *

— « . i ■

| . i i i | l

L łt, ^ p ^ i t ł ł t E f

1 1 1 | 1 I

4

5

6

7 H D

52266 E(B-V)=0. 26

0 r | j i

4-1

/

0-

*

. . i .

f i

-1-1-L_

| 1 I 1 1 | I 1 I I | I I

4^ W H f +łH + + ^ ‘t t + : — -+fct*" — — --- " “

1

— i— i— i— i—

1

— i— i— i— i—

1

— i_

i_

(37)

HD 52721 E(B-V)=0. 27

6 r —i— i— i— '— '— i— r

4

-□

i 1----1— i----1--- 1— i— i----1— |--- 1— r

/ v - J

4 5 6 7

HD 53755 E(B-V)=0. 19

HD 53974 E(B-V)=0. 29

i— i— i— i— j— i— i— i— i— |— i— i— i— i— j— i— r

JE'

✓ /

- 'ł4 “

— i— l— i— i— i— i— l— i— i___ i i l i i i i l i i_

(38)

90

HD 54764 E(B-V)=0.27

i i ] i t t--r

j-:

/ ą

;

A - # —■ i i i i i i i i

— i— i— i— i— |— i— i— i— i— [— i—

r-V

^

*

w

łi ł ;

4 5 6 7

HD 57150 E (B-V)=0. 11

i i | i i i i | A / \

:

i_1 i i i i ! I 1 I I | ! 1 ł 1 | I !

1

ł

;

4 5 6 7

HD 58343 E(B-V)=0. 14

i i I i i i i I

r

/ K

:

/ ć — i

i

I

__

i

__

i

__

i

__

i

__L 1 I 1 1 | 1 I 1 1 | 1 1

1 ;

-—

i

i

i

i

L i

i

i

j_ 1..

i

i 4 5 6 7

(39)

91

HD 58978 E(B-V)=0. 13

Bi— i— i— |— i— i— i— i— i— i— i— i— i— |— i— i— i— i— |— r

4 5 6 7

HD 60325 E (B-V)=0. 19

HD 60606 E(B-V)=0. 12

6

(40)

92

HD 63462 E(B~V)=0.20

i 1--- 1--- r— j--- 1--- 1--- <--- 1--- 1--- 1--- r

4-2 -□ i I I I I I I I I I I I I L I I I I ■ ■ 4 5 6 7

HD 63578 E(B-V)=0.08

HD 63949 E(B-V)=0.08

(41)

93

HO 65875 E(B-V)=0. 12

HD 66546 E(B-V)=0. 17

01--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--r

A ?

i— i-- 1— i__i i u J i i 1--- 1--- 1--- 1— u -J 1---1____ I____l.

4 5 6 7

(42)

94

HD 68980 E (B-V)=0. 09

HD 69144 E (B-V)=0. 05

Bi— i— i— |— i— i— i— i— |— i— i— i— i— |— i— i— i— i— j— i— r

4 5 6 7

(43)

95

HD 78764 E(B-V)=0.06

HD 83183 E(B-V)=0. 16

(44)

96

HD 91465 ECB-V)=0. 07

HD 124471 E (B—V)=0. 14

i 1 1 1 1 1 1 1 1 1 1 1 j 1 1 1 1 1 1 r w / T p t# 1

b

* 1 I I I I I u 4 5 6

HD 128293 E(B-V)=0. 17

6 i— i— i— r

4 2 --i 1--- !--- 1--- 1--- i--- 1--- 1----1— i---1--- 1--- r-\ 'p r b - _l I I I I I I I I I I I 1--- 1--- 1__ I__ L

4

5

6

7

(45)

HD 131492 E(B-V)=0. 16

t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r

1 I I 1 I I I I I I I I 1 I I I I _LI I L

HD 135160 E (B—V)=0. 16

(46)

