• Nie Znaleziono Wyników

Velocity force on submerged rocks

N/A
N/A
Protected

Academic year: 2021

Share "Velocity force on submerged rocks"

Copied!
25
0
0

Pełen tekst

(1)

o ^ ' ^ i a ' Ö ^ 1 / ó i B L I O T H E E K

W e i e r l o o p k u n d i q Laboraloriurr!

VELOCITY FORCES'ON

SUBMERGED ROCKS

MISCELLANEOUS PAPER NO. 2-265 April 1958

U . S, Army Engineer Waterways Experiment Station C O R P S O F E N G I N E E R S

(2)

i i i

. , ' PREFACE Y

The study described i n t h i s report was made under the Corps.of

-Engineers C i v i l Works I n v e s t i g a t i o n 80^1-; "Analysis of Hydraulic Experi- :; mental Data (Model and Prototype) and Development of Design C r i t e r i a . " : The Waterways Experiment Station i s assigned the r e s p o n s i b i l i t y o f

develop-ing "Hydraulic Design C r i t e r i a . " - ,.

A chart to he used as a guide f o r rock size c r i t e r i a f o r r i v e r j

closures and riprap i s included i n the seventh issue of Hydraulic Design; C r i t e r i a . The i n v e s t i g a t i o n and research that were necessary to develop; t h i s chart are summarized herein. ; i

The i n v e s t i g a t i o n was made by Mr. R. G. Cox^ Chief, Analysis Section, under the supervision o f Mr. F. B. Camphell, Chief, Hydraulic Analysis

(3)

COKTEWTS Page PREFACE i i i WOÏATIONS ,\ v i i SUMMARY i x PART I : IWIRODUCTION 1 Scope of Study 1 H i s t o r i c a l Background 1 PART I I : THEORY » 2 Transportation 2 S t a b i l i t y • • 3 Resistance • 5 PART I I I : DERIVATION OF DESIGN CURVES ,. 8

Hydraulic Design Chart 7 1 2 - 1 : River Closures

-Velocity vs Stone Weight 8 Slope Effect . . . . . 10

PART IV: CONCLUSIONS • H River Closures . • • H

Bank and Channel Protection . . . 1 1

Breakwaters ' 1 1 PLATES 1-3 ;

APPENDIX A : AMOTATED LIST OF REFERENCES A l

APPENDIX B: VELOCITY DATA ! • B l

(4)

NOTATIONS 2 A Cross-sectional area, f t - ' C-i „ Constants Cp Drag c o e f f i c i e n t s • , ' ' ! . d Depth o f flow, f t d Diameter of stone, f t ' g ' D Height o f cuhe, f t F Force, I h 2 g Gravity, 32 f t per sec

H Wave height, f t .

K' Constant i n modified I r i h a r r e n equation

Moment arm o f actuating force ' ^ • ' Moment arm o f r e s i s t i n g force

M^ Forcing moment, f t - l b ' M^ Resisting moment,- f t - l h

n Roughness c o e f f i c i e n t . Manning's s Slope o f energy gradient

V Mean v e l o c i t y , f t per sec

\ C r i t i c a l mean v e l o c i t y at v^hich movement begins, f t per sec Vg Velocity acting d i r e c t l y on stone p r o j e c t i o n , f t per sec

Approach v e l o c i t y , f t per sec W Weight o f rock, l b

y The Isbash constant, 1.20 and 0 . 8 6 f o r maximum and minimum stone, s t a b i l i t y . .

H Coefficient o f f r i c t i o n f t ^ '

.2 2 •

T Tractive force, l b per f t

C r i t i c a l t r a c t i v e force, l b per f t "

7 Specific weight o f water, 62.k l b per f t ^ 7g Specific weight o f stone, 165 l b per f t - ^ P . Density o f f l u i d , - , slugs per f t ^

& OC Angle o f repose

(5)

I , ' , ( - I '( ! " , ( , , , , ix SUMMARY

The development of interest in the hydraulic forces acting on a body in a moving fluid from the seventeenth century to the present time is traced. Various formulas pertaining to bed-load movement, rock-filled dams, break\'Taters, and drag coefficients are studied. The formulas are transposed to show their interrelationship.

Available data pertinent to the design of riprap and river cl~sures

are discussed and summarized. Suggested design curves are given. The ef-fect of bed slope on rock stability is considered.

(6)

VELOCITÏ FORCES ON SUBMERGED ROCKS

PART I : INTRODUCTION

Scope of Study .

1 . Modern use of rock f o r r i v e r closures, breakwaters, and r i p r a p has stimulated i n t e r e s t i n the hydraulic forces that act on submerged bodies. This i n t e r e s t l e d t o the development of a hydraulic design c r i

-t e r i a char-t f o r use by -the Corps of Engineers as a guide i n r i v e r closure and r i p r a p design problems. I n the development of t h i s chart m a t e r i a l

from many so\arces was compiled and i s l i s t e d i n Appendix A. I n a d d i t i o n , '• a study was made of various formulas commonly used i n the s o l u t i o n of these and similar hydraulic problems. The r e s u l t s of t h i s study are summarized herein.

• H i s t o r i c a l Background

2. Interest i n the hydraulic forces acting on a submerged body i n a moving f l u i d dates back t o the seventeenth centwy.^ l a t e i n the eighteenth century Dijbuat published the f i r s t r e l i a b l e data on the t r a n s p o r t a t i o n of s o l i d p a r t i c l e s by flowing water and derived an equation attempting t o de-f i n e the laws ode-f movement ode-f m a t e r i a l along the bed ode-f a stream. Study ode-f the movement of material i n canals and r i v e r s during the nineteenth century resulted i n many observations by independent investigators. Much of the data r e s u l t i n g from these t e s t s remains v a l i d today. I n I896, E. H. Hooker''"^ made a comprehensive summary of the data .and theories of these

early investigators.

