• Nie Znaleziono Wyników

Some fluorescence properties of cataractous eye lenses

N/A
N/A
Protected

Academic year: 2021

Share "Some fluorescence properties of cataractous eye lenses"

Copied!
27
0
0

Pełen tekst

(1)

FLUORESCENCE PROPERTIES LENSES

OF

CATARACTOUS EYE

Aleksander Bal Ler

N. Copernicus Uni vers-i ty'

Grudzi4dzka 5

87-1oO Torurl, PoI and

ABSTRACT

T:le foss of Lransparency of Lhe oculal. l-ens is caused

by Lhe increase of lighL scaLLering as a result of s!:_ucLural changes and by ihe -increased absorpt.ion df the wlsible light due Lo t-he accumulaLion of piqmenls.

Fo:1owi ng pigmen!s

] NTRODUCfi ON

The pholol umi nescence of- Lhe eye lens was fifs!

reporled by Regnauld in 1458 [1]. Since then numerous st-rjdi es of Lhis pheDomenon, bolh in uil,o and irr uitro,

we.re perfor_med te-lo]- Ift ?)il,o lens fluo.escence can be undergo non-radia.t.iwe and .adiali\/e Clumj.nescence)

prccesses whtch can be moniLol'ed spect-.oscopi cal l y. The paper presenLs resldts conce.ning the e>€iLalion specL.a, dacay Limes and polarj.zatlon of t-he 1e::Lt cul ar fluo.escence. Fluorophore helerogeneily

ma::-if esLs llself ln alf Lhe e>qperimen.t.al dat.a