98

HD 141318 E (B-V)=0. 25

6 i— i— i— |— i— i— i— i— |— i— i— i— i— |— i— i— i— i— j— i— r

- *

££_J--- 1--- 1--- 1--- 1--- 1--- 1__ 1__ I__ I__ I__ I__ I__ I__ I__ I__ I__ I__ i i

4 5 6 7

HD 141637 E(B-V)=0. 13

t— r— j i— i— i— t— j— i r r i |— t i" "i— i— j— i— r

- M f

---4 ^ . ^ H H +W H''ł+ ł+ + + + + |

-

#

+

T.

sc_j— i— I— i— i— i— i— I— i— i i i 1 i i i i L i i_

HD 142096 E(B~V)=0. 19

T— '— «— 1— '— 1— «— r

4

-4

&

^ r , - r ' ' 1

(47)

HD 142114 E(B-V)=0. 12

6 |— i— i— |— i— i 1--- 1—rj— i 1— i— i— p— i— i— i— i— |— i— r 4

-2

-A

*

-1---1---1---1____ I____ I____ I____ I____ I---1---1____ I____ I____ I____ I____ I____ I____ I____ I____ L.

HD 142184 E CB—V)=0. 16

4

-A

A •ŁT % 0

% ^ ' + ; ; +?++T w + ++

o - *

J 1--- 1--- 1______ I______ 1______ I______ i--- 1______ I______ I______ I______ I______ I______I______I______ 1______I______ I______ L .

4 5 6 7

HD 142378 E(B-V)=0. 14

6|— i— i--- 1 r4

-t— |— i--- 1— i— i— |——i— i— i— i— |— i— r

2

-t'

__L-

-I 1-1_L_

(48)

100

HD 142883 E(B-V)=0.20

6|--- 1--- i--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- r 4

-fti

y i

o ~ + -j 1--- 1__ i__ i__ i__ i__ I__ » i » , , i .T »

j L- J 1 i I ! I L_

4 5 6 7

(49)

L

9

S

p t 1 j 1— i— i--j j--

1--~ ' V /

#

Ho

/ i f -if j i 1 i i i i I i » i t 1 i « » i I i i

61 *0= (A -9) 3 0 Z . m i OH

L

9

5

V

— i— |— i— i— i— i— |— i— i— i— i— |— i— i— i— i— |— i— r

*

-- / y H K - - " " i '

v

_l I I L- _l 1 I 1 I I 1__ 1__ I__ I__ I__ I__ ■ I

O

9I'0=(A-8)3

L \ z n \

QH

o

(50)

HD 145502 E(B-V)=0.22

HD 147165 E(B-V)=0. 34

HD 147933 E(B-V)=0.45

(51)

103

HD 147934 E(B-V)=0.45

HD 148184 E (B-V)=0. 49

HD 149711 E (B-V)=0. 18

6| i i I i i i i | i i i 1 1 1 1 i 1 ] 1 |4 -# + - t j j w ~ ' " \ -, * % + % K + ++(.fH .ł ) .+++ +

4

5

6

7

(52)

HD 149757 E(B-V)=0.29

HD 150745 E(B-V)=0. 12

HD 154445 E(B-V)=0.39

n 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- j--- 1--- r

/ \ - i

(53)

HD 155450 E(B-V)=0.28

HD 155889 E(B-V)=0.24

i 1----1----1----1----1----1---- j----1----1---- 1----1----j----1----1----1----1----[----1----r 4 -2 O -J L _ - v + _i i i i i i i i l.J i i i i L 4 5 6 7

HD 163472 E(B-V)=0.30

i — 1— 1— •— ■— r I i i I i I r 4

/

W j j ^ ++H+ + i++-H-+ + 'f :

4

5

6

7

(54)

106

HD 163685 E(B-V)=Q. 10

HD 164284

E ( B - V ) = 0 . 18

(55)

HD 164581 E (B—V)=0. 35

:

;

> »|«

\

-*

_

. ..i

_

»_t

.1.

i

_

i

_

i

_L..

ł.

.

J...J

lA

s

---r---

1

---r " j r i.. >-- r * {—i r~

^kL

4 5 6 7

HD 164852

E ( B - V ) = 0 . 09

i

i

j i t i »

:

i i i i^t i * t i * i i •

4 5 6 7

HD 16 49 00

E ( B - V ) = 0 . 08

,

i

!

j i i i

i

:

/

/ j-

- # .