3. I n the f i r s t h a l f of the twentieth century many studies r e l a t i n g to specific problems vrere undertaken, l/hile major e f f o r t s were d i r e c t e d toward the study of the mechanics o f sediment transportation, the problems of r i p r a p and revetment design as w e l l as of r i v e r closures and breakwaters received considerable a t t e n t i o n . The advent of the airplane and the r e

-s u l t i n g aerodynamic re-search contributed much t o the knowledge of f l u i d forces acting on bodies. •

(7)

PARTJI: THEORY

h. The study of the hydraulic forces that act on bodies submerged i a f l u i d i n motion can be divided i n t o .three general categories.. F i r s t , t h movement or transportation of material i n a stream i s o f i n t e r e s t i n the study of natural r i v e r phenomena such as the formation of sand bars, cros ings, and deltas. Second, the s t a b i l i t y of a rock structure or an individ-u a l stone i s important i n the design and constrindivid-uction of rock dams, revet-ments, r i p r a p , and breakwaters. Third, the form resistance of a body or

structure t o flow i s important i n the design of p i e r s , b a f f l e blocks, and h y d r o f o i l s . Ifliile the general phenomena i n each case are the same, d i f f e r ent approaches have resulted i n numerous d e f i n i t i o n s and formulas. How-ever, since each case involves common actuating forces, the r e s u l t i n g equa-t i o n s can ofequa-ten be i n equa-t e r r e l a equa-t e d . •

Transportation

5. Submerged material transported by a f l u i d moves either along the boundary or i n suspension. Movement of p a r t i c l e s along the boundary i s more commonly defined as bed load i n a natural stream. The movement i s re

l a t e d t o the shear force of the f l u i d boundary i n which the material moves Duboys recognized t h i s phenomenon i n I879 and introduced the term t r a c t i v e force. The formula f o r t h i s force i s ( f i g . l ) :

E N E R G Y G R A D I E N T ( S ) T '= yds

(1)

W A T E R S U R F A C E

19

• ' • • S T R E A M B E D •••.•''.>•.••;:••:

Studies by L. G. Straub, by A. Shields, and others have determined t h a t the c r i t i c a l trac. t i v e force f o r p a r t i c l e s o f 0 . 0 3- f t diameter or greater can be expressed as:

Fig. 1 = 0.C6 (7g - 7 )

The Manning equation f o r twodimensional open channel flow i s

-„ 1.1.86 s l/ 2 d 2 / 3

(8)

|i:'ged i n ' | t , the the cross- fidivid-i-evet- • ir 1 and l i f f e r - low-5 equa-ig the i s is' re-;c-( /e ( 1 ) |:, and t r a c -|;eter ( 2 )

The investigations of Chang and others indicate t h a t the l4i,nning n f o r a movable bed can be expressed as a function of the mean grain-size diameter of the bed material. Straub's 19 expression f o r t h i s r e l a t i o n s h i p i s :

1/6 /

n = O.0I+32 d

g

The t h e o r e t i c a l c r i t i c a l mean v e l o c i t y a t which bed material w i l l begin t o move was obtained by Straub by s u b s t i t u t i n g equations 1, 2 , and k i n t o equation 3. The r e s u l t i n g equation i s :

1/6

8.1+5 ^s - ^

7

(4)

( 5 )

For specific weight of stone and water of 165 l b per f t ^ and 6 2 .l . lb per f t > respectively, equation 5 can be reduced t o

1/6 1/2 V = 1 0 . 8 d„ c g ( 6 ) . 1 / 6

The term (d^/d)"^''" appears t o be a v e l o c i t y d i s t r i b u t i o n f a c t o r which translates the meaji v e l o c i t y t o the shear v e l o c i t y acting on the p a r t i c l e s at the boxmdary.

S t a b i l i t y

6. Adequate design of r i p r a p , revetments, breakwaters, and r o c k - f i l l dams requires knowledge of the s t a b i l i t y of large

size material i n f l u i d s i n motion. Two of the better known investigators i n these f i e l d s are S. V. Isbash"'"^'•"''^ and R. I r i h a r r e n Cavanilles.''"'^

I n 1932 Isbash published the r e s u l t s of h i s ex- Fig. 2

tensive experiments on the construction of rock

dams i n flowing water. His basic equation f o r stone s t a b i l i t y i s ( f i g . 2 ) :

y¥ 2 g

V cos a - s i n a y d

3

( 7 ) s " I - 7

Equation 7 can be f u r t h e r s i m p l i f i e d f o r 165 l b per f t ^ stone and on a hor i z o n t a l surface i n fresh water t o :

(9)

•h

and ,

1/2

= 8.85 dg ' (nonbedded stone) ( 9 )

7. The I r i h a r r e n formula f o r the design of rubble-mound

hreak-vaters was published by Prof. Ramon I r i h a r r e n Cavanilles i n I938. The co-e f f i c i co-e n t i n thco-e I r l b a r r co-e n formula as dco-etco-erminco-ed from obsco-ervations on a c t u a l breakwaters was dimensional. I n I952, R. Y. Hudson"'--'- published a more general form of t h i s equation which i s dimensionally homogeneous. The I r i h a r r e n formula as modified by Hudson i s ( f i g . 3 ) :

K' y 7^ ^3 ^3

W= x - j-^ (10)

