• Nie Znaleziono Wyników

Flow in porous media with low dimensional fractures by employing enriched Galerkin method

N/A
N/A
Protected

Academic year: 2021

Share "Flow in porous media with low dimensional fractures by employing enriched Galerkin method"

Copied!
24
0
0

Pełen tekst

(1)

Delft University of Technology

Flow in porous media with low dimensional fractures by employing enriched Galerkin

method

Kadeethum, T.; Nick, H. M.; Lee, S.; Ballarin, F.

DOI

10.1016/j.advwatres.2020.103620

Publication date

2020

Document Version

Final published version

Published in

Advances in Water Resources

Citation (APA)

Kadeethum, T., Nick, H. M., Lee, S., & Ballarin, F. (2020). Flow in porous media with low dimensional

fractures by employing enriched Galerkin method. Advances in Water Resources, 142, [103620].

https://doi.org/10.1016/j.advwatres.2020.103620

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Advances

in

Water

Resources

journalhomepage:www.elsevier.com/locate/advwatres

Flow

in

porous

media

with

low

dimensional

fractures

by

employing

enriched

Galerkin

method

T.

Kadeethum

a

,

H.M.

Nick

a,b,∗

,

S.

Lee

c

,

F.

Ballarin

d a Technical University of Denmark, Denmark

b Delft University of Technology, the Netherlands c Florida State University, Florida, USA d mathLab, Mathematics Area, SISSA, Italy

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Fractured porous media Mixed-dimensional Enriched Galerkin Finite element method Heterogeneity Local mass conservative

a

b

s

t

r

a

c

t

ThispaperpresentstheenrichedGalerkindiscretizationformodelingfluidflowinfracturedporousmediausing themixed-dimensionalapproach.Theproposedmethodhasbeentestedagainstpublishedbenchmarks.Since fractureandporousmediadiscontinuitiescansignificantlyinfluencesingle-andmulti-phasefluidflow,the het-erogeneousandanisotropicmatrixpermeabilitysettingisutilizedtoassesstheenrichedGalerkinperformancein handlingthediscontinuitywithinthematrixdomainandbetweenthematrixandfracturedomains.Ourresults illustratethattheenrichedGalerkinmethodhasthesameadvantagesasthediscontinuousGalerkinmethod;for example,itconserveslocalandglobalfluidmass,capturesthepressurediscontinuity,andprovidestheoptimal errorconvergencerate.However,theenrichedGalerkinmethodrequiresmuchfewerdegreesoffreedomthan thediscontinuousGalerkinmethodinitsclassicalform.Thepressuresolutionsproducedbybothmethodsare similarregardlessoftheconductiveornon-conductivefracturesorheterogeneityinmatrixpermeability.This analysisshowsthattheenrichedGalerkinschemereducesthecomputationalcostswhileofferingthesame ac-curacyasthediscontinuousGalerkinsothatitcanbeappliedforlarge-scaleflowproblems.Furthermore,the resultsofatime-dependentproblemforathree-dimensionalgeometryrevealthevalueofcorrectlycapturingthe discontinuitiesasbarriersorhighly-conductivefractures.

1. Introduction

Modelingof fluidflow in fractured porousmedia is essential for awidevarietyof applicationsincludingwaterresourcemanagement (Glaser etal., 2017;Penget al.,2017),geothermal energy(Willems andNick,2019;Salimzadehetal.,2019a;SalimzadehandNick,2019), oil andgas (Wheeler etal., 2019; Kadeethum et al., 2019c; Andri-anovand Nick,2019; Kadeethum et al., 2020c),induced seismicity (Rinaldi andRutqvist, 2019), CO2 sequestration (Salimzadeh et al., 2018),andbiomedicalengineering(Vinjeetal.,2018;RuizBaieretal., 2019;Kadeethum etal., 2020a).Afractured porousmedium canbe decomposedintothebulkmatrixandfracturedomains,whichare gen-erallyanisotropic,heterogeneous,andhavesubstantiallydiscontinuous materialpropertiesthatcanspanseveralordersofmagnitude(Matthai andNick,2009;Flemischetal.,2018;Jiaetal.,2017;Bisdometal., 2016).These discontinuitiescancriticallyenhanceorhindertheflux withinandbetweenthebulkmatrixandfracturedomains.Accurately

correspondingauthorat:TechnicalUniversityofDenmark,Lyngby,Denmark,DelftUniversityofTechnology,TheNetherlands.

E-mailaddresses:teekad@dtu.dk(T.Kadeethum),h.m.nick@tudelft.nl(H.M.Nick),lee@math.fsu.edu(S.Lee),francesco.ballarin@sissa.it(F.Ballarin).

capturingtheflowbehaviorcontrolledbythesediscontinuitiesin com-plex mediais stillchallenging(NickandMatthai,2011a;De Dreuzy etal.,2013;Flemischetal.,2016;HoteitandFiroozabadi,2008;Zhang etal.,2016).

Therearetwomainapproachestorepresentthefluidflowbetween thematrixandfracturedomain(NickandMatthai,2011b;Flemisch etal.,2018;Juanesetal.,2002).Thefirstmodel,anequi-dimensional model,discretizesthematrixandfracturedomainwithsame dimension-ality(Salinasetal.,2018).Thisapproachisstraightforwardto imple-ment,andnocouplingconditionisrequired.Thisapproachisutilized tomodel,forexample,coupledhydromechanicaloffracturedrocks us-ingthefinite-discreteelementmethod(Lathametal.,2013;2018),and canalsocapturefracturepropagationusinganimmersed-bodymethod (Obeysekaraetal.,2018)orphase-fieldapproach(Santillanetal.,2018; Leeetal., 2016b;2018).Thesecond model,whichwecalla mixed-dimensional modelhereafter,reducesthefracturedomaintoalower dimensionalitybyassumingthefracturethicknessismuchsmaller

com-https://doi.org/10.1016/j.advwatres.2020.103620

Received21December2019;Receivedinrevisedform6May2020;Accepted10May2020 Availableonline31May2020

(3)

Fig. 1. Comparisonofdegreesoffreedomforlinearpolynomialcaseamong(a ) continuousGalerkin(CG),(b )discontinuousGalerkin(DG),and(c )enriched Galerkin(EG)functionspaces.

paredtothesizeofmatrixdomain(Boonetal.,2018;Martinetal., 2005; Berroneetal., 2018).The secondapproach hasseveral bene-fits;forexample,itreducesthedegreesoffreedom(DOF)(Nickand Matthai,2011a)asthefracturedomainisrepresentedastheinterface, whichispartofthematrixdomain,andsubsequently,thisapproachcan improvemeshquality(reducethemeshskewness)(Matthaietal.,2010). Sincethefracturesareinterfaces,onecanusealargermeshsize,which satisfiesCourant-Friedrichs-Lewy(CFL)conditionmoreeasily(Juanes etal.,2002;NickandMatthai,2011b).

Inthepastdecades,manyapproacheshavebeenproposedtomodel thefracturedporousmediausingthemixed-dimensionalapproach;(1) two-point flux approximationin unstructuredcontrol volume finite-differencetechnique(Karimi-Fardetal.,2004),(2)multi-pointflux ap-proximationusingmixedfiniteelementmethodongeneralquadrilateral andhexahedralgrids(Wheeleretal.,2012),(3)eXtendedfiniteelement combinedwithmixedfiniteelementformulation(D’AngeloandScotti, 2012;PrevostandSukumar,2016;SanbornandPrevost,2011),(4) em-beddeddiscretefracture-matrix(DFM)modelingwithnon-conforming mesh(Hajibeygietal.,2011;Odsaeteretal.,2019),(5)mixed approx-imationsuchasmimeticfinitedifference(FlemischandHelmig,2008; Formaggia etal.,2018),(6)two-fieldformulationusingmixed finite element(MFE)(Martinetal.,2005;Fumagallietal.,2019),and(7) dis-coninuousGalerkin(DG)method(Rivieetal.,2000;Hoteitand Firooz-abadi,2008;Antoniettietal.,2019;Arnoldetal.,2002).

WefocusonthefiniteelementbaseddiscretizationsuchastheDG and MFEmethodsthat ensurethe localmass conservative property. Moreover, they areflexibleenough todiscretize complexsubsurface geometriessuch asintersectionsof fracturesor irregular-shaped ma-trix blocks.Additionally,theaforementioned methodsarecapable of mimickingthefracturepropagationinporoelasticmediausingeither cohesivezonemethodorlinearelasticfracturemechanicsframework (SalimzadehandKhalili,2015;Salimzadehetal., 2019b;Secchiand Schrefler, 2012;SeguraandCarol,2008).However,theMFEmethod requiresanadditionalprimaryvariable(fluidvelocity)whichmay re-quiremorecomputationalresources,especiallyinathree-dimensional

Fig. 2. Comparisonofratio ofdegreesof freedomfor1st,2nd,3rd,4th,and5th poly-nomialdegreecasesontriangularelement amongCG,EG,andDGdiscretizations:(a ) ratioofEGoverCGDOF,(b )ratioofDG overCGDOF,and(c )ratioofDGoverEG DOF.

(4)

Fig. 3. Illustrationof (a ) equi-dimensional and(b ) mixed-dimensionalsettings.Notethat these illustra-tionsarethegraphicalrepresentations;inthe numeri-calmodel𝜕Ωp,𝜕Ωq,𝜕Γp,or𝜕Γqhavetobeimposedon allboundaryfacesofeachdomain.

Fig. 4. IllustrationofEGelements(a )withoutfracture interfaceand(b )withfractureinterface.

domainKadeethumetal.(2019a).Meshadaptivityisalsonot straight-forwardtoimplementLeeandWheeler(2017),anditrequiresthe inver-sionofthepermeabilitytensor,whichmayleadtoanill-posedproblem (ChooandLee,2018).TheDGmethodalsocanbeconsideredasa com-putationallyexpensivemethodasitrequiresalargenumberofDOF(Sun andLiu,2009;Leeetal.,2016a).