^ ! I-- L 1 ! ! *

|

1 I I

!

| 1 1 1 1 J i 1

:

I 1. 1 1 1 1 t 1 1 1 1 1 1

4

5

6

7

(56)

108

HD 165174 E(B-V)=0.23

— i— j— — j

.

j

.

j ■ ! " |

i i [ / v

- *

i

;

i

:

_

i

_

i

_

i

_

i

_

i

_

i

_

i

_

i

_

i

_

i

_

i—

i_

4 5 6 7

HD 165793 E(B-V)=0. 18

~ * 1 4 5 6 7

HD 166182 E (B-V)=0. 05

;

-— i*i l i ■ i i l i * ■ i i i i i i i i i

4

5

6

7

(57)

HD 168797 E(B-V)=0. 14

HD 170235 E (B-V)=0. 28

(58)

HD 170978 E(B-V)=0. 22

i

i j'.i —r—

i-1-1-~ + ,

»

j j

i i * i i

,

r — ,— f

.... j

— T ,--r—

j

--

j

--

j

--

p-4 5

6

7

HD 171034 E (B-V)=0. 10

:

j

\

,

; i < /

9 ^ * *

■ ł 1 ■ ( f 1 I

i i i 1 j t i i 1 i i

i

^

V

^

++-

^ ^ 4 5

6

7

HD 173117 E(B-V)=0.20

: A : / - * + --1— L— i. » i . i 1

1 I 1 j 1 I I 1 I 1 1

■1

1 1 1 1 1 1 1 1 1

4

5

6

7

(59)

HD 175156 E(B-V)=0

. 3 2 —i 1---- 1----1---- 1----1——t 1 i j 1----1----1----1----j----1----r 4 -2 -o - * / + +)+++H 'H '++ +++

w

/

i I

i-1_1 I

4

I 1

5

_I

I

I

I

1_I

6

I

I

I I

7

_I

L

HD 176819 E (B-V)=0. 23

“i j 1--- 1--- 1--- 1--- j--- 1--- 1--- 1--- 1--- p 4 -2 -0 - * J I I___I I I 1 I__ I I I I I I ' I ' I I I 4 5 6 7

HD 176871 E(B-V)=0. 07

(60)

112

HD 179406 E (B~V)=0. 31

HD 180554 E(B-V)=0. 11

HD 180968 E (B-V)=0. 26

6 |— i— i— |— i— i— i— i— |— i— i— i— i— |— i— i— i— i— f ~ ! r

2 -■+, / ■ ł

p

1- •'

•H-+. .40-+

+ + N ■H ’’ H L- X J L_i_J 1 I I I I 1 I I L-I I I I S 1 L

(61)

113

HD 181858 E (B-V)=0. 15

6 j 1 1 j 1 1 1 1 1 1 1 1 1 ] 1 i 1 1 1 1 r 4 5 6 7

HD 182568 E(B-V)=0.08

HD 183144 E(B-V)=0. 10

(62)

114

HD 184915 E (B~V)=0. 22

“T 1----1----1----1----1----1----j----1----i----1----1----1----1----1----1----1— j 1 r 4 -2 -O— r-** I I I i i i i I i i i i I i i i i ! i L 4 5 6 7

HD 185423 E(B-V)=0.20

HD 185507 E (B-V)=0. 21

I | I I I I |--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- t“ 4 -2 -O - * / .+ i— i— !— i__ i i i I i i i » I » ■ i ■ I

(63)

HD 187879 E(B-V)=0. 17

HD 188892 E(B-V)=0.07

HD 191610 E (B-V)=0. 07

(64)

116

HD 193237 E(B-V)=0.61

~ ~ r

“i. j- -1" i ■ i

:

^

;

, /

- #

I 1 1 ! 1 1

"i-p i i — i

1

j T.TI.1.| : 1

ł++++ + % f H ^ t ! ‘++;

4 5 6 7

HD 193322 E(B-V)=0. 40

/

-

^

I I I 1 I I I I I 1 I I I I

itł-

~

4 5 6 7

HD 193536 E(B-V)=0.08

ti

!