(7„ - 7) (n cos a - s i n ay

F i g . 3

8. Mr. P. T. Bennett of the Omaha D i s t r i c t , CE, demonstrated some years ago that the I r i h a r r e n formula could be transferred i n t o the Isbash type formula by making t'ne f o l l o w i n g s i m p l i f y i n g assvmptions:

Let: W = D^ 7^ = 2gH | i = 1 . 0 Then K'

H-(

73 - 7 D = (cos a - s i n a)3 ^ f K ^ H 7 (cos a - s i n cc) 7 - 7 s

(10)

eoid (9) 1'eak-The co-is on .ished a leous. The _ D (cos g - s i n a ) ~ ^ 2 g = 3 ^ 7 V = 1

Eq.uation 11 compares w i t h equation 7 when

y _ y - ~ , r ~ \ cos a - s i n a ^ D (11) (10) ( ied some le Isbash and d = 1.2lf D •

9. The modified I r i b a r r e n formula can also be w r i t t e n f o r a sphe-r o i d a l stone on zesphe-ro slope as:

or n 73 ^ K' 73 7^ (Vg^gg)^ ( 7 3 - 7 ) 3 1/2 (12) ir _ o O ^ — i .\

The average value o f K' f o r n a t u r a l and a r t i f i c i a l breakwater rock has been determined aa O.OI7. Equation 12 thus becomes

V = 18.2 d

s j

1/2 (13)

Resistance

10. The l o n g i t u d i n a l force-on an immersed body i s equal t o :

. . 2

F = A p —

The cross-sectional area of an embedded stone on which the force F acts can be expressed as ( f i g . 1+):

(11)

6

The moment a m o f the force F acting on the emhedded stone i s a function o f

the-stone diameter:

I.

2 ^g

F i g . k

Therefore, the f o r c i n g moment cam he -v/ritten as*:

^ 2 „ 2

2g ^ ^2^g (15)

The r e s i s t i n g moment of the stone t o overttirning depends upon the r e s i s t i n g moment arm {t ) which i s a function o f the stone diameter (C^ d^) and upon

the submerged weight of the stone. 3

d

M (73 - 7) C3 dg (16)

I n c i p i e n t overturning o f the stone r e s u l t s when the f o r c i n g moment equals the r e s i s t i n g moment: or. S ^ l - ^ ^ . ' ^ o ' ^^2 2g It d d = (17) V = 2g (7s - 7) C3

For a specific condition l e t :

2g C,

(12)

7 t i n g on ,f the be •written] (15) r e s i s t i n g and upon ( 1 6 ) i t eq.vial3

For 7 = 165 l b per f t ^ and 7 = 6^2 A l b per f t ^

1.28 (19)

D

11. I t has been shown t h a t y i n the Isbash equation i s the same as

. • i n the I r i b a r r e n equation when d = 1.2i*- D (paragraph 9 ) . This

relationship can be extended t o incl\ide the function of the drag c o e f f i c i e n t of equation I 8 . '4^ ' 4 ^ or D A JK ^ = y and (17) 0', = V ^ = ^

The r e l a t i o n s h i p between the Isbash, I r i b a r r e n , and drag c o e f f i c i e n t • formulas i s also shown by equations "J, 13, and 19. These equations can be related t o each other by proper manipulation of the c o e f f i c i e n t s .

(13)

XXX.. « - - ^ ^ ^ ' ^ ' ^ C l o s u r e s - v e l o c i t y ve 1 l i e D e e i s n C h a r t 7xa-l: ^ ^ « ^ ' ' ^ ^ ^ ^ . ^ a v a i l a b l e d a t . , " r t t e x T s - - - " ^ " " ^ ' ^ e . o « O. t . i e p e r t a i n x n g ^^^^ ^ost r e l x ^^r: tl p r e s e n t ti»e. t i o n s fron. 1786 independent i n v e a t i g a

Easic_tóta l^^te 1 al<i ^ . j t b o u l d e r s i n -" . d . o . Pe..xes i n _ used « o n s . M a t e r r a l s - ^^^^^ ^^^^^^ ,55 1. p ^^^^^ ^„ l^lSh r i v e r v e l o c r t r e s . A P ^^^^^^ ^be pXotted ^^^^^^^^ t o s i m p l i f y comparison, i'orty ^^^^^ ^ o r n t s ^^^^^^^ Tottom v e l o c i t y - - - ^ a a t a p l o t t e d on t . e c h a r t t e s t s hy s i x a-T4- -From tes-ot^ UJ

on i=°l=^*='l *°f===it,e v e l o c i t y " „eral agreement r n -e i g h t i h S t a n c -e = . J ^ ^ ^ . H o « « ^ ' ^ ^ c f m most c a s -e s , f o r t h e " - « " m " l i o c i t i e s were observe ^ , e n t y - s i x o h s e r v f - t s t o n e _ . a s ^

i a i H ^ ^ n

r

i ^ - o r - o i " : i;;se n ^ e ^ „ - X c l S e s

bfan^to^SS-nt^f

t S ^ - ^ ^ ^ ^ ^ ^ ^ ^ ^^^^ r e s u l t i n g xn dxspx ^^^^ measured. ^ T w e n t y - f o u r - i n c b q u a r r y ^ , H i l e C l q s } H £ ^ . H t H v e l o c x t x e s e^^^"^^ ^ ctiannel Bonrievxxi:e__^ii--T^^ w x t n n o r t h it^a^" + T T -• fe^^^^^^^^oï^A?e of a b r e a c h xn t h ^^^^^a t h a t 11 per Bec ^--iX^^^le Dam. f ^ ^ f / . e / d a m i n the back

c o f f e r d a m a t Bonnev ^^^a.ed. c o f t e ^ g ^ . i , . boulderB -n^^^^3,^extxeB estxmated a t 9 ^ ^ ^ ^ , , t o n e

. e r 9 A

-n^yXlf

v S e l u b o e ^ -d.