Toresolvesomeoftheshortcomingsmentionedabove,wepropose anenrichedGalerkin(EG)discretization(Leeetal., 2016a;Zi etal., 2004;Khoeietal.,2018)tomodelfluidflowinfracturedporousmedia usingthemixed-dimensionalapproach.TheEGmethod,utilizedinthis study,composesoftheCGfunctionspaceaugmentedbya piecewise-constantfunctionatthecenterofeachelement.Thismethodhasthe sameinteriorpenaltytypebilinearformastheDGmethod(SunandLiu, 2009;Leeetal.,2016a).TheEGmethod,however,onlyrequirestohave discontinuousconstantsasillustratedinFig.1,soithasfewerDOFthan theDGmethod.Fig.2presentsthecomparisonoftheDOFratioamong CG,EG,andDGmethods,anditshowsthattheEGmethodrequires halfoftheDOFneededbytheDGmethod(triangularelementswiththe firstpolynomialdegreeapproximation).Notethatthisratiodecreases asthepolynomialdegreeapproximationincrease.TheEGmethodhas beendevelopedtosolvegeneralellipticandparabolicproblemswith dy-namicmeshadaptivity(LeeandWheeler,2017;2018;Leeetal.,2018) andextendedtoaddressthemultiphasefluidflowproblems(Leeand Wheeler,2018).Recently,theEGmethodhasbeenalsoappliedtosolve thenon-linearporoelasticproblem(ChooandLee,2018; Kadeethum etal.,2019b;2020b),andcompareditsperformancewithother two-andthree-fieldformulationmethods(Kadeethumetal.,2019a).Tothe bestofourknowledge,thisisthefirstattempttoapplytheEG discretiza-tioninthemixed-dimensionalsetting.

Therestofthepaperisorganizedasfollows.Themethodology sec-tionincludesmodeldescription,mathematicalequations,andtheir dis-cretizationsfortheEGandDGmethods.Subsequently,theblock struc-ture usedtocomposetheEG functionspaceandthecouplingterms betweenmatrixandfracturedomainsisillustrated.Thenumerical ex-amplessectionpresentsfiveexamples,andtheconclusionisfinally pro-vided.

2. Methodology

2.1. Governingequations

Wefirstbrieflyintroducetheequi-dimensionalmodel,whichisused toderivethemixed-dimensionalmodel.Weareinterestedinsolving steady-stateandtime-dependent singlephase fluidflow in fractured porousmediaonΩ,whichcomposesofmatrixandfracturedomains, Ωm andΩf,respectively. Let Ω⊂ ℝ𝑑 be thedomainof interestind -dimensionalspacewhere𝑑=1,2,or3boundedbyboundary,𝜕Ω.𝜕Ω canbedecomposedtopressureandfluxboundaries,𝜕Ωpand𝜕Ωq, re-spectively.Thetimedomainisdenotedby𝕋 =(0,𝜏],where𝜏 >0isthe finaltime.

Theillustrationoftheequi-dimensionalmodelisshowninFig.3a. Thismodelcomposesoftwomatrixsubdomains,Ωmiwhere𝑖=1,2,and onefracturesubdomain,Ωf.Notethat,forthesakeofsimplicity,this setup isusedtoillustratethegoverningequationwithonlytwo ma-trixsubdomains,butinageneralcase,thedomainmaycomposeofnm subdomains,i.e.𝑖=1,2,,𝑛𝑚.Moreover,thedomainmaycontainup tonffractures,wherenmandnfarenumberofmatrixsubdomainand fracture,respectively. Forsimplicity,in thissectionwe willconsider

𝑛𝑓=1.Thefracturesmaynotcutthroughthematrixdomain,whichwe callimmersedfracturesetting.ThistopicwillbediscussedinSection3. Thegoverningsystemwithinitialandboundaryconditionsofthe equi-dimensionalmodelassumingaslightlycompressiblefluidforthematrix domainispresentedbelow:

𝑐𝜙𝑚𝑖𝜕𝑡𝜕(𝑝𝑚𝑖)−∇⋅𝒌𝜇𝒎𝑖(∇𝑝𝑚𝑖𝜌𝐠)=𝑔𝑚𝑖inΩ𝑚𝑖×𝕋, for𝑖=1,2, (1)

𝑝𝑚=𝑝𝑚𝐷on𝜕Ω𝑝×𝕋, (2)

𝒌𝒎𝑖

𝜇 (∇𝑝𝑚𝑖𝜌𝐠)⋅ 𝒏=𝑞𝑚𝑁on𝜕Ω𝑞×𝕋, (3)

(5)

Fig. 5. (a )geometryusedfortheerrorconvergenceanalysis,(b )illustrationoftheexactsolution,errorconvergenceplotbetweenEGandDGmethodswith polynomialapproximationdegree1and2of(c )matrixand(d )fracturedomains.Notethatfor(c )theslopesofthebestfittedlineare2.235(EG),2.022(DG)for thepolynomialapproximationdegree1,and3.137(EG),and3.410(DG)forthepolynomialapproximationdegree2.Theslopesofthebestfittedlinefor(d )are 2.289(EG),2.313(DG)forthepolynomialapproximationdegree1,and3.194(EG),and2.948(DG)forthepolynomialapproximationdegree2.

andforthefracturedomainis:

𝑐𝜙𝑓𝜕𝑡𝜕(𝑝𝑓)−∇⋅𝒌𝜇𝒇(∇𝑝𝑓𝜌𝐠)=𝑔𝑓inΩ𝑓×𝕋, (5)

𝑝𝑓=𝑝𝑓𝐷on𝜕Ω𝑝×𝕋, (6)

𝒌𝒇

𝜇 (∇𝑝𝑓𝜌𝐠)⋅ 𝒏=𝑞𝑓𝑁on𝜕Ω𝑞×𝕋, (7)

𝑝𝑓=𝑝0𝑓 inΩ𝑓×𝕋 at𝑡=0, (8)

where(· )irepresentsanindex,cisthefluidcompressibility,𝜙mand𝜙f arethematrixandfractureporosity(𝜙fisassumedtobeone),kmandkf

arethematrixandfracturepermeabilitytensor,respectively,𝜇 isfluid viscosity,pmandpfarematrixandfracturepressure,respectively,𝜌 is

fluiddensity,gisthegravitationalvector,gmandgfaresink/sourcefor matrixandfracturedomains,respectively,nisanormalunitvectorto anysurfaces,pmDandpfDareprescribedpressureformatrixandfracture domains,respectively,qmN andqfN areprescribedfluxformatrixand fracturedomains,respectively,and𝑝𝑚0

𝑖 and𝑝0𝑓 areprescribedpressure formatrixandfracturedomainsat𝑡=0,respectively.

Toformulatethemixed-dimensionalsettingaspresentedinFig.3b, we integrate along the normal direction to the fracture plane

Martinetal.(2005).AsaresultΩfisreducedtoaninterface,Γ.Note thatthegoverningequationofthemixed-dimensionalsettingusedin this studyis proposedbyMartinetal.(2005)inthemixedfinite el-ement formulation, which uses fluid pressure and fluid velocity as the primaryvariables. Themixed-dimensionalsetting has beenused in themixedformulation(Keilegavlenetal.,2017) oradapted to fi-nitevolumediscretization(Glaseretal.,2017;Stefanssonetal.,2018;

(6)

Fig. 6. (a )geometryandboundaryconditions usedforthequarterfive-spotproblemand(b ) meshthathas=1.2× 10−1.

Fig. 7. Pressuresolutionwith=7.2× 10−2,p

m,inthematrixofquarterfive-spotexample:(a )permeablefracture,(b )impermeablefracturecases,pmplotalong 𝑥=𝑦lineof(c )permeablefracture,and(d )impermeablefracturecases.NotethatwedigitizetheresultsofthereferencesolutionfromAntoniettietal.(2019).Note thattheresultsobtainedwiththeEGandDGmethodsoverlap.

(7)

Fig. 8. Immersed fracture geometry and boundaryconditionsof(a )permeablefracture, (b ) partially permeable fracture, (c ) imper-meablefracturecases,and(d )meshthathas

𝑛𝑒=272.A’isfracturetip.

Glaser et al., 2019) and DG discretization on polytopic grids (Antoniettietal.,2019).Themixed-dimensionstrongformulationand itsboundaryconditionsforthematrixdomainaresimilartothe equi-dimensionalmodel,(1)to(3),butthestrongformulationandits bound-aryconditionsofthefracturedomainare:

𝑐𝑎𝑓𝜕𝑡𝜕(𝑝𝑓)−∇𝑇⋅ 𝑎𝑓 𝒌𝑻 𝒇 𝜇 ( ∇𝑇𝑝𝑓𝜌𝐠)=𝑔𝑓+−𝒌𝒎 𝜇 ( ∇𝑝𝑚𝜌𝐠)inΓ ×𝕋, (9) 𝑝𝑓=𝑝𝑓𝐷on𝜕Γ𝑝×𝕋, (10) − 𝒌𝑻 𝒇 𝜇 (∇𝑝𝑓𝜌𝐠)⋅ 𝒏=𝑞𝑓𝑁on𝜕Γ𝑞×𝕋, (11) 𝑝𝑓=𝑝0𝑓 inΓ ×𝕋at𝑡=0, (12)

where𝜕Γpand𝜕Γqrepresentpressureandfluxboundariesofthe frac-ture domain, respectively, 𝒌𝑻

𝒇 is the tangentialfracture permeability

tensor,∇Tand∇T· arethetangentialgradientanddivergence opera-tors,whicharedefinedas∇𝑇(⋅)=∇(⋅)−𝒏[𝒏⋅ ∇(⋅)]andtr(∇𝑇(⋅)), respec-tively,tr(⋅)istraceoperator,afisafractureaperture,−𝒌𝜇𝒎

(

𝑝𝑚𝜌𝐠) representsthefluidmasstransferbetweenmatrixandfracturedomains

Martinetal.(2005),⋅isjumpoperator,whichwillbediscussedlater inthediscretizationpart,andpfDandqfNarespecifiedpressureandflux forthefracturedomain,respectively.

