• Nie Znaleziono Wyników

On a generalized inference operation

N/A
N/A
Protected

Academic year: 2021

Share "On a generalized inference operation"

Copied!
6
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA PHILOSOPHICA 7, 1990__________________

Marek Nowak, P i o t r Rydzewski ON A GENERALIZED INFERENCE OPERATION

I . The aim of the paper is to p rese n t some form al o p e ra tio n u s e fu l fo r a f o rm a liz a tio n of the la rg e c la s s of re a s o n in g s . The a n a ly s is of v a rio u s kind s of l o g i c a l l y v a lu a b le reason ing s employed in s c ie n c e and everyd ay s i t u a t i o n s1 r e s u l t s in t h e ir e s s e n t ia l cha­ r a c t e r i z a t i o n :

( 1 ) The accepted prem ise must not be r e je c te d in the r e s u lt of in fe re n c e . T h e re fo re , i t g ets the s ta tu s of c o n c lu s io n .

(2 ) The enlargem ent of the in c o n s is t e n t s e t X of prem ises must not remove in c o n s is te n c y .

( 3 ) I f a p ro p o s itio n a i s in f e r r e d from the s e t X of p rem ises, i t can be a ls o concluded from e v e ry la r g e r s e t of prem ises Y i f o n ly Y U { a } i s c o n s is t e n t .

(4 ) A p ro p o s itio n at cannot be in fe r r e d from a c o n s is t e n t s e t X of prom ises, when X U { a } is in c o n s is t e n t .

I t i s s t г в i ght forw ard th a t any d e d u c tiv e reason ing possesses the above p r o p e r t ie s . For in d u c tio n , l e t us c o n s id e r the w e ll- -known sw an's example. The s e t of prem ises!

X = jswan no. i i s w h ite and i t s neck is lo n g : i * I , 2, . . . , 100} From X th e re can be in d u c t iv e ly drawn t h a t :

( a ) E ve ry swan i s w h ite . ((3) Every sw an's neck i s long.

Next prem ise: ( j ) Swan no. 101 i s grey and i t s neck i s lo n g , i s added to the s e t X. The new s e t o f prem ises X u { j } s t i l l a

l-• . .. . . . ••/. _ • V. • * \ * • . ‘

г ~i 1 e;9- K. A j d u k i e w i c z , K la s y f ik a c j a rozumowań, L in : J Ję z y k i p oznanie, t . 2, Warszawa 1965, pp. 206-225: " A r t i- f i c a l I n t e l l i g e n c e " 1980, No. 13; H. M o r t i m e r , L o g ik a in ­ d u k c ji, Wybrane problem y, Warszawa 1982.

(2)

lows to in f e r (o ) s in c e X u j j } U Ц 1 is c o n s is t e n t , but (ot) is no more a c o n c lu s io n , s in c e ( X U y j ) U i s in c o n s is t e n t . That proves th a t (3 ) and (4 ) r e f e r to in d u c tio n .

Now we s h a ll p ro vid e another example to i l u s t r a t e non-monotonic rea so n in g . The s e t o f prem ises:

X = Ia p a tie n t has a sharp aćhe on the r ig h t s id e of h is b e lly | makes the d octo r to draw the c o n c lu s io n : (ot) the p a tie n t has a p p e n d ic it is . I f X i s e n larg ed by (p ) the p a tie n t cannot r i s e h is le g , a is s t i l l v a lid fo r (X и ) U is c o n s is t e n t . Hereby ( 3 ) . But when the next prem ise i s t h a t : (Jf) the p a tie n t had the appendix cu t o f f , then no doctor can in f e r ( a ) . N o tic e th a t

u { f } ) u j a } ie in c o n s is t e n t, thus (4 ) is o b v io u s ly f u l f i l l e d . We conclude th a t ( I ) - (4 ) c o n d itio n s are n ecessary fo r reason ing to be l o g i c a l l y v a lu a b le . A lb e it a l l the p r a c t i c a l l y used reason ing s posse3 many o th e r p r o p e r t ie s , however the fo rm a liz a tio n of the c la s s of a l l the reasonings fo r which (1 ) - (4 ) are v a lid seems to be j u s t i f i e d .