(14)

9

Movement of the ^l-OO-lb stone occurred w i t h average veloc-i t veloc-i e s of 16-18 f t per sec.

9

L' Zuider Zee.-^ Ihe data on the Zuider Zee closure indicate stones 1.77 f t i n diameter on fascine mattresses were stable i n currents of 9.85 f t per sec.

g- Passarnaquoddy.^ Tests were made on a l:50-scale model o f the Passarnaquoddy r o c k - f i l l dam at the Alden Hydraulic laboratory. Stone sizes varied from O.O62 t o O.I67 f t i n

diameter. , ,•

28

h. S t i l l i n g Basin. Tests were made on a 1:36-scale model a t the Waterways Experiment Station on 0.028- t o 0.083

-ft-diameter crushed rock i n a channel inmediately below a s t i l l i n g basin. V e l o c i t i e s were measured one prototype ' foot above the bottom when stone movement occixrred.

28

1 ' Channel. These data were obtained i n conjunction w i t h h above. Observations were made downstream from the area o f " s t i l l i n g basin turbulence.

2k

j . ' McHary Dam. This, observation i s based on a general com-ment on the action o f concrete tetrahedrons i n the model closure study.

Design curves

ik. Three design cvirves are shown i n p l a t e 1. The Isbash cvtrve i s considered applicable t o conditions where turbulence i s not excessive and the stones are embedded. I t was derived from equation 8 i n the f o l l o w i n g manner:

« d 3

then

Let stone weight (w) = ^ ^ 7^

165 rt d 3 W = ^ = 86.5 d ^ 6 ^ g and / *g - WJ^ Equation 8 V = 12.35 d g

(15)

10 o r ,. V 12.35 and W = 2.kh X 10"^ (20) 29

15. The USER curve ^ i s the t e n t a t i v e design curve recommended hy the Bureau of Reclamation f o r r i p r a p design helow s t i l l i n g hasins. I t i s considered applicable \mder conditions of excessive turbulence. The Isbash formula (equation 9) f o r minimum stone s t a b i l i t y approximates the Bureau's t e n t a t i v e design curve.

16. The t h i r d curve on the graph shows the v e l o c i t y required to overturn an i s o l a t e d cube. This curve was developed from data presented " i n Wind Tunnel Studies of Pressure D i s t r i b u t i o n on Elementary Building Forms- The pressure d i s t r i b u t i o n and the pressure resultants obtained on the f i v e exposed surfaces o f the cube used i n t h i s i n v e s t i g a t i o n are shorn i n plate 2. The i n c i p i e n t overturning moment i s the summation o f the moments on the upstream, top, and downstream faces of the cube. The r e s i s t i n g moment i s the submerged weight o f the cube times one-half the cube height. For 165 l b per f t ^ rock, the equation of i n c i p i e n t over-t u r n i n g on a l e v e l bed i s :

W = 1.2 X 10"3 (21)

Slope E f f e c t

17. The data sho™ i n plate 1 apply t o h o r i z o n t a l or gently sloping surfaces. V/here steep slopes w i t h uniform flow are encountered, the e f f e c t of slope on the s t a b i l i t y of the structure should be considered. The curves i n plate 3 i l l u s t r a t e t h i s e f f e c t . A constant depth and an Isbash c o e f f i c i e n t of 1.20 was assmed i n the development o f these curves.

(16)

11 \

PART IV:\ CONCLUSIONS

18. Considerable data are available t o a s s i s t i n the design of r i v e r clostires, breakwaters, and bank and channel protection. However,

f i n a l design, t o a large extent, depends upon p r a c t i c a l experience and ex-perimental studies. Local conditions and a v a i l a b i l i t y of material may

c o n t r o l the type of structure t o be b u i l t . ,

River Closures ƒ

19. Model studies of planned r i v e r closures are often desirable t o determine v e l o c i t i e s t h a t w i l l be encountered during d i f f e r e n t stages o f closure. They can be used f o r planning closure construction methods and

schedules. •

Bank and Channel Protection

20. The degree of tvirbulence expected i n an open channel i s an im-portant factor i n selection o f the size of r i p r a p f o r bottom and side pro-t e c pro-t i o n . The selecpro-tion of pro-the proper blankepro-t pro-thickness and gradapro-tion pro-t o protect the underlying m.aterial i s important i n designing r i p r a p .

Breakwaters

21. Present-day knowledge i s adequate f o r the design of conventional breakvfaters where stone size, shape, specific weight, and method o f

place-12

ment can be r i g i d l y c o n t r o l l e d . However, extensive research i s now m progress t o provide data t o meet the need f o r more economical designs.