Inthisstudy,if𝑑=3,kmasafulltensorisdefinedas:

𝒌𝒎∶= ⎡ ⎢ ⎢ ⎣ 𝑘𝑥𝑥 𝑚 𝑘𝑥𝑦𝑚 𝑘𝑥𝑧𝑚 𝑘𝑦𝑥𝑚 𝑘𝑦𝑦𝑚 𝑘𝑦𝑧𝑚 𝑘𝑧𝑥 𝑚 𝑘𝑧𝑦𝑚 𝑘𝑧𝑧𝑚 ⎤ ⎥ ⎥ ⎦, (13)

wherealltensorcomponentscharacterizethetransformationofthe com-ponentsofthegradientoffluidpressureintothecomponentsofthe ve-locityvector.The𝑘𝑥𝑥

𝑚,𝑘𝑦𝑦𝑚,and𝑘𝑧𝑧𝑚 representthematrixpermeabilityin x-,y-,andz-direction,respectively.kf,ontheotherhand,composesof

twocomponents: 𝒌𝑓∶= [ 𝒌𝑻 𝒇 0 0 𝑘𝑛𝑓 ] , (14) where𝑘𝑛

𝑓isthenormalfracturepermeability.Notethatwepresenthere ageneralformof𝒌𝑻

𝒇,tobespecific,𝒌𝑻𝒇 isascalarif𝑑=2andtensorif 𝑑=3.Torepresentthefluidmasstransferbetweenmatrixandfracture domains,followingMartinetal.(2005), Antoniettietal.(2019),we definethecouplingconditionsbetweenthematrixandfracturedomain as: ⟨−𝒌𝜇𝒎(∇𝑝𝑚𝜌𝐠)⟩ ⋅ 𝒏= 𝛼𝑓 2 ( 𝑝𝑚1−𝑝𝑚2 ) onΓ, (15) −𝒌𝒎 𝜇 ( ∇𝑝𝑚𝜌𝐠)= 2𝛼𝑓 2𝜉 −1 ( ⟨𝑝𝑚⟩ −𝑝𝑓)onΓ, (16) where⟨ · ⟩ isanaverageoperator,whichwillbepresentedlaterinthe discretizationpart,𝛼frepresentsaresistantfactorofthemasstransfer

(8)

Fig. 9. Pressuresolution,pm,inthematrixof

immersedfractureexample using𝑛𝑒=6,698:

(a )permeablefracture,(b )partiallypermeable fracture,and(c )impermeablefracturecases.

betweenthefractureandmatrixdomainsdefinedas:

𝛼𝑓= 2𝑘𝑛𝑓

𝑎𝑓 , (17)

and𝜉 ∈ (0.5,1.0].Inthispaper,weset𝜉 =1.0forthesakeofsimplicity. Ingeneralcase,𝜉 isusedtorepresentafamilyofthemixed-dimensional model, and more details can be found in Martin et al. (2005),

Antoniettietal.(2019).

2.2. Numericaldiscretization

Inthissection,thediscretizationofthemixed-dimensionalmodelis illustrated.ThedomainΩispartitionedintoneelements,ℎ,whichis thefamilyofelementsT(trianglesin2D,tetrahedronsin3D).Wewill furtherdenotebyeafaceofTasillustratedinFig.4.WedenotehTasthe diameterofTanddefineh≔ max(hT),whichwemayreferasmeshsize. Letdenotesthesetofallfacets,forthematrixdomain,0theinternal facets,𝐷theDirichletboundaryfaces,and𝑁denotestheNeumann boundaryfaces.FollowingLeeetal.(2016a)forany𝑒∈0

let𝑇+and

𝑇betwoneighboringelementssuchthat𝑒=𝜕𝑇+𝜕𝑇.Let𝒏+ and

𝒏betheoutwardnormalunit vectorsto𝜕𝑇+ and𝜕𝑇,respectively

(seeFig.4a).=0 ∪ ℎ𝐷 ∪ ℎ𝑁,0 ∩ ℎ𝐷=∅,0 ∩ ℎ𝑁=∅,and 𝐷

∩ℎ𝑁=∅.Wefurtherdefine1∶=0∪ℎ𝐷.

Thefracturedomainisconformingwith,anditisnamedΓh (in-tervalsin2D,trianglesin3Ddomain)hereafteraspresentedinFig.4b.

WewillfurtherdenotebyefafaceofΓh.LetΛhdenotesthesetofall facets,forthefracturedomain,Λ0

theinternalfacets,Λ𝐷ℎ the Dirich-letboundaryfaces,andΛ𝑁 denotestheNeumannboundaryfaces,and Λ𝐷∩ Λ𝑁 =∅.LetnbetheoutwardnormalunitvectortoΓh,whichis coincidedwith𝒏+ ofthe𝜕𝑇+.

Next,wedefinethejumpoperatorofthescalarandvectorvalues as:

𝑋⋅ 𝒏∶=𝑋+𝒏++𝑋𝒏−and

𝑿⋅ 𝒏∶=𝑿+⋅ 𝒏++𝑿⋅ 𝒏, (18) respectively,Moreover,byassumingthatthenormalvectornisoriented from𝑇+to𝑇,weobtain

𝑋∶=𝑋+−𝑋− (19)

FollowingLeeetal.(2016a),Scovazzietal.(2017),theweighted aver-ageisdefinedas:

⟨𝑋𝛿𝑒=𝛿𝑒𝑋++(1−𝛿𝑒)𝑋, (20) where 𝛿𝑒∶= 𝑘𝑚𝑒 𝑘𝑚+𝑒 +𝑘𝑚𝑒, (21) and 𝑘𝑚+𝑒 ∶=(𝒏+)𝑇⋅ 𝒌𝒎+⋅ 𝒏+,

(9)

Fig. 10. pmplotalong𝑦=0.75lineofimmersedfractureexample:(a )permeablefracture,(b )partiallypermeablefracture,(c )impermeablefracturecases.Note

thatwedigitizethereferenceresults,Angotetal.2009,fromAngotetal.(2009).AlltheresultsobtainedfromtheEGandDGmethodswithdifferentmeshsizes overlap.

𝑘𝑚𝑒 ∶=(𝒏−)𝑇⋅ 𝒌𝒎⋅ 𝒏, (22)

andaharmonicaverageof𝑘𝑚𝑒+and𝑘𝑚𝑒 isdefinedas:

𝑘𝑚𝑒∶=

2𝑘𝑚+𝑒𝑘𝑚𝑒 (

𝑘𝑚+𝑒 +𝑘𝑚𝑒

) . (23)

Thearithmeticaverage,𝛿𝑒=0.5,issimplydenotedby⟨ · ⟩.Notethat, ingeneralcase,𝛿e isalsodefinedforthekf;however,forthesakeof

simplicity,weassumethematerialpropertiesofthefracturedomainare homogeneous.Hence,weperformtheseoperatorsinthematrixdomain only.

Remark1. Thenumericaldiscretizationdiscussedin thisstudyonly considersthecaseof aconformingmesh,i.e.thefracturedomain,Γ, elementiscoincidentwithasetoffacesofthematrixdomain,Ω,as illustratedinFig.4b.

Thisstudyfocusesontwofunctionspaces,arisingfromEG,andDG discretizations,respectively.WebeginwithdefiningtheCGfunction

spaceforthematrixpressure,pmas CG𝑘 ( )∶={𝜓𝑚∈ℂ0(Ω)∶ 𝜓𝑚||𝑇 ∈ℙ𝑘(𝑇),𝑇∈}, (24) whereCG𝑘 (

)isthespacefortheCGapproximationwithkthdegree polynomialsforthe pm unknown,ℂ0(Ω)denotesthespaceof scalar-valuedpiecewisecontinuouspolynomials,ℙ𝑘(𝑇)isthespaceof polyno-mialsofdegreeatmostkovereachelementT,and𝜓mdenotesageneric functionofCG𝑘

(

).Furthermore,wedefinethefollowingDGfunction spaceforthematrixpressure,pm:

DG𝑘 ( )∶={𝜓𝑚𝐿2(Ω)∶𝜓𝑚||𝑇∈ℙ𝑘(𝑇),𝑇∈}, (25) whereDG𝑘 (

)isthespacefortheDGapproximationwithkthdegree polynomialsforthepmspaceandL2(Ω)isthespaceofsquareintegrable functions.Finally,wedefinetheEGfunctionspaceforpmas:

EG𝑘 ( )∶=CG𝑘 ( )+DG0 ( ), (26) whereEG𝑘 (

)isthespacefortheEGapproximationwithkthdegree polynomialsforthepspaceandDG0

(

(10)

approx-Fig. 11. Regularfracturenetworkexample:(a ) geometryandboundaryconditions(fractures areshowninred),pressuresolution,pm,inthe

matrixusing𝑛𝑒=2046of(b )permeable

frac-ture,(c )impermeablefracturecases,and(d ) meshthathas𝑛𝑒=184.(Forinterpretationof

thereferencestocolourinthisfigurelegend, thereaderisreferredtothewebversionofthis article.)

imationwith0thdegreepolynomials,inotherwords,apiecewise con-stantapproximation.NotethattheEGdiscretizationisexpectedtobe beneficialforanaccurateapproximationofthepmdiscontinuityacross interfaceswherehighpermeabilitycontrast,eitherbetween𝒌+ 𝒎and𝒌𝒎 orkmandkf,isobserved.Ontheotherhand,thematerialpropertiesof thefracturedomainareassumedtobehomogeneous,whichleadstono discontinuitywithinthefracturedomain.Therefore,theCG discretiza-tionofthepfunknownwillsufficeinthefollowing.Thepffunctionspace isdefinedas: CG𝑘 ( Γ)∶={𝜓𝑓∈ℂ0(Γ)∶𝜓𝑓|| |𝑒∈ℙ𝑘(𝑒),𝑒∈ Γ } , (27) whereCG𝑘 (

Γ)isthespacefor theCGapproximationwithkth de-greepolynomialsforthepfunknown,ℂ0(Γ)denotesthespaceof scalar-valuedpiecewisecontinuouspolynomials,ℙ𝑘(𝑒)isthespaceof polyno-mialsofdegreeatmostkovereachfacete,and𝜓fdenotesageneric functionofCG𝑘).