. i

: /

^ i i ! i i i

-S

^

t

:

Jś^

:

:

I J I I I 1 J I I

\

I 1 I 1 1 1 ( 1 !

4

5

6

7

(65)

HD 195556 E(B-V)=0. 10

(66)

118

HD 200120 E (B~V)=0. 18

6 i : j i : i i j— — i i i — ; j 1 r :— t — p 4 -2 -/ ^ /

s

/ X / O / j i I i i i i I i i i i I i i i i I i L 4

HD 202214 E (B—V)=0. 36

6 i— i— ■— |— i— i— i— i— j— i— i— i— i— j— i— >— i— i— i— i— r

4

-2

-□ - *i

i I i :__ :__ i__ I__ i__ i__ i----1__ I__ i__ i__ i----1__ I----1---- L

4 5 6 7

(67)

HD 203374 E(B-V)=0. 57

Ol 1 1 j 1 1 1 1 [ 1 1 1 1 j 1 1 1 1 j 1 r

+ ++ ++ J

_1 I I__ L—■■ 1__1_ -I I 1 L.-I 1----1----1__ l__ i__ i__ L_i__t

HD 203467 E(B-V)=0. 14

4 "|--- 1--- !---1---1--- p — i--- 1---r— i--- 1--- 1--- r ■Ł# Ipr .++ / J I 1 I I I I I I I I I I I I I 1 I I L_ 4 5 6 7

HD 203532 E(B-V)=0.31

6i— s— i— r T I 1 i 1 S i 1--- 1--- [--- 1--- 1--- 1--- S--- !--- 1— r I - *

_1 L

_I I I I I I L_

J I L

_1 J I I I I u.

(68)

120

HD 205139 E (B-V)=0. 33

---y— .j . j >T--- r „.,. ?... , ; : / Ą * : / ' / ri* ' ' i i ! 1 I 1 I 1 » » i ł | i i.i— i— j- t--r~ 4 5 6 7

HD 206672 E(B-V)=0. 06

; i f a : J ** i i 11 i i i i 1 i i * » | * i i i

1

4 5 6 7

HD 206773 E(B-V)=0. 46

■ i | i i i i | Ź—L---1--- 1--- 1__ |__ |__|__I i i i i j i i i.r "|— i.— r--1--1--1--1_ L_. I 1 1 1 1 1 1

4

5

6

7

(69)

HD 208682 E(B-V)=0. 14

t 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1----1--- 1--- 1--- 1--- 1--- 1--- 1--- j--- 1--- r 4 5 6 7

HD 208905 E(B-V)=0. 32

HD 208947 E(B-V)=0. 16

ci—I-1 I 1 I I I I I I 1 I I 1 I 1 I I ' ■

(70)

122

HD 209339 E(B-V)=0. 31

HD 209481 E (B-V)=0. 36

HD 209744 E(B-V)=0. 45

(71)

6 r 42 -: 6 r 4 26 4 2 □ 123

HD 209961 E(B-V)=0. 15

i 1 1 1 1 1 1 j 1 1 1 1 1 1 1 1 1 1 1 r I 1--- 1___I I I I 1__ I I I 1 I_I I I 1___1_1__ L 4 5 6 7

HD 212076 E (B-V)=0. 08

HD 213420 E(B-V)=0. 12

i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r

+^ +

b

+

b

++

++

I 1--- 1__ I__ I__ I__ I--- 1--- 1__ I__ I__ I__ 1__ I__ I__ I__ I__ I__ I__ L.

(72)

124

HD 214168 E (B-V)=0. 06

(73)

125

HD 218376 E(B-V)=0.21

6|--- 1--- 1--- [--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- r 2 -y * / - # C . i i ! i i i i 1 i i i i ! i i i i ! i l. 4 5 6 7

HD 218440 E (B-V)=0. 20

HD 218537 E(B-V)=0. 16

(74)

HD 223128 E(B-V)=0. 17

U 1-

1

-1—

4-

2-:

A

0-

* ^

. i i

-i— i— i— i— p

f

*

1_1_* ! 1

—i.