(17)
(18)

D O W N S T R E A M F A C E B A S I C E Q U A T I O N S U P S T R E A M F A C E PRESSURE P A T T E R N (cp C O N T O U R S ) 2 W H E R E : Cp= P R E S S U R E C O E F F I C I E N T 6p= D I F F E R E N C E I N P R E S S U R E B E T W E E N A N Y P O I N T O N C U B E A N D T H A T IN T H E U N D I S -T U R B E D F L O W I N L B P E R S Q I N . V = V E L O C I T Y U P S T R E A M F R O M C U B E , F P S e= D E N S I T Y O F F L U I D I N S L U G S P E R C U F T F = F O R C E O N F A C E I N L B R = R E S U L T A N T O F A V E R A G E Cp F O R F A C E A •= D I M E N S I O N O F C U B E I N F T N O T E ' . D A T A F R O M " W I N D T U N N E L S T U D I E S O F P R E S S U R E D I S T R I B U T I O N O N E L E M E N T A R Y B U I L D I N G F O R M S " . N . C H I E N , Y. F E N G , H . J . W A N G , A N D T . T . S I A O , I O W A I N S T I T U T E O F H Y D R A U L I C R E S E A R C H . , R E Y N O L D S N U M B E R O F T E S T F L O W • A P P R O X 4 X 1 0 " ' PRESSURE R E S U L T A N T S ( A V E R A G E Cp V A L U E S )

FORM RESISTANCE OF SINGLE CUBE FLOW N O R M A L TO FACE

(19)
(20)

A l

APPENDIX A: ANNOTATED LIST OF REFERENCES,

American Society of C i v i l Engineers, Review of Slope Protection Methods, Report of the Subcommittee on Slope Protection of the • Conmittee on Earth Dams of the Soils Mechanics and Foundation

D i v i s i o n . Vol 74, No. 6, June 19^+0. ' "A summary of available information on p r o t e c t i o n of slopes of

dams against the d i s r u p t i n g e f f e c t s of waves and the erosive e f f e c t of r a i n , wind and f r o s t . " A r t i c l e evaluates various wave height formulas i n terms of current v e l o c i t y . No experimental data tabulated.

Blanchet, Ch., "Formation and. destruction of stone masses by a water current" ("Formation e t destruction par un courant d'eau de massif, en p i e r r e s " ) . La Houille Blanche, New Series No. 2 (March 19^6), p i t l . U. S. Army Engineer Waterways Experiment Station Translation No. 50-5, 1950, t r a n s l a t e d by W. W. Geddings.

Part I of three p a r t s . Discusses e q u i l i b r i u m of stones i n • flowing water. Equates forces acting on stones f o r various' condi-t i o n s of flow and scondi-tone posicondi-tions.

, "Technique f o r the construction of r o c k - f i l l dams i n flowing water" ("Technique de l a construction des barrages en pierres lancees dans 1'eau courante"). La Houille Blanche, v o l 1

(November-December 19^-6), pp 393-l|-05. U. S. Army Engineer Waterways Experiment Station Translation No. 52-1, 1952, translated by Jan C. Van Tienhoven.

J _ J L C t O U X C i - O O V X \JLJL.^^K^^i-t.l.^i.X V J . l ^ i i . . - j VJ. w...v j . w w — — —

dams. Chapter 1 gives equations for'computing the configuration o f , a dam under construction. Phenomena observed i n the construction of dams. Chapter I I discusses flow conditions, seepage, etc., during construction. This i s apparently Part I I of item 2.

, "Technique f o r the construction of r o c k - f i l l dams i n flowing water" ("Technique de l a construction des barrages en pierres lancees dans 1'eau cotirante"). La Houille Blanche, v o l 2

( January-February 19hj), pp hl-kj. U. S. Army Engineer V/aterways Experiment Station Translation No. 52-1,' 1952, translated by Jan C.

Van Tienhoven. • Chapter I I I and Part I I I of items 2 and 3. I l l u s t r a t i v e

ap-p l i c a t i o n of theory and design t o a ap-prototyap-pe ap-problem.

Chang, Y. L., "Laboratory i n v e s t i g a t i o n of flume t r a c t i o n and trans-p o r t a t i o n . " Transactions, American Society of C i v i l Engineers, v o l

loi. (1939). • ,

Paper presents r e s u l t s of a laboratory i n v e s t i g a t i o n of t r a c t i v e and transportation f a c t o r s determined f o r numerous sizes of bed

(21)

6. Chien, Ning, Feng, Yin, Wang, Huang-Ju, and Siao, Tien-To, Wind Tunnel Studies of Pressure D i s t r i b u t i o n on Elementary Building Forms. Iowa I n s t i t u t e of Hydraulic Research f o r the Office of Naval Research, ^

1951.

Experimental i n v e s t i g a t i o n of wind forces on various simply . shaped objects simulating b u i l d i n g s . Piezometric pressures measured on.surfaces of buildings and pressure contours developed. For use on Chart 712-I, the pressure data on a cube were evaluated i n terms of the overturning force. The required size of a stable cube having a s p e c i f i c weight of I65 l b per cu f t was computed f o r various v e l o c i -t i e s . The r e s u l -t i n g curve i s shown on Char-t 712-1 as the i s o l a t e d cube curve.

7. G i l b e r t , G. K., The Transportation of Debris by Running Water. United States Geodetic Survey Professional Paper Ö6, 1914.

P r i n c i p a l i n t e r e s t i s discussion of bed load and suspended load

e. motion. No basic data tabulated.

8. Gontcharov, V. N., "Flow arovind a cube f i x e d t o bottom o f f l m e . " Transactions, S c i e n t i f i c Research I n s t i t u t e o f Hydrotechnics, v o l 17

(1935)J PP 77-112. Translated from Russian by Dr. A. Lukseh, Associate Research Engineer, Iowa I n s t i t u t e o f Hydraulic Research, University of Iowa.

Paper presents r e s u l t s of extensive studies of pressures on cubes f i x e d t o the bottom of a flume. Various patterns of cube ar-rangements vrere investigated from the i s o l a t e d cube to completely f l o o r i n g the flume bottom w i t h cubes. The e f f e c t s of various cube spacing were studied. The r e s u l t s are presented i n terms of average pressures on the faces of the t e s t cubes.