Remark2. Inthisstudy,weonlyfocusonthemixedfunctionspace be-tweenthematrixandfracturedomainsarisingfromeitherEG𝑘

( )× CG𝑘 ( Γ) orDG𝑘 (

)×CG𝑘). The fracturedomain can be dis-cretizedbyeitherEG𝑘 ( Γ)orDG𝑘 (

Γ)ifthereareanydiscontinuities insidethefracturemedium.

Thetimedomain,𝕋=(0,𝜏],ispartitionedintoNtopensubintervals suchthat, 0=∶𝑡0<𝑡1<<𝑡𝑁𝑡∶=𝜏. Thelength of the subinterval, Δtn,is definedasΔ𝑡𝑛=𝑡𝑛𝑡𝑛−1 wheren representsthecurrenttime

step.Inthisstudy,implicitfirst-ordertimediscretizationisutilizedfor atimedomainof(1)and(5)asshownbelowforboth𝑝𝑛

𝑚,ℎand𝑝𝑛𝑓,ℎ: 𝜕𝑝𝑚,ℎ 𝜕𝑡𝑝𝑛 𝑚,ℎ𝑝𝑛𝑚,ℎ−1 Δ𝑡𝑛 , and 𝜕𝑝𝑓,ℎ 𝜕𝑡𝑝𝑛 𝑓,ℎ𝑝𝑛𝑓,ℎ−1 Δ𝑡𝑛 . (28)

WedenotethatthetemporalapproximationofthefunctionΦ(· ,tn)by Φn.

Withgiven𝑝𝑛−1

𝑚,ℎ and𝑝𝑛𝑓,ℎ−1,wenowseektheapproximatedsolutions

𝑝𝑛 𝑚,ℎ∈ EG𝑘 ( )and𝑝𝑛𝑓,ℎ∈ CG𝑘 ( Γ)ofpm(· ,tn)andp f(· ,tn), respec-tively,satisfying ((𝑝𝑛 𝑚,ℎ,𝑝𝑛𝑓,ℎ;𝑝𝑛𝑚,ℎ−1,𝑝𝑛𝑓,ℎ−1 ) ,(𝜓𝑚,𝜓𝑓)) + (( 𝑝𝑛 𝑚,ℎ,𝑝𝑛𝑓,ℎ ) ,(𝜓𝑚,𝜓𝑓))−(𝜓𝑚,𝜓𝑓)=0,𝜓𝑚∈EG𝑘()and∀𝜓𝑓∈CG𝑘). (29) First,thetemporaldiscretizationpartisdefinedas

((𝑝𝑛 𝑚,ℎ,𝑝𝑛𝑓,ℎ;𝑝𝑛𝑚,ℎ−1,𝑝𝑛𝑓,ℎ−1 ) ,(𝜓𝑚,𝜓𝑓))∶=𝑚𝑚 ( 𝑝𝑛 𝑚,ℎ;𝑝𝑛𝑚,ℎ−1,𝜓𝑚 ) +𝑚𝑓(𝑝𝑛𝑓,ℎ;𝑝𝑛−1 𝑓,ℎ,𝜓𝑓 ) , (30) where 𝑚𝑚 ( 𝑝𝑛 𝑚,ℎ;𝑝𝑛𝑚,ℎ−1,𝜓𝑚 ) ∶=∑𝑇 ∈ 𝑇𝑐𝜙𝑚 𝑝𝑛 𝑚,ℎ𝑝𝑛𝑚,ℎ−1 Δ𝑡𝑛 𝜓𝑚𝑑𝑉, (31) and 𝑚𝑓 ( 𝑝𝑛 𝑓,ℎ;𝑝𝑛𝑓,ℎ−1,𝜓𝑓 ) ∶=∑𝑒∈Γ𝑒𝑐𝑎𝑓 𝑝𝑛 𝑓,ℎ𝑝𝑛𝑓,ℎ−1 Δ𝑡𝑛 𝜓𝑓𝑑𝑆. (32)

(11)

Fig. 12. pmplotofregularfracturenetworkexample:(a )along𝑦=0.7lineofpermeablefracture,(b )along𝑥=0.5lineofpermeablefracture,(c )along(𝑥=0.0,𝑦=

0.1)to(𝑥=0.9,𝑦=1.0)lineofimpermeablefracturecases.AlloftheresultsobtainedfromtheEGandDGmethodsofpermeablefractureswithdifferentmeshsizes overlap.Theresultsofimpermeablefracturescasewithdifferentmeshsizes,however,illustratesomedifferences.

Here,∫T· dVand∫e· dSrefertovolumeandsurfaceintegrals, respec-tively. Next,wedefine((𝑝𝑛 𝑚,ℎ,𝑝𝑛𝑓,ℎ ) ,(𝜓𝑚,𝜓𝑓))as: ((𝑝𝑛 𝑚,ℎ,𝑝𝑛𝑓,ℎ ) ,(𝜓𝑚,𝜓𝑓))∶=𝑎 ( 𝑝𝑛 𝑚,ℎ,𝜓𝑚 ) +𝑏 ( 𝑝𝑛 𝑓,ℎ,𝜓𝑚 ) +𝑐(𝑝𝑛𝑚,ℎ,𝜓𝑓)+𝑑(𝑝𝑛𝑓,ℎ,𝜓𝑓), (33) where 𝑎(𝑝𝑛 𝑚,ℎ,𝜓𝑚 ) ∶= ∑ 𝑇 ∈ℎ𝑇 𝒌𝒎 𝜇 ( ∇𝑝𝑛𝑚,ℎ𝜌𝐠 ) ⋅ ∇𝜓𝑚𝑑𝑉 − ∑ 𝑒∈1 ⧵Γ𝑒𝒌𝜇𝒎(∇𝑝𝑛𝑚,ℎ𝜌𝐠)⟩𝛿 𝑒⋅ 𝜓𝑚𝑑𝑆 +𝜃𝑒∈1 ⧵Γ𝑒𝒌𝒎 𝜇𝜓𝑚𝛿𝑒⋅ 𝑝𝑛𝑚,ℎ𝑑𝑆 + ∑ 𝑒∈1 ⧵Γ𝑒 𝛽 ℎ𝑒 𝑘𝑚𝑒 𝜇 𝑝𝑛𝑚,ℎ⋅ 𝜓𝑚𝑑𝑆 + ∑ 𝑒∈Γ𝑒 𝛼𝑓 2 𝑝 𝑛 𝑚,ℎ⋅ 𝜓𝑚𝑑𝑆 + ∑ 𝑒∈Γ𝑒 2𝛼𝑓 2𝜉 −1⟨𝑝 𝑛 𝑚,ℎ⟩⟨𝜓𝑚⟩ 𝑑𝑆, (34) 𝑏(𝑝𝑛 𝑓,ℎ,𝜓𝑚 ) ∶=−∑ 𝑒∈Γ𝑒 2𝛼𝑓 2𝜉 −1𝑝 𝑛 𝑓,ℎ⟨𝜓𝑚⟩ 𝑑𝑆, (35) 𝑐(𝑝𝑛 𝑚,ℎ,𝜓𝑓 ) ∶=−∑ 𝑒∈Γ𝑒 2𝛼𝑓 2𝜉 −1⟨𝑝 𝑛 𝑚,ℎ⟩𝜓𝑓𝑑𝑆, (36)

(12)

Fig. 13. fluxatsurfaceA’comparisonforbothpermeableandimpermeable casesbetweentheEGandDGmethods.AlloftheresultsobtainedfromtheEG andDGmethodswithdifferentmeshsizesoverlap.

and 𝑑(𝑝𝑛 𝑓,ℎ,𝜓𝑓 ) ∶= ∑ 𝑒∈Γ𝑒 𝑎𝑓 𝒌𝑻 𝒇 𝜇 ( ∇𝑝𝑛𝑓,ℎ𝜌𝐠 ) ⋅ ∇𝜓𝑓𝑑𝑆 +∑ 𝑒∈Γ𝑒 2𝛼𝑓 2𝜉 −1𝑝 𝑛 𝑓,ℎ𝜓𝑓𝑑𝑆, (37)

Wenotethatthecouplingconditions,(15)and(16),areembeddedin theabovediscretizedequations.Inparticular,theconditions(15)and