t

" ł"" " T.|— i— i— i— i— |— i—

r-*_* * I 1 ! 1 t J 1 t t

4

5

6

7

HD 224572 E(B-V)=0. 16

. . . ... ... /

-o- *

^_

j

_i_1_i_i_i_i_L

l I I 1 J I 1 I 1 j I l

_i_*_i_i_i . i.. i_i_i .i i

(75)

HD 19268 E(B-V)=0. 14

t— i— |— i— i----1— i----1— i---1---- 1---1— |— i— i— i— i— |— i— r

*K I i i I i ■ i i L___i i i i !___ i i i i I__ i i i 4 5 6 7

HD 23466 E(B-V)=0.06

HD 35708 E(B-V)=0. 04

t 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1—t 1---- 1---- r J 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- 1--- *--- 1--- J--- 1--- 1__ I__ 1__ I--- Ł

(76)

HD 51309 E (B-V)=0. 09

I— , 1 , ■ , I —p I 1“ 1 -

-K

1 8 i 8 ! I 8 ! 1 8 i j. -1--r- --,

,--{

i

i

i

i

i

f 1

i i

"

4 5 6 7

HD 52559 E(B-V)=0. 19

;

- +• i l ! i 1 1 I 4.+++ -+^ h +++++f+++ 4 5 6 7

HD 56139 E (B-V)=0. 04

» i j > » i j j j i » - +• I

-

1

-

I 1 1 ! • 1 1 1 1

_j_i_i_i_i_i_j___

u l

4

5

6

7

(77)

HD 129557 E(B-V)=0. 13

- 7.-7 j r— T— 1 "T :

/ X

; - f |— i--1— r r j— r— i--1--i— j— i t~

^

_______ _ . ;

^ % / + H + +++-H+H++++ł:

4 5 6 7

HD 158427 E(B-V)=0.04

: i j i i i i

1

' J r - +• jp" ! 1 » l 1 | 1 1 I T } I ! 4 5 6 7

HD 176162 E(B-V)=0. 11

i i | i > i i i

A

:

i ' ' "

j r

- +" j.,.1

!

i

i

i

i j I ł i i 1 1 1 ! 1 I i r

^

~

j

i

i

i

i

i

i

i

i

i

l

i

—..

t r

(78)

130

84

-HD 178175 E(B-V)=0. 10

1— i— i— i— i— |— i— i— i— i— |— i— r

A .

|

f

-i— i— I— i— i— i___ i I i i i i I i i i i L

4 5 6 7

HD 183133 E(B-V)=0. 14

(79)

HD 187567 E(B-V)=0.09

i i | i.i— r

r-;

A

-- P ' ' ~ '

- +•

i i 1 i i i i

-y

t

— r i— i | i— i i i )

i i

f++ł;

. .■

4 5 6 7

HD 188439 E(B-V)=0. 11

1 1 j I 1 I 1 1“

I_i_i— 1— i— i_i_i_

| 1 ! 1 1 | 1 I I !

_i_i_i_i_i_i_i_i— i— i—

■ ■

f + t

;

— i—

i l

Cytaty

Powiązane dokumenty

The in- fluence of lamp current upon the total line width is less, however (Table 3), and the analytical curve does not change very much if the current is raised to 25 mA. Clearly

Our T2T backscatter transceiver is designed with energy consumption reduction in mind. It, therefore, avoids all energy- hungry component such as ADCs or multi-stage power ampli-

Using the sophisticated techniques developed during the past two decades of seakeeping research, Tasaki shows that for the particular ship he considered, the sustained speed of the

Consider the indicatrix of tangents of the curve x ( if the initial points of all the tangent vectors are shifted to the origin, their new end points trace out a curve called

the slope inequality for the usual gonality sequence of smooth curves (it may fail for some C, but not for a general C).. We work over an algebraically closed base field

Using the numerical model it is demonstrated how the shot noise of the light detected in

➔ large number of pulsation frequencies large number of pulsation frequencies (each frequency probes specific layer) (each frequency probes specific layer). Requirements

However, the fact that we do not find evidence of any complete genomic 1 Mb blocks resulting from cattle admixture in the modern LC line individual (fig. 6A) argues strongly