9. Grimm, C. I . , and leupold, Norbert, Hydraulic Data Pertaining t o the Design of Rock Revetment. U. S. Army Engineer D i v i s i o n , North

P a c i f i c , CE, 1939.

r\.; c ^ n o c j Q Q (-vn-^von-t- -rA-irp^+.7npn+. T i T - a p t i ceR. Tabulates and n l o t s available laboratory data of movement of solids by flowing water. Evaluates Bonneville, Passamaquoddy, Isbash, WES, Groat, and Hooker

data. Includes observed prototype data on Columbia River, Zuider Zee, and i n the Los Angeles D i s t r i c t .

10. Hooker, E. H., "The suspension of solids i n flowing water." Trans-actions, American Society of C i v i l Engineers, v o l XXXVI (1896)^ "

H i s t o r i c a l review of knowledge on movements of solids i n f l u i d s . Describes types of movement. Discusses experiments and r e s u l t s of numerous investigations. Major p o r t i o n l i m i t e d t o sand -'studies. Page 3O8 tabulates r e s u l t s of e a r l y Investigators f o r

observed bottom v e l o c i t i e s i n which various materials including ; boulders 2.7 f t i n diameter were moved.

1

(22)

A3

11. Hudson, R.Y., "Wave forces on breakwaters." Transactions, American Society of C i v i l Engineers, v o l l l 8 ( 1 9 5 3 ) , P 6 5 3 .

Reviews common theories f o r computing wave forces on v e r t i c a l , walls and sloping rubble-mound breakwaters. Compares and evaluates various formulas. Gives a dimensionless form of the Irxbarren formula and c o e f f i c i e n t values which vary w i t h slope f o r n a t u r a l rock. The

Isbash curve-shown on Chart 7 1 2 - 1 i s s i m i l a r t o Iribarren's equatxon w i t h K' = 0 . 0 1 7 . : - - - . ,

12 , Laboratory Investigations of Rubble-mound Breakwaters.. , p i i i F ^ ; n t i d ^ > r J^ ^ 5 R I 9 5 7 American Society of C i v i l E n g x ^ r s Meeting, B u f f a l o , New York. WES MP 2 - 2 2 4 , June 1957..

Paper describes laboratory i n v e s t i g a t i o n at the Waterways"Ex-periment Station, Vicksburg, M i s s i s s i p p i , t o < i f f^^^^J^^^^^^f f o r the design and construction of rubble-mound breato^aters'. A new formula i s derived which i t i s believed w i t h new ^ ^ P f i f „ • e f f i c i e n t s w i l l increase considerably the accuracy of the design of rubble-mound breafa/aters.

13. Isbash,-S. v . . Construction of Dams by Dumping Stones i n t o Flowing Water,

translated

by A. Doujikov. Corps of Engxneers, U. S. Army, Eastport D i s t r i c t , Eastport, Maine, 1935 "

-• - Complete design i n v e s t i g a t i o n of rock dams b u i l t i n flowing _

water including study of forces acting on i n d i v i d u a l f , t y of percolation, overflow discharge, requxred cross sectxons.

De-sign c r i t e r i a developed mathematically and v e r i f x e d experxmentally i n laboratory w i t h models of d i f f e r e n t scales. Numerous charts and graphs

L r dLign

of rock dams. No basic laboratory data tabulated. \k , "Construction of dams by depositing rock i n runnxng

* ^:?^r." Transactions, Second Congress on Large Dams ( 1 9 3 0 ) .

summarizes experiments f o r construction of dams by «^^P^^iti^S rock i n running water. Author b r i e f l y reviews f ^ ^ ^ - y / ^ ^ J ^ ^ ^ ^ ^ f

small-scale experiments^ and gives equatxons applicable t o varxous. stages of construction. Riprap composed of 1 5 - t o f ^ - f

Larle rock not moved. No basic data given i n report. A tentatxve-l y Recommended curve f o r r i p r a p design appears to ctentatxve-losetentatxve-ly f o tentatxve-l tentatxve-l o w data discussed i n item 10. ' • Mo^Ha T? T Tiu T. Y., and Soucek, E., The Transportation of

u n i v e r s i t y of Ï S r a i ^ t S m T s i i t e m b e r continuation of work discussed i n item 16. Studies extended sizes of solids but sizes and v e l o c i t i e s r e l a t x v e l y small.

16. MavisTF.- T., and Tu, Y. C, T t e T r a n s ^ o r t ^ ^

(23)

1935-Reviews and e v a l u a t e s p r e v i o u s work on bed l o a d t r a n s p o r t a t i o n . D i s c u s s i o n i s r e s t r i c t e d t o some of the problems of t r a n s p o r t a t i o n o f s o l i d p a r t i c l e s w h i c h a r e r o l l e d or dragged a l o n g the hed of a c h a n n e l i n t r a c t i o n . I n c l u d e s i n v e s t i g a t i o n of Ho and Tu a t U n i v e r s i t y o f Iowa. Data l i m i t e d t o s m a l l g r a i n s i z e s and v e l o c i t i e s .

1 7 . O f f i c e o f the C h i e f of E n g i n e e r s , Slope P r o t e c t i o n . C i v i l Works E n g i n e e r B u l l e t i n 5 2 - 1 5 , 2 June 1952.

B u l l e t i n g i v e s d a t a f o r d e s i g n o f s l o p e p r o t e c t i o n f o r dams, r a i l r o a d and highway embankments, and c h a n n e l s .

18. P e i x o t t o , E . D., and Roherge, R. A., S i m i l i t u d e of I n c i p i e n t Motion. Master o f S c i e n c e T h e s i s , M a s s a c h u s e t t s I n s t i t u t e of Technology,

1956.