(16)arediscretizedas 1 ( 𝑝𝑛 𝑚,ℎ,𝜓𝑚 ) ∶= ∑ 𝑒∈Γ𝑒 𝛼𝑓 2𝑝 𝑛 𝑚,ℎ⋅ 𝜓𝑚𝑑𝑆,𝜓𝑚∈EG𝑘 ( ), (38) and 2 (( 𝑝𝑛 𝑚,ℎ,𝑝𝑛𝑓,ℎ ) ,(𝜓𝑚,𝜓𝑓))∶= ∑ 𝑒∈Γ𝑒 2𝛼𝑓 2𝜉 −1⟨𝑝 𝑛 𝑚,ℎ⟩⟨𝜓𝑚⟩ 𝑑𝑆 − ∑ 𝑒∈Γ𝑒 2𝛼𝑓 2𝜉 −1⟨𝑝 𝑛 𝑚,ℎ⟩𝜓𝑓𝑑𝑆− ∑ 𝑒∈Γ𝑒 2𝛼𝑓 2𝜉 −1𝑝 𝑛 𝑓,ℎ⟨𝜓𝑚⟩ 𝑑𝑆 + ∑ 𝑒∈Γ𝑒 2𝛼𝑓 2𝜉 −1𝑝 𝑛 𝑓,ℎ𝜓𝑓𝑑𝑆,𝜓𝑚∈EG𝑘 ( )and∀𝜓𝑓∈CG𝑘 ( Γ), (39) respectively.Finally,wedefine(𝜓𝑚,𝜓𝑓)as:

(𝜓𝑚,𝜓𝑓)∶=𝓁𝑚(𝜓𝑚)+𝓁𝑓(𝜓𝑓) (40) where 𝓁𝑚(𝜓𝑚)∶= ∑ 𝑇 ∈ℎ𝑇 𝑔𝑚𝜓𝑚𝑑𝑉+ ∑ 𝑒∈𝑁 𝑒𝑞𝑚𝑁𝜓𝑚𝑑𝑆 +𝜃𝑒∈𝐷 𝑒𝒌𝜇𝒎𝜓𝑚⋅ 𝑝𝑚𝐷𝒏𝑑𝑆+ ∑ 𝑒∈𝐷 𝑒ℎ𝛽𝑒 𝑘𝑚𝑒 𝜇 𝜓𝑝⋅ 𝑝𝑚𝐷𝒏𝑑𝑆 (41) and 𝓁𝑓(𝜓𝑓)∶=∑𝑒∈Γ𝑒𝑎𝑓𝑔𝑓𝜓𝑓𝑑𝑆+∑𝑒𝑓∈Λ𝑁𝑒𝑞𝑓𝑁𝜓𝑓𝑑𝑆. (42) Here,thechoicesoftheinteriorpenaltymethodisprovidedby𝜃.The discretizationbecomesthesymmetricinteriorpenaltyGalerkinmethod (SIPG),when𝜃 =−1,theincompleteinteriorpenaltyGalerkinmethod

(IIPG), when𝜃 =0, andthenon-symmetricinteriorpenalty Galerkin method(NIPG)when𝜃 =1Riviere(2008).Inthisstudy,weset𝜃 =−1 forthesimplicity.Theinteriorpenaltyparameter, 𝛽,isafunctionof thepolynomialdegree,k,andthecharacteristicmeshsize,he,whichis definedas:

ℎ𝑒∶=

meas(𝑇+)+meas(𝑇)

2meas(𝑒) , (43)

wheremeas(· )representsameasurementoperator,measuringlength, area,orvolume.Somestudiesfortheoptimalchoiceof𝛽 isprovidedin

Leeetal.(2019),Riviere(2008).

Remark3. TheNeumannboundaryconditionisnaturallyappliedon theboundaryfacesthatbelongtotheNeumannboundarydomainfor boththematrixandfracturedomains,𝑒∈𝑁and𝑒𝑓∈ Λ𝑁.The Dirich-letboundarycondition,ontheotherhand,isweaklyenforcedonthe Dirichletboundaryfaces,𝑒∈𝐷,forthematrixdomain,butstrongly enforcedontheDirichletbondaryfacesofthefracturedomain,𝑒𝑓∈ Λ𝐷.

Let{𝜓𝑚,𝜋(𝑖1)}𝑝𝑚,𝜋

𝑖1=1 denotethesetofbasisfunctionsof

𝜋𝑘 ( ),i.e. 𝜋𝑘 ( )=span{𝜓𝑚(𝑖1)}𝑝𝑚,𝜋

𝑖1=1 ,havingdenotedby𝑝𝑚,𝜋 thenumberof

DOFforthe𝜋 scalar-valuedspace,where𝜋 canmeaneitherEGorDG.In asimilarway,let{𝜓(𝑖3)

𝑓,CG} 𝑝𝑓,CG

𝑖3=1 bethesetofbasisfunctionsforthespace

CG𝑘

(

Γ).𝑝𝑓,CG thenumberofDOFfortheCGscalar-valuedspace.

Hence,twomixedfunctionspaces,(1)EGk×CGkand(2)DGk×CGk wherekrepresentsthedegreeofpolynomialapproximation,are possi-ble,andwillbecomparedinthenumericalexamplesinthenextsection. Thematrixcorrespondingtotheleft-handsideof(29)isassembled com-posingthefollowingblocks:

[ 𝜋𝑘×𝜋𝑘 𝑚𝑚 ] 𝑖𝑖𝑖2 ∶=𝑚𝑚(𝜓𝑚(𝑖2),𝜓 𝑚(𝑖1))+𝑎(𝜓 𝑚(𝑖2),𝜓 𝑚(𝑖1)),𝑖 1 =1,,𝑝𝑚,𝜋,𝑖2=1,,𝑝𝑚,𝜋, [ 𝜋𝑘×CG𝑘 𝑚𝑓 ] 𝑖𝑖𝑖3 ∶=𝑏(𝜓(𝑖3) 𝑓,CG,𝜓𝑚,𝜋 (𝑖1) ) ,𝑖1=1,,𝑝𝑚,𝜋,𝑖3=1,,𝑝𝑓,CG, [ CG𝑘×𝜋𝑘 𝑓𝑚 ] 𝑖4𝑖2 ∶=𝑐(𝜓𝑚,𝜋(𝑖2),𝜓(𝑖4) 𝑝𝑓,CG ) ,𝑖4=1,,𝑝𝑓,CG,𝑖2=1,,𝑝𝑚,𝜋, [ CG𝑘×CG𝑘 𝑓𝑓 ] 𝑖4𝑖3 ∶=𝑚𝑓(𝜓(𝑖3) 𝑓,CG,𝜓 (𝑖4) 𝑓,CG ) +𝑑(𝜓(𝑖3) 𝑓,CG,𝜓 (𝑖4) 𝑓,CG ) 𝑖4 =1,,𝑝 𝑓,CG,𝑖3=1,,𝑝𝑓,CG. (44)

Inasimilarway,theright-handsideof(29)givesrisetoablockvector ofcomponents [ 𝓁𝜋𝑘 𝑚]𝑖1∶=𝓁𝑚 ( 𝜓𝑚,𝜋(𝑖1)), 𝑖 1=1,,𝑝𝑚,𝜋, [ 𝓁CG𝑘 𝑓 ] 𝑖3 ∶=𝓁𝑓(𝜓(𝑖3) 𝑓,CG ) 𝑖3=1,,𝑓,CG. (45)

Theresultingblockstructureisthus [ 𝜋𝑘×𝜋𝑘 𝑚𝑚𝑚𝑓𝜋𝑘×CG𝑘 CG𝑘×𝜋𝑘 𝑓𝑚  CG𝑘×CG𝑘 𝑓𝑓 ]{ 𝑝𝜋𝑘 𝑚,ℎ 𝑝CG𝑘 𝑓,ℎ } = { 𝓁𝜋𝑘 𝑚 𝓁CG𝑘 𝑓 } . (46) where𝑝𝜋𝑘 𝑚,ℎand𝑝 CG𝑘

𝑓,ℎ collectthedegreesoffreedomformatrixand frac-turepressure,respectively.Finally,weremarkthat(owingto(26))the case𝜋 =EGcanbeequivalentlydecomposedintoa(CGk×DG0) ×CGk mixedfunctionspace,resultingin:

⎡ ⎢ ⎢ ⎢ ⎣ CG𝑘×CG𝑘 𝑚𝑚𝑚𝑚CG𝑘×DG0 𝑚𝑓CG𝑘×CG𝑘 DG0×CG𝑘 𝑚𝑚𝑚𝑚DG0×DG0 𝑚𝑓DG0×CG𝑘 CG𝑘×CG𝑘 𝑓𝑚  CG𝑘×DG0 𝑓𝑚  CG𝑘×CG𝑘 𝑓𝑓 ⎤ ⎥ ⎥ ⎥ ⎦ ⎧ ⎪ ⎨ ⎪ ⎩ 𝑝CG𝑘 𝑚,ℎ 𝑝DG0 𝑚,ℎ 𝑝CG𝑘 𝑓,ℎ ⎫ ⎪ ⎬ ⎪ ⎭ = ⎧ ⎪ ⎨ ⎪ ⎩ 𝓁CG𝑘 𝑚 𝓁DG0 𝑚 𝓁CG𝑘 𝑓 ⎫ ⎪ ⎬ ⎪ ⎭ . (47)

ThisformulationmakestheEGmethodologyeasilyimplementable inanyexistingDGcodes.MatricesandvectorsarebuiltbyFEniCSform compiler(Alnaesetal.,2015).Theblockstructureissetupusing multi-phenicstoolbox(BallarinandRozza,2019).Randomfieldof permeabil-ity(km)ispopulatedusingSciPypackage(Jonesetal.,2001).𝛽,penalty

(13)

Fig. 14. Lowkmcase:kmdistributionof:(a )quarterfive-spot(𝑛𝑒=6,568),(b )regularfracturenetwork(𝑛𝑒=26,952)examples,histogramofkm of(c )quarter

five-spot,and(d )regularfracturenetworkexamples.