I

2. Where £ * (S , F j , . . . , Fn) is a p r o p o s itio n a l language and P ( S ) i s the power s e t o f 5 we s h a ll say th a t a fu n c tio n C: P(S)-~* —* PCS) i s a q e n e r a l i z e d i n f e r e n c e o p e ­ r a t i o n (g . i. - o p e r a t io n fo r s h o r t) on £ i f f fo r any X, Y £ S, «. e S the fo llo w in g c o n d itio n s are s a t i s f i e d :

( i ) X £ C (X ),

( i i ) C (Y ) = S whenever X c Y and C (X ) ^ S,

( i l l ) c t e C ( X ) , X £ Y , C(Y ,

a )

/ S imply th a t o t « C ( Y ) , ( i v ) a t C (X ) whenever C (X ) / S and C (X ,« ) = S, s e t of form ulas X £ S i s c a lle d i n c o n s i s t e n t w i t h r e s p e c t t o C (С - in c o n s is t e n t ) whenever C (X ) = S.

Lemma I . For any fu n c tio n C: P ( S ) — ► P ( S ) such th a t ( i i ) holds t r u e , ( i i i ) and ( i v ) are a ls o s a t i s f i e d i f and only i f f o r any X c S the fo llo w in g c o n d itio n s are e q u iv a le n t:

( . ) C (X ) / S ,

( . . ) C (X ) =

u

{ y G S: C (X U Y) i S and 3 2 S X : Y

£ C ( 2 ) J .

P r o o f :

Denote fo r any X c S , U {y c S: C(X u Y ) / 5 and 3 Z s Х Г ' Y C C (Z )} = К ( X ) .

(3)

suppose th a t C (X ) / S and l e t c x e C ( X ) . So C ( X , a ) i S due to ( i v ) , thus a e K ( X ) . '

On the o th er hand assume th a t cx e K (X ). Then f o r some Y c S we have: a. e Y, C(X

U

Y) / S, 3 Z с X: Y с C (Z ). .So a e C(Z>, Z C X and accord in g to ( i i ) : C (X , a ) / S. Thus a e C ( X ) due to ( i i i ) .

Now assume th a t: ( . . ) C (X ) * K (X ) and C (X ) = S fo r some X c S. So fo r any Y с S , CCX U Y) = S due to ( i i ) , thus K (X ) = 0. A c o n t r a d ic t io n .

(«=) Assume th a t ( i i ) holds tru e fo r С and the c o n d itio n s ( . ) , ( . . ) are e q u iv a le n t .

Ad ( i i i ) : suppose th a t a e C (X ), X C Y, C (Y , a ) t S . Then, accord in g to ( i i ) : C (Y ) / S, hence a ls o C (X ) i S. So C (Y ) = K (Y ) and C (X ) - K ( X ) . Hence we o b ta in th a t a e C (Z ) fo r some Z с X. Thus a 6 C (Y ) s in c e X C Y and C (Y , cx) / S.

Ad ( i v ) : le t a e C (X ) and C (X ) / S. Then we have: oc « K(X),

so due to ( i i ) : C (X ,o t ) / S . D

L e t R, T be b in a ry r e la t io n s on P ( S ) . C onsider the fo llo w in g c o n d itio n s :

(A>R R is r e f le x iv e ;

( B ) R <X, У> s ( | i f f fo r each 0 e Y: ^X, {o}> « R;

( A ) T <X, Y> « T and X U Y S ť II Y' im ply th a t <X* , Y'> с T; (A ) <X, X> e T i f f <X, S> « R;

(В У ^X., X> jť T and <X, R im ply th a t <X, T; (C ) <X, {< *[> « R, X C Y, <Y , {< *}> * T im ply th a t <Y, | a } > « R ; fo r any X, X * , Y , Y ' c S , a « S .

L e t CR T: P ( S ) — *• P ( S ) be a fu n c tio n d e fin e d as f o llo w s : fo r any X c S

S i f < X, X > e T

U { y b S: <X, Y> fí T and 3 Z £ X: <Z, Y > e R } ' o th , Lemma 2 . For any b in a ry r e la t io n s R, T on P ( S ) f u l f i l l i n g (B )R> ( A ) j , (А ) , ( В ) , (C ) and any X, Y c S the fo llo w in g c o n d itio n s are s a t is f i e d : (1 ) <X, Y> e T i f f CR T(X U Y) = S; (2) < P r o o f : (2 ) <X, Y> e R i f f Y C C R T( X ) . We f i r s t show th a t fo r any X С 5,

(4)

(3 )

U j y t S :

<X, Y> # T and 3

Z С

X: <Z, Y> « r } / S which im p lie s ( * ) CR T(X ) » S i f f <X, X> 6 T.