T h e s i s i s a l a b o r a t o r y i n v e s t i g a t i o n o f c o n d i t i o n s c o n t r o l l i n g i n c i p i e n t motion o f graded r o c k p a r t i c l e s composing the bed of a t u r b u l e n t stream. A r e s i s t a n c e c o e f f i c i e n t was o b t a i n e d f o r v a r i o u s s i z e d m a t e r i a l and p l o t t e d a g a i n s t R e y n o l d s nimiber. 1 9 . Straub, L. G., "Dredge f i l l c l o s u r e o f M i s s o u r i R i v e r a t F o r t R a n d a l l . " P r o c e e d i n g s , Minnesota I n t e r n a t i o n a l H y d r a u l i c Conference, lAHR (September 1 9 5 3 ) . D e s c r i b e s a c t u a l p r o t o t y p e c l o s u r e vrith i l l u s t r a t i o n s . D i s -c u s s e s b a s i -c p r i n -c i p l e s of d e s i g n of -c l o s u r e i n v o l v i n g -c r i t i -c a l t r a c t i v e f o r c e , c r i t i c a l v e l o c i t y , and s u r f a c e roughness of f i l l m a t e r i a l . C l o s u r e made by h y d r a u l i c f i l l . • Maximum s i z e b o u l d e r c a p a c i t y of dredge was ik i n .

20. Torpen, B. E . , "Large r o c k s i n r i v e r c o n t r o l works." C i v i l E n g i -n e e r i -n g , v o l 26, No. 9 ( S e p t 1 9 5 6 ) , pp 5 7 - 6 1 . (Mr. Torpen was f o r m e r l y w i t h North P a c i f i c D i v i s i o n , CE.)

A r t i c l e d e s c r i b e s c l o s u r e o p e r a t i o n s a t McNary, C h i e f Joseph, and A l b e n i F a l l s Dams and B o n n e v i l l e • c o f f e r d a m r e p a i r s . D u r i n g C h i e f •Joseph Dam c l o s u r e v e l o c i t i e s a p p r o a c h i n g 20 f t per s e c occurred-,and_ o n l y s e l e c t e d r o c k s o f 15 t o 20 t o n s vrould r e m a i n i n c l o s u r e gap. C a b l e s were f a s t e n e d to l a r g e r o c k s t o a s s i s t i n s t a b i l i z i n g s m a l l e r r o c k s . I t i s t o be noted the e q u i v a l e n t d i a m e t e r s o f 15- and 20-ton r o c k a r e 7 and 7 . 7 f t . These v a l u e s e x c e e d the l i m i t s o f C h a r t 712-1

b u t would p l o t c l o s e t o the i s o l a t e d cube c u r v e extended.

2 1 . U. S. Army E n g i n e e r D i s t r i c t , P o r t l a n d , CE, Report on Channel P r o t e c -t i o n a g a i n s -t High V e l o c i -t y Flow ( C i v i l W o r k s ~ P r o j e c -t ) . 1 J u l y 1951.

S t u d i e s of v e l o c i t i e s a l o n g t e n major revetments on r i v e r s i n Idaho and Oregon. F i e l d o b s e r v a t i o n s showed t h a t an l 8 - i n . l a y e r o f dvunped stone graded from 50 t o 3OO l b was g e n e r a l l y adequate w i t h maximum o b s e r v e d v e l o c i t i e s o f 10 f t p e r s e c p r o v i d e d no undermining o c c u r r e d or u n d e r l y i n g m a t e r i a l washed out through the v o i d s of the r i p r a p .

(24)

22. ' , Report on High V e l o c i t y Revetment T e s t s . CWI kd^, • ;

1 January 1952. ; ,

Prototype t e s t s on dumped graded r i p r a p i n a s p e c i a l l y h u i l t c h a n n e l below Dorena Dam. F o u r c l a s s e s o f graded rock, 20 t o kOO l b , were p l a c e d i n b l a n k e t s 12-21+ i n . t h i c k and t e s t e d under v e l o c i t i e s o f 7 t o 20 f t p e r s e c . Study p l a n n e d f o r revetment f a i l u r e r a t h e r t h a n movement of i n d i v i d u a l r o c k s . No s p e c i f i c d a t a r e c o r d e d f o r . r o c k movement. E x p e r i e n c e d f a i l u r e s r e s u l t e d from removal o f f i n e s a c t u a t i n g f a i l u r e r a t h e r t h a n d i s p l a c e m e n t o f l a r g e s i z e r o c k b y v e l o c i t y f o r c e s ,

23. U. S. Army E n g i n e e r D i s t r i c t , P o r t l a n d , CE, B o n n e v i l l e H y d r a u l i c L a b o r a t o r y , The D a l l e s Rock F i l l Model, Memorandum r e p o r t 2-2, 27 October 1954, ~ "

D e s c r i b e s r e s u l t s on model c l o s u r e u s i n g q u a r r y r u n r o c k ( l/ 2

t o n and s m a l l e r p r o t o t y p e ) and 3-ton r o c k on h i g h e r l i f t s . No s t u d y made o f independent stone a c t i o n . G e n e r a l procedure s a t i s f a c t o r y .

.2k. , McNary Dam--Second-step Cofferdam C l o s u r e , May 1956.

D e s c r i b e s model t e s t s made i n c o n j u n c t i o n w i t h a c t u a l r i v e r c l o s u r e b y u s e o f 12-ton t e t r a h e d r a l s , Most o f r e p o r t concerned v,rith methods o f making c l o s u r e . L a b o r a t o r y t e s t s i n d i c a t e d t e t r a h e d r a l s

s t a b l e f o r v e l o c i t y o f 20 f t p e r s e c b u t moved from c r e s t o f f i l l w i t h v e l o c i t y o f 29 f t p e r s e c . P r o t o t y p e c o n f i r m a t i o n o f model

c l o s u r e p r o c e d u r e . ;.