Remark4. WenotethatCG,DG,andEGmethodsarebasedonGalerkin method,whichcouldbeextendedtoconsideradaptivemeshesthat con-tainhangingnodes.Inaddition,there arevariousadvanced develop-mentforeachmethodstoenhancetheefficiency,includingvariable ap-proximationordertechniques.Especially,forEGmethod,anadaptive enrichment,i.e.,thepiecewise-constantfunctionsonlyaddedtothe el-ementswherethesharpmaterialdiscontinuities(e.g.,betweenmatrix andfracturedomains)areobserved,canbedeveloped.However,inour followingnumericalexamples,wefocusontheclassicalformofeach methodsforthecomparisonbysimulatingtheproposedmixed dimen-sionalapproachformodelingfractures.

3. Numericalexamples

WeillustratethecapabilityoftheEGmethodusingsevennumerical examples.Webeginwithananalysisoftheerrorconvergencerate be-tweentheEGandDGmethodstoverifythedevelopedblockstructurein themixed-dimensionalsetting.WealsoinvestigatetheEGperformance inmodelingthequarterfive-spotpatternandhandlingthefracturetip intheimmersedfracturegeometry.Next,wetesttheEGmethodina regularfracturenetworkwithandwithoutaheterogeneityinmatrix permeabilityinput.Lastly,weapplytime-dependentproblemsfortwo three-dimensionalgeometries;thefirstonerepresentsthecasewhere

fracturesareorthogonaltotheaxes,andanotherrepresentsgeometry wherefracturesaregivenwitharbitraryorientationswiththeir interac-tionsinathree-dimensionaldomain.

3.1. Errorconvergenceanalysis

Toverifytheimplementationoftheproposedblockstructure uti-lizedtosolvethemixed-dimensionalmodelusingtheEGmethod,we illustratetheerrorconvergencerateoftheEGmethodandcomparethis valuewiththeDGmethod.Theexampleusedinthisanalysisisadapted fromAntoniettietal.(2019).WetakeΩ =[0,1]2,andchoosetheexact solutioninthematrix,Ω,andfracture,Γ ={(𝑥,𝑦)∈ Ω ∶𝑥+𝑦=1},as: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝑝𝑚=𝑒𝑥+𝑦 inΩ1, 𝑝𝑚= 𝑒 𝑥+𝑦 2 + ⎛ ⎜ ⎜ ⎝ 1 2+ 3𝑎𝑓 𝑘𝑛 𝑓 √ 2 ⎞ ⎟ ⎟ ⎠ 𝑒 inΩ2, 𝑝𝑓=𝑒 ( 1+√2𝑎𝑓 𝑘𝑛 𝑓 ) inΓ. (48)

Bychoosing𝒌𝒎=𝑰,(48)satisfiesthesystemofequations,(1),(9),(15), and(16),presentedinthemethodologysectionwithsink/sourceterms,

(14)

Fig. 15. Highkmcase:kmdistributionof:(a )quarterfive-spot(𝑛𝑒=6,568),(b )regularfracturenetwork(𝑛𝑒=26,952)examples,histogramofkmof(c )quarter

five-spot,and(d )regularfracturenetworkexamples.

g,asfollows: ⎧ ⎪ ⎨ ⎪ ⎩ 𝑔𝑚=−2𝑒𝑥+𝑦 inΩ1, 𝑔𝑚=−𝑒𝑥+𝑦 inΩ2, 𝑔𝑓 =√𝑒 2 inΓ, (49)

All other physical parametersare setto one, andthe homogeneous boundaryconditionsareappliedtoallboundaries.Thegeometryused inthisanalysisandtheillustrationoftheexactsolutionarepresented inFig.5a-b,respectively.

WecalculateL2normofthedifferencebetweentheexactsolution,p,

andapproximatedsolution,ph,andtheresultsarepresentedinFig.5 c-dformatrixandfracturedomains,respectively.Forbothmatrixand fracturedomains,theEGandDGmethodsprovidetheexpected conver-gencerateoftwoandthreeforpolynomialdegreeapproximation,k,of oneandtwo,respectively(Antoniettietal.,2019;Babuska,1973).

3.2. Quarterfive-spotexample

ThisnumericalexampleteststheEGmethodperformanceinan in-jection/productionsetting usingfive-spotpattern,andweadoptthis examplefromChaveetal.(2018),Antonietti etal.(2019). The five-spot pattern,whereone injection well is located in the middleand

fourproducersarelocatedateachcornerofthesquare,iscommonly usedinundergroundenergyextractionChenetal.(2006).Duetothe symmetryofthisgeometry,onlyaquarterofthedomain(Ω =[0,1]2) is simulated. Theinjection well is located at (0,0), andthe produc-tion well islocated at (1,1).We placethefracturewith 𝑎𝑓=0.0005 atΓ ={(𝑥,𝑦)∈ Ω ∶𝑥+𝑦=1}.Thegeometry,boundaryconditions,and meshwith=1.2× 10−1appliedinthisanalysisareshowninFig.6.

Thefollowingsourcetermisapplied totheentirematrixdomain includingtheinjectionandproductionwells:

𝑔𝑚(𝑥,𝑦)=10.1tan ( 200 ( 0.2−√𝑥2+𝑦2)) −10.1tanh ( 200 ( 0.2−√(𝑥−1)2+(𝑦1)2)). (50)

Toinvestigatetheeffectoffractureconductivity,weperformtwo sim-ulations using different fracture conductivity inputs. (i) We choose, 𝒌𝒎=𝑰,𝑘𝑛𝑓=1,and𝒌𝑻𝒇 =100𝑰forthepermeablefracturecase.(ii)We

assumethefractureisimpermeableandset𝒌𝒎=𝑰,𝑘𝑛𝑓=1× 10−2,and

𝒌𝑻

𝒇 =𝑰.Alloftheremainingphysicalparametersaresettoone.

ResultsoftwocasesarepresentedinFig.7a-bforthepressurevalue andFig.7c-dforthepressureprofilealong𝑥=𝑦line.Thepressure pro-fileofthepermeablefracturecaseissmoothlydecreasingfromthe in-jectionwelltowardstheproductionwell.Thepressureprofileofthe

(15)

im-Fig. 16. Thepmsolutionofheterogeneousquarterfive-spotexample(lowkm):(a )permeablefracture,(b )impermeablefracturecases,pmplotalong𝑥=𝑦lineof

(c )permeablefracture,and(d )impermeablefracturecases.AlloftheresultsobtainedfromtheEGandDGmethodsapproximatelyoverlap.

permeablefracturecase,ontheotherhand,illustratesajumpacrossthe fractureinterface.Thesefindingscomplywiththeresultsofthe previ-ousstudies(Chaveetal.,2018;Antoniettietal.,2019).Ourresults con-vergetothereferencesolutionasthehisreducedfrom=1.2× 10−1to

=7.2× 10−2.Notethat(Antoniettietal.,2019)performthese

numer-icalexperimentsusingthesecond-orderDGmethodwith=7.5× 10−2

onpolytopicgrids(Antoniettietal.,2019).Thereisnosignificant dif-ferencebetweentheEGandDGresultsforbothhvalues(Fig.7c-d).

3.3. Immersedfractureexample

The numerical examples discussedso far contain a fracture that cut through the matrix domain. To testthe EG discretization capa-bilityin the immersedfracturesetting, weadopt this example from

Angotetal.(2009).Sinceweassumethatthefracturetipis substan-tiallysmall,thereisnofluidmasstransferbetweenthematrixand frac-turedomainsacrossthefracturetip,seeA’inFig.8.Hence,thefracture boundary,Λ𝑁,thatintersectswith thebulkmatrixmaterialinternal boundary,0

ℎ,isenforcedwithno-flowboundarycondition,𝑞𝑓𝑁=0. Inthisexample,wetakethebulkmatrix,Ω =[0,1]2,andthe frac-turewith𝑎𝑓=0.01,Γ ={(𝑥,𝑦)∈ Ω ∶𝑥=0.5,𝑦≥0.5}.Weperformthree

simulationsusingdifferentfractureconductivityinputs;(i)weassume 𝒌𝒎=𝑰,𝑘𝑛𝑓=1× 102,and𝒌𝑻𝒇=1× 106𝑰forthepermeablefracturecase,

anditsgeometryandboundaryconditionsarepresentedinFig.8a.(ii) Thepartiallypermeablefracturecaseutilizes𝒌𝒎=𝑰,𝑘𝑛𝑓 =1× 102,and 𝒌𝑻

𝒇 =1× 102𝑰.Thiscase geometryandboundaryconditionsare

illus-trated inFig.8b.(iii)Impermeable fracture,geometryandboundary conditionsareshowninFig.8c,andituses𝒌𝒎=𝑰,𝑘𝑛𝑓=1× 10−7,and 𝒌𝑻

𝒇 =1× 10−7𝑰.Allotherphysicalparametersareequaltoone.Example

ofmeshthatcontains𝑛𝑒=272isshowninFig.8d.

InFig.9,thevaluesofpmwith𝑛𝑒=1,741forallcasesarepresented. Thepressureplotalong𝑦=0.75ispresentedinFig.10.Thepermeable andpartiallypermeable fracturecasesillustratethecontinuityof the pressurewhile theimpermeablefracturecase showsthejumpacross thefractureinterface.Ourresultsconverge(𝑛𝑒=272,𝑛𝑒=1,741,and

𝑛𝑒=6,698)tothesolutionsprovidedbyAngotetal.(2009).Moreover, theEGandDGmethodsprovidesimilarresults.Notethatthereference solutionsareperformedonthefinitevolumemethodwith65,536 con-trolvolumes.

(16)

Fig. 17. Thepmsolutionofheterogeneousquarterfive-spotexample(highkm):(a )permeablefracture,(b )impermeablefracturecases,pmplotalong𝑥=𝑦lineof

(c )permeablefracture,and(d )impermeablefracturecases.AlloftheresultsobtainedfromtheEGandDGmethodsapproximatelyoverlap. 3.4. Regularfracturenetworkexample

Weincreasethecomplexityoftheproblembyincreasingthenumber offracturesasshowninFlemischetal.(2018).Thisexample,however, iscalledregularfracturenetworksinceallfracturesareorthogonalto theaxes(xory).Thegeometryusedinthisexamplewasutilizedby

Geigeretal.(2013)foranalyzingmulti-ratedual-porositymodel.Details formodelgeometryandboundaryconditionsareshown inFig.11a. Weset𝒌𝒎=𝑰forallthematrixdomain,Ω =[0,1]2,and𝑎𝑓=1× 10−4 forallfractures,Γ. Twofractureconductivityinputsareused;(i)we choose𝑘𝑛𝑓=1× 104 and𝒌𝑻

𝒇 =×104𝑰 forthepermeablefracturecase.

(ii)Fortheimpermeablefracturecase,weassume𝑘𝑛

𝑓=1× 10−4,and 𝒌𝑻

𝒇=1× 10−4𝑰.Alloftheremainingphysicalparametersaresettoone.

Exampleofmeshthatcontains𝑛𝑒=184isshowninFig.11d.

Thepmresultsofthepermeableandimpermeablefracturesare pre-sentedinFig.11b-c,respectively.Thepermeablefracturecaseshows thesmoothpmprofilewhiletheimpermeablefracturecaseclearly illus-tratesthejumpofpmacrossthefractureinterface.Theseresultsarethe sameasthereferencesolutionsprovidedbyFlemischetal.(2018).

Figs.12a-bpresentthepressureplotsalongthelines𝑦=0.7and𝑥= 0.5ofthepermeablefracturecase.Thepressureplotalong(𝑥=0.0,𝑦=

0.1)to(𝑥=0.9,𝑦=1.0)lineofimpermeablefracturecaseisshownin

Fig.12c.Ourresultsusing𝑛𝑒=184,𝑛𝑒=382,𝑛𝑒=2,046,and𝑛𝑒=26,952 convergetothereferencesolutionsprovidedbyFlemischetal.(2018). The reference solution is simulatedbased on finite volume method with equi-dimensional setting, and it contains 1,175,056 elements

Flemischetal.(2018).

Besidestheevaluationofpressureresults,wealsoinvestigatethe fluxcalculatedatfaceA’(seeFig.11a)asfollows:

flux=−∑ 𝑒∈A′∫𝑒

𝒌𝑚

𝜇 (∇𝑝𝑚𝜌𝐠)⋅ 𝒏𝑑𝑆onA′, (51)

AspresentedinFig.13,thedifferencebetweeneachnecaseis insignif-icant,i.e.thedifferentbetween𝑛𝑒=26,952and𝑛𝑒=184casesisless than1%.Furthermore,thereisnodifferencebetweentheEGandDG methods.TheDOFcomparisonbetweenEGandDGmethodsisshown in Table1. TheEGmethod requirestheDOF(inthematrixdomain) approximatelyhalfofthatoftheDGmethod.NotethattheDOFinthe fracturedomainisthesamebecausewediscretizethefracturedomain usingtheCGmethod.

(17)

Fig. 18. Thepmsolutionofheterogeneousregularfracturenetworkexample(lowkm):(a )permeablefracture,(b )impermeablefracturecases,pmplotalong(c )

𝑦=0.7and𝑥=0.5linesofpermeablefracturecase,and(d )(𝑥=0.0,𝑦=0.1)to(𝑥=0.9,𝑦=1.0)lineofimpermeablefracturecase. Table 1

Degreesoffreedom(DOF)comparisonbetweenEGandDGmethodsofregular fracturenetworkexample.

ne EG DG

matrix domain fracture domain matrix domain fracture domain

26,952 40,629 13,677 80,856 13,677

2,046 3,123 1,077 6,138 1,077

382 595 213 1,146 213

184 293 109 552 109

3.5. Theheterogeneousinbulkmatrixpermeabilityexample

Thenumericalexamplespresentedsofaronlyconsideran homoge-neousmatrixpermeabilityvalue.Inthissection,weexaminethe capa-bilityoftheEGmethodinhandlingthediscontinuitynotonlybetween thefractureandmatrixdomainsbutalsowithinthematrixdomain(e.g.

NickandMatthai,2011b)byemployingtheheterogeneouspermeability inthebulkmatrix.Weadaptthequarterfive-spotasinSection3.2and regularfracturenetworkasinSection3.4.Wechoosethefinestmesh frombothexamplestotesttheEGmethodcapabilitycomparedtothat

oftheDGmethodinhandlingthesharpdiscontinuitybetweenthe max-imumnumberofinterfaces.Thegeometries,boundaryconditions,and inputparametersareutilizedasSections3.2and3.4exceptforthekm value.

Inthis study,𝒌𝒎=𝑘𝑚𝑰,km valueisrandomlyprovided valuefor eachcell.Wewilldistinguishinparticulartwodifferentcases,named lowkmcaseandhighkmcaseinthefollowing.Thelowkmcaseis char-acterizedbyalog-normaldistributionwithaverage𝑘̄𝑚=1.0,variance var(𝑘𝑚)=40,limitedtominimum value𝑘𝑚min=1.0× 10−2,and

maxi-mumvalue𝑘𝑚max=1.0× 102.Thehighkmcaseuses𝑘̄𝑚=30.0,var(𝑘𝑚)= 90,𝑘𝑚min=1.0× 10−1,and𝑘𝑚max=1.5× 102.Thisheterogeneousfields

forbothexamplesarepopulatedusingSciPypackage(Jonesetal.,2001) asshowninFigs.14and15forlowkmandhighkmcases,respectively.

3.5.1. Quarterfive-spotexample

Theresultsforthelowkm casewithpermeable(𝑘𝑛𝑓=1and𝒌𝑻𝒇=

100𝑰)andimpermeable(𝑘𝑛

𝑓=1× 10−2and𝒌𝑻𝒇=𝑰)fracturesare

illus-tratedinFig.16.Ingeneral,thepmprofilefromthetwocasesaremore dispersethanthehomogeneouskmsetting.TheEGandDGmethods

(18)

Fig. 19. Thepmsolutionofheterogeneousregularfracturenetworkexample(highkm):(a )permeablefracture,(b )impermeablefracturecases,pmplotalong(c ) 𝑦=0.7and𝑥=0.5linesofpermeablefracturecase,and(d )(𝑥=0.0,𝑦=0.1)to(𝑥=0.9,𝑦=1.0)lineofimpermeablefracturecase.

(19)

Fig. 21. Thepmsolutionofheterogeneousandanisotropykminregularfracturenetworkexample:(a )permeablefracture,(b )impermeablefracturecases,thepm

plotalong(c )𝑦=0.7and𝑥=0.5linesofpermeablefracturecase,and(d )(𝑥=0.0,𝑦=0.1)to(𝑥=0.9,𝑦=1.0)lineofimpermeablefracturecase.

regardingpermeableandimpermablefracturesettingsareprovidedas follows:

1. Lowkmwithpermeablefractureresultillustratestheapproximately

smoothpmsolutionbecausethe𝑘̄𝑚=1.0isequalto𝑘𝑛𝑓.Theplot along𝑥=𝑦line,asexpected,showspmgraduallydecreasesfrom theinjectionwelltotheproductionwell.Thisresultcomplies withthatofthehomogeneouskmsetting.

2. Lowkm withimpermeablefractureresultandtheplotalong𝑥= 𝑦lineexhibitalittlejumpofpm across thefractureinterface. Thisbehaviorisdifferentfromthehomogeneouskmsettingsince 𝑘𝑚min=𝑘𝑛𝑓,whichleadtothelesspermeabilitycontrastbetween

thefractureandmatrixdomains.

Theresultsforthehighkm casewithpermeableandimpermeable fracturesarepresentedinFig.17.Using𝑛𝑒=6,568,theEGandDG re-sultsareapproximatelythesame.Theobservationsconcerningthe frac-turepermeabilityarepresentedbelow:

1. Highkmwithpermeablefracturedisplaysajumpacrossthefracture

domainbecausekm aroundthefractureontheplottinglineis higherthan𝑘𝑛

𝑓;asaresult,thefractureinterfaceactslikeaflow barrier.Theplotalong𝑥=𝑦linesupportsthisobservationaspm jumpsacrossthefractureinterface.

2. Highkmwithimpermeablefractureillustratesahugejumpacross

thefractureinterface,ascanbeobservedfromthepmplotalong

𝑥=𝑦line,sincekmismuchhigherthan𝑘𝑛𝑓.Thepmvariationis lesspronouncedcomparedtothelowkm one,seeFigs.7b

(ho-mogeneous)and16b(heterogeneous),becausethefluidflowis blockedbythefractureinterface(sharpmaterialdiscontinuity).

3.5.2. Regularfracturenetworkexample

The pressure results of the low km case between the permeable

(𝑘𝑛

𝑓 =1× 104 and 𝒌𝑻𝒇 =×104𝑰) and impermeable (𝑘𝑛𝑓 =1× 10−4 and 𝒌𝑻

𝒇 =1× 10−4𝑰)fracturesareillustratedinFig.18.Similartothe

five-spotexample,theEGandDGresultsaresimilarwith𝑛𝑒=26,952,andpm resultsaremoredispersivethanthehomogeneouskmsettingasshownin

(20)

Fig. 22. Three-dimensionalregularfracturenetwork.Theillustratedsurfaceswithedges(bluein a andredin b andc )indicatethefractures.(a )geometryand initial/boundaryconditionsarepresented.pmisenforcedaszeroontwocornerpointsshowninredandno-flowconditionisappliedtoallboundaries.Initial

conditions(ICs)forpmandpfaresetasone.(b )presentspressuresolutiononplaneC,pm,matrixvelocity,vm,andfracturevelocity,vf,withthepermeablefracture

(casei),(c )presentspmonplaneD,vm,andvfwithimpermeablefracturecases(caseii).Notethatthematrixpressureisonlyshowninthecrosssectionbetween

thefartwoedgesofthemodel.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.19a-b.Thediscussionsregardingpermeableandimpermable frac-turesettingsareprovidedasfollows:

1. Lowkm withpermeablefractureillustratesthefracturedominate

flow regime,even though 𝑘̄𝑚=1.0, kmmin is setto 1.0× 10−2,

whichismuchlessthan𝑘𝑛

𝑓.Thissettingreducestheimpactof thematrixdomain.pmplotalong𝑦=0.7and𝑥=0.5lines sup-portthisobservationbyshowingthehighpressuregradientin thematrixdomain,butpmbecomesmuchlessvariedwhen en-teringthefracturedomain.

2. Lowkmwithimpermeablefracturealsopresentsthefracture dom-inate flow regime because 𝑘𝑛

𝑓=1× 10−4, which is less than

𝑘𝑚min=1.0× 10−2.Therefore,theflowinthematrixisblocked

bythefracturedomain.Theplotalong(𝑥=0.0,𝑦=0.1)to(𝑥= 0.9,𝑦=1.0) line illustrates jumps across the fracture domain, whichissupportingourobservation.

Theresultsforthehighkm casewithpermeableandimpermeable

fracturesarepresentedinFig.19.With𝑛𝑒=26,952,theEGandDG

re-sultsareapproximatelythesame.Theobservationsconcerningthe frac-turepermeabilityarepresentedbelow:

1. High km withpermeable fracture showsthatthematrixdomain

gainsmoremomentumcomparingtothelowkm case.pm plot along𝑦=0.7and𝑥=0.5linesillustratesalsoapproximately lin-earreductionalongthematrixdomain,whilepressureisalmost constantinthefracturedomain.

2. High km withimpermeable fractureclearlypresents thefracture

domaindominatetheflowbecause𝑘𝑛

𝑓ismuchlessthanthekm.

Hence,theflowisblockedbythefractures.Theplotalong(𝑥= 0.0,𝑦=0.1)to(𝑥=0.9,𝑦=1.0)linesupportthisobservationby illustratingmultiplejumpsacrossthefracturedomainandnopm variationinsideeachmatrixblock.

3.6. Theheterogeneousandanisotropyinbulkmatrixpermeabilityexample

Thissectionillustratesthecomparisonbetweenthepmsolutionsof EGandDGmethodsusingtheheterogeneousandanisotropickm.In

(21)

con-Fig. 23. Comparisonof(a )theaveragepminthewholedomainandblocksAandB,and(b )thepmprofilesfort=25andt=75along(𝑥=0.0,𝑦=0.0,𝑧=0.0)to

(𝑥=1.0,𝑦=1.0,𝑧=1.0)line.

trastwiththepreviousexample,weutilizethecoarsestmesh(𝑛𝑒=184) fromthe regularfracturenetworkexample.The matrixpermeability heterogeneity,km,isgeneratedwiththesamespecificationasthelow kmcaseintheprevioussection.However,inthisstudy,theoff-diagonal termsof (13)arenot zero,andthekm ofeach elementisdefinedas

follows: 𝒌𝒎∶= [ 𝑘𝑚 0.1𝑘𝑚 0.1𝑘𝑚 𝑘𝑚 ] , (52)

ThegeneratedheterogeneousfieldisshowninFig.20a-bforboth diag-onalandoff diagonalterms.

The pressure results of the low km case between the permeable

(𝑘𝑛

𝑓=1× 104 and 𝒌𝑻𝒇=×104𝑰) and impermeable (𝑘𝑛𝑓=1× 10−4 and 𝒌𝑻

𝒇 =1× 10−4𝑰)fracturesarepresentedinFig.21.TheresultsofEGand

DGmethodsareapproximatelysimilar forbothfracturepermeability settings.These resultsillustratethattheEGmethodcapturesthe dis-continuitiesandallowusingacoarsemeshtomaintainaccuracy.

3.7. Thetime-dependentproblems

Fromthissection,weconsidertime-dependentproblemwherecand

𝜙miarenonzero(1)–(8).Besides,weextendthespatialdomainto three-dimensionalspacetofurtherillustratetheapplicabilityoftheproposed EGmethod.Here,thefirstexampleconsidersthegeometrycontaining onlytheorthogonalfracturestotheaxes(x,y,orz),andthesecond ex-ampleassumesthegeometrywitharbitraryorientatednaturalfractures. Notethatwe,here,presentonlytheresultsoftheEGmethod.Theresults oftheDGmethodarecomparabletothoseoftheEGmethod.

3.7.1. Three-dimensionalregularfracturenetworkexample.

Inthisexample,weconsiderathree-dimensionaldomain,whichis ananalogofthetwo-dimensionalcasepresentedinSection3.5.2.This domaincontainsasetofwell-interconnectedfracturesandmeshedwith tetrahedralandtriangularelements(forfractures)with𝑛𝑒=9,544.The fracturegeometryisbasedontheexampleinBerreetal.(2020).The detailsofgeometrywithinitialandboundaryconditionsillustratedin

Fig.22a.

Here,weconsidertwodifferent scenarios:casei)permeable frac-turecasewith𝑘𝑛

𝑓=1× 106and𝒌𝑻𝒇 =1× 106𝑰;andcaseii)impermeable

fracturecasewith𝑘𝑛

𝑓=1× 10−12,and𝒌𝒇𝑻 =1× 10−12𝑰.Forbothcases,

weemployapermeableporousmediumbysetting𝒌𝒎=[1.0,1.0,0.1]𝑰,

andalloftheremainingphysicalparametersaresettooneforthe sim-plicity.Thetemporaldomainisgivenas𝕋=[0,100]whereanuniform timestepsizeΔ𝑡𝑛=1.

InFig.22b-c,thenumerical results ofthepm,vm,andvf forthe

permeable(casei)andimpermeablefracturecases(caseii)at𝑡=100 arepresented.Amerevisualexaminationoftheseresultsalreadyshows thatthefracturepermeabilitycontrolstheflowfield.Forthepermeable fracturecase,thevelocityatthecornerofblockBishigherthanthat ontheoppositecornerinblockAasthefracturesareclosertotheopen cornerpointinblockB.Fortheimpermeablefracturecasethevelocity atthecornerofblockBislowerthanthatontheoppositecornerin blockAsinceblockAislargerthanblockB,anditcansupportflowfor alongertime.

SimilarbehaviorsofthepressurevaluesareobservedinFig.23a, wheretheaveragepressurevaluesofthefulldomainandblockAand B areplottedfor𝕋 =[0,100]. Itis clearthat theaveragepressurein blockBdropsfasterthaninblockAfortheimpermeablecase.Moreover,

Fig.23billustratesthevalueofpmalong(𝑥=0.0,𝑦=0.0,𝑧=0.0)to(𝑥= 1.0,𝑦=1.0,𝑧=1.0)lineat𝑡=25and75.

3.7.2. Algrøynaoutcropexample

The final example is a three-dimensional fracture network built basedonanoutcropmapinAlgrøyna,Norway(Fumagallietal.,2019). Themodelhasasizeof850 × 1400 × 600mandcontains52 inter-sectingfractures(themodelisdescribedindetailinBerreetal.,2020). Thefiniteelementmeshisdiscretizedbytetrahedral(rockmatrix)with

𝑛𝑒=163,575andtriangularelements(fractures)with𝑛𝑒=329,080.See

Fig.24aformoredetails.AsshowninthisfigureDirichletboundary conditionsareappliedontwoedgesofthemodeltorepresentan in-jectionandaproductionwell.Allotherboundariesareconsideredas no-flow.Therockmatrixandthefracturesareconsideredpermeable:

𝑘𝑛

𝑓=1× 102,m2𝒌𝒇𝑻 =1× 102𝑰 m2,and𝒌𝒎=[1.0,1.0,0.1]𝑰 m2.Allof

theremainingphysical parametersaresettoone,and𝕋=[0,1× 106]

secusinganuniformΔtnof1×105sec.

Fig.24bandcshowthesimulationresultsincludingthepressure field,thepressureiso-surfaces,andvelocityvectorsintherockmatrix at𝑡=500,000sec.Thepressureprofilesalongalinebetweentwo op-positecornersofthemodelatdifferenttimesareplottedinFig.24d. ThisexampleillustratestheapplicabilityofthepresentedEGmethod

(22)

Fig. 24. Algrøynaoutcropexample:(a )geometryandinitial/boundaryconditions(no-flowconditionisappliedtoallboundaries(exceptstheproductionand injectionwells).Initialconditions(ICs)forpmandpfaresetasone.), b )pressuresolution,pm,matrixvelocity(inblackarrow),vm,andfracturesmesh,(c )pmand

itsiso-surfacesshowningrey,and(d )pressureprofilesalongalinefromthetopofinjectionwelltothebottomofproductionwell.

foracomplexthree-dimensionalfracturenetworkwitharbitrary orien-tations.

4. Conclusion

ThisstudypresentstheEGdiscretizationforsolvingasingle-phase fluidflowinthefracturedporousmediausingthemixed-dimensional approach.Ourproposedmethodhasbeentested againstseveral

pub-lishedbenchmarksandsubsequentlyassesseditsperformanceinthetest caseswiththeheterogeneousandanisotropicmatrixpermeability.Our resultsillustratethatthepressuresolutionsresultedfromtheEGandDG method,withthesamemeshsize,areapproximatelysimilar. Further-more,theEGmethodenjoysthesamebenefitsastheDGmethod;for instance,preserveslocalandglobalconservationforfluxes,canhandle discontinuitywithinandbetweenthesubdomains,andhastheoptimal

Cytaty

Powiązane dokumenty