Suppose th a t (3 ) does not h o ld . Then a cco rd in g to ( A ) T and ( B ) R fo r some X c S , f o r any c x « S , <X, {л ]> )Г Т and <Z, ja }> e R fo r зоюе Z с X. So fo r any a « S , <X, {« }> « R due to ( C ) . Hence a cco rd in g to ( B ) R and (A ) we have: <X, X > e j . Thus a c o n t r a d ic ­ t io n by ( A ) T .

Now, we im m ediately have ( I ) by ( A ) j and ( * ) .

To prove (2 ) assume th a t <X, Y> « R and CR T(X ) i S . Then from ( # ) : <X, X> 4 T and from ( B ) R : <X, e R fo r any oi <• Y. Thus Y с CR T (X ) due to the d e f in it io n of CR T> On the o th er s id e assume th a t ’ y с Cr t ( X ) , I f CR T(X ) = S, then from ( * ) and (A ): <X, S> e R, hence accord in g to ( Ś ) R : <X, Y>6 R. So suppose th a t ^R, T^*^ ^ Ihen <X, X> 4 T due to (# ) and fo r any ct e Y there e x is t s U c S 3uch th a t c*« U, <X, U> * T and <2, U> « R f o r some Z Ł X. Hence fo r any a « Y, <X, |a }> fŕ T due to ( A ) ? and

{ ^ J > e R from ( B ) R . T h e re fo re , accord in g to ( C ) , fo r any oíe Y, <X, {oi]> e R, thus <X, Y> e R by ( B ) R . Q’

Using lemma I and the c o n d itio n ( * ) from the proof of lemma 2 one may prove the fo llo w in g

\.j For two b in a ry r e la t io n s R, T on P ( S ) f u l f i l l i n g ( A ) R , ( B ) r , (A)^r, ( A ) , (Ö ), (C ), CR j i s a g e n e ra liz e d In fe re n c e

o p e ra tio n on S. ’ Q

Now, denote by Я the fa m ily o f a l l p a ir s <R, T> об r e la t io n s f o r which the c o n d itio n s ( A ) R , ( B ) R , <A) T , ( A ) , ( 0 ) , (C ) are s a t i s f i e d and by 2 the c la s s o f a l l g . i.- o p e r a tio n s on S.

Theorem 2. For any С « 3 th e re e x is t s a p a ir <R, T>e £ such th a t С = CR T . M oreover, the coriespúndence <R, T> — is

u nique. ’ '

P r o o f :

Using lemma I one may choose fo r g ive n g Л .- o p e ra tio n С th4 p a ir <R, T> such th at C = CR j in the following way: fo r any X, Y E S

-<X, Y> e T i f f C (X g Ý) = S,

(5)

I t i s easy v e r i f i c a t i o n th a t <R, T> « £ . F i n a l l y , i t i s obvious due to lemma 2, th a t fo r any <R1 , Tl> , <R2, T2>e J i , CRl =

= CR2 T2 im p lie s th a t Hi = R2 and T1 = T2. О

3, Each consequence on § i ’ e - 3 fu n c tio n C: P ( S ) — » P ( S ) such th a t fo r any X, У c S, X c C ( X ) , C (X ) q C (Y ) whenever X t Y and C (C (X )) с C (X ) proves to be a g .i,- o p e r a t io n , T h e re fo re the r e ­ la t io n a l d e s c r ip tio n o f consequence o p e ra tio n is p o s s ib le . To get the a d d itio n a l c o n d itio n s fo r <R, T>*s, the fo llo w in g lemma is u s e f u l.

Lemma 3. An o p e ra tio n C: P ( S ) — > P (S ) d e fin e d fo r e v e ry X c S by the condition:

S ' i f X 4t p C (X ) =

-K (X ) i f X e i )

w ith с PCS) and K: P ( S ) — * P ( S ) being any fu n c tio n , i s a con­ s e q u e n t on S. i f and o n ly i f

C l) fo r any X, Y ь S, X c Y, V * ip , K (X ) / S im ply th a t X e (2 ) fo r any X * J 3 , K (X )e p whenever K (X ) / S,

(3 ) the r e s t r i c t i o n К [ s a t i s f i e s the c o n d itio n s fo r a closure o p e ra tio n .

Pro o f by easy v e r i f i c a t i o n . °

Theorem A g . i .- o p e ra tio n CR T on 5, fo r <R, T> e Ä is a consequence o p e ra tio n i f and o n ly i f the fo llo w in g c o n d itio n s are s a t is f i e d fo r any X, Y, Z C S:

( C ) R <Z, Y> e R whenever <X, Y> « R and X G, Z,

(0 )д R is t r a n s i t i v e , „

-( В / <X, X> 4 T and <X, Y> e R im ply th a t <X, Y> * T. E r q o f :

(-*) According to lemma 2, the c o n d itio n s ( C ) R , C0)R , ( 0 / follow im m ediately from the ussumtion th a t j i s a consequence o p e ra­

t io n . ’

( f ) Assume th a t <R, T> c X f u l f i l s the c o n d itio n s ( C ) R , ( 0 ) R , ( B ) ' . Due to lemma 3 i t i s s u f f i c i e n t to show th a t the c o n d itio n s ( 1 ) , ( 2 J , ( 3 ) from i t h old tru e fo r

P • {X t S : <X, X> i T } and (u s in g (CR )> K (X ) « и { ¥ C S : <X, Y> e R - f } , X C S.

(6)

N o tice th a t fo r any X c S , К ( X ) / S ( c f . the proof of lemma

2

).

So the c o n d itio n (1 ) fo llo w s im m ediately from (A )y . To prove ( 2 ) assume th a t X « J) , th a t i s <X, X> i T. N o tic » th a t fo r any ot e K (X ), <X, | a } > i S by ( B ) R , so a ls o from ( B ) R : <X, K (X )> c R,

thus <X, K (X )> ft T by ( B ) ' , 30 from (A ) j : < K (X ), K ( X ) > * T i . e . К ( Х ) б £ .

N a t u r a lly , fo r any Х « Р , X с K (X ) due to ( A ) R .

To prove the m o n o to n ic a lity of k [ %) assume th a t <У, Y> t T, X C Y and ot « K (X ). Hence <X, {<*}> * R by and t h e re fo r e , accordin g to ( C ) R we have: <Y, { “ }> c R- Moreover, due to (8) ' , <Y, |a }> 4 T, thus a e K ( Y ) .

To the end assume th a t <X, X> ? T and об e K ( K ( X ) ) . Then < K (X ){o t}> ^ t and < K(X), {a t} > e R due to ( A ) T and ( B ) R . S in ce X Q K (X ), so accord in g to ( A ) y : < X , { a } > £ T. Moreover, from ( B ) R we have: <X, K (X )> £ R which to g e th e r w ith < K (X), { t t } > с К, lead s by ( 0 ) R to the c o n clu sio n th a t <X, { a } > c R. Thus c r e K ( X ) . О

U n iv e r s it y of Łódź Poland

Marek 'lowak, P i o t r Rydzewski O UOGÓLNIONEJ OPERACJI INFERENCJI

Celem p racy j e s t a n a liz a form alna .pewnych ogólnych w łasn o ści c h a ra k te ry z u ją c y c h wnioskowania. Autorzy tw ie rd z ę , że p o siad a n ie tych w łasn o ści j e s t warunkiem koniecznym, aby wnioskowanie b yło lo g ic z n ie w artościo w e. Wprowadzają aksjom atycznie p o ję c ie "u o g ó l­ n io n e j o p e r a c ji i n f e r e n c j i " , k tó re fo rm a ln ie ujmuje wnioskowanie mające owe cechy. N astępnie re p re z e n tu ją uogólnioną o p e ra c ję i n f e ­ r e n c j i przy uZyciu r e l a c j i b in a rn ych o k reślo n ych na podzbiorach ję z y k a . Podają również taką re p re z e n ta c ję d la lo g ic z n e j o p e r a c ji konsekw encji (każda lo g icz n a o p e ra cja konsekw encji j e s t u o g ó ln io ­ ną o p e ra cją i n f e r e n c j i ) .

Cytaty

Powiązane dokumenty

Next we have to apply appropriate transformations of the (/-plane to arrive at a (p*, M*)~system satisfying the conditions of the lemma... W., Generalized solutions of a system

Weil onto affine bundles, and prove that all product preserving gauge bundle functors on affine bundles can be obtained by this extended construction.. Modern differential

Lemma.. Suppose first n=1. The boundary IH^r) takes on the

With the aid of the sequence it is possible to construct a sequence of elements of the space HI approximating in the norm || • ||* the generalized solution of the boundary

Даются новые теоремы и классы пар обобщенных характеристических функций выполняющих

(ii) The existence and properties of Hurewicz homomorphism for generalized homology theory.. The notions of spectrum and cospectrum were introduced by Lima

We exploit the independence of the spacings in exponential populations with lo- cation λ and scale δ to develop simple ways of dealing with inference on the location parameter,

There are two differences with respect to [1]: In [1], the Proposition does not appear in this generality, and here a different choice of Banach function spaces eliminates any