25. U. S. Army E n g i n e e r D i s t r i c t , V/alla W a l l a , CE, R e p o r t on C l o s u r e o f the Second-step Cofferdam--McNary Lock and Dam, J u l y 1951'

Report on a c t u a l c l o s u r e procedure and r e s u l t s . No d a t a on i n d i v i d u a l t e t r a h e d r a l s .

26. U. S. Army E n g i n e e r V/ater^rays E x p e r i m e n t S t a t i o n , CE, E x p e r i m e n t s t o Determine t h e E f f e c t i v e n e s s o f T e t r a h e d r a l B l o c k s a s Revetment. T e c h n i c a l Memorandum No. 26-2, J a n u a r y 1933.

I n v e s t i g a t i o n o f s i n g l e course o f t e t r a h e d r a l s f o r revetment use. I n v e s t i g a t i o n c e n t e r e d on removal o f f i l l e r m a t e r i a l from be-tween and under b l o c k s . No s t u d y made o f bottom v e l o c i t i e s r e q u i r e d t o move t e t r a h e d r a l s . T r a c t i v e f o r c e measured on i n d i v i d u a l t e t r a -h e d r a l s .

27. ^ C r i t i c a l T r a c t i v e F o r c e T e s t s o f Coarse M a t e r i a l . . . T e c h n i c a l Memorandum No. 59-1, J a n u a r y 1935*

Measurement o f t r a c t i v e f o r c e s on s o l i d s from sand g r a i n s up to 2 . 3- i n . s t o n e . No bottom v e l o c i t i e s measured. D r i f t o f m a t e r i a l meas\ired.

(25)

A6

29.

Model t e s t s \rere made on graded dvmiped r i p r a p below a s t i l l i n g b a s i n and i n t h e c h a n n e l downstream. B l a n k e t t h i c k n e s s v a r i e d from

1 t o 2 f t ( p r o t o t y p e ) . Bottom v e l o c i t y measurements observed a s m a t e r i a l moved.

U. S. Bureau o f R e c l a m a t i o n , S t i l l i n g B a s i n Performance--An A i d i n

D e t e r m i n i n g R i p r a p S i z e s . H y d r a u l i c L a b o r a t o r y Report No. HYD-409

23 F e b r u a r y I 9 5 6 . ' '

D i s c u s s e s and compares model and p r o t o t y p e r e s u l t s o f impact-type s t i l l i n g b a s i n s on r e l a t i v e l y s m a l l c a n a l - t y p e s t r u c t u r e s . Com-p a r a t i v e Com-photograCom-phs o f f l o w and s c o u r c o n d i t i o n s below P i c a c h o Arroyo C o n t r o l , North Branch Dam. P r o t o t y p e r i p r a p d e s i g n e d f o r v e l o c i t y o f

30 f t p e r s e c . Prototype v e l o c i t i e s computed t o be 37 f t p e r s e c .

30. , H y d r a u l i c Model S t u d i e s o f R o b l e s D i v e r s i o n Dam S p i l l w a y . H y d r a u l i c L a b o r a t o r y Report No. HYD-427, Ö November I 9 5 6 .

A l : 1 2 - s c a l e s e c t i o n model o f R o b l e s D i v e r s i o n Dam S p i l l w a y was - t e s t e d t o determine d i s c h a r g e c o e f f i c i e n t s o f r o c k b l a n k e t s p i l l w a y s

of v a r i o u s s i z e d r o c k . F l o w c o n d i t i o n s and r o c k s t a b i l i t y were checked.

3 1 . Webster, M. J . , "The D a l l e s d i v e r s i o n made w i t h r o c k - f i l l dam." C i v i l E n g i n e e r i n g , v o l 99 ( F e b 1 9 5 7 ) . '

A r t i c l e d i s c u s s e s c l o s u r e u s i n g end-dump method. E x t e n s i v e use was made o f a l : l| 0- s c a l e model t o determine the b e s t c l o s u r e procedure. The c o n d i t i o n s t e s t e d i n t h e model showed a v e r y c l o s e c o r r e l a t i o n w i t h t h e p r o t o t y p e .

Cytaty

Powiązane dokumenty

Formuła zdaniowa jest wymuszana we wszystkich liniowo uporządkowanych modelach Kripkego wtedy i tylko wtedy, gdy jest prawdziwa we wszystkich liniowo uporządkowanych

The question of foreign infl uences on the formulas is certainly not easy to answer. Let us just take the example of the document Torgovyj dogovor Smo- lenska s Rigoju i Gotskim

Ook het gedrag in van achter inkomende golven bleek problematisch door het optreden van bow-diving, waarbij surfen van een schip op de voorkant van een golf leidt tot het ploegen

The relatively large influence of the turbulence (high value of α) in the stability parameter – which is based on the quasi-steady force mechanism – indicates that a different

ι t Έ ν ονόματι του κυρίου κ[αί δεσπότου Ίησοΰ Χρίστου] 2 του θεοϋ και σωτηρος ημ[ών, βασιλείας των] 3 θειοτάτων και ευσεβεσ[τάτων ημών δεσποτών Φλ.]

The interconnections between different parameters of the three stages of technological system design The above-described principle of building a decision-making and data

Таким чином, задля удосконалення та розвитку регулювання діяльності адвокатів як учасни- ків адміністративного процесу в Україні

Mean and variance of the power sum of up to twelve-log-normal cor- related components, each having 0-dB mean and a 12-dB component variance, for various values of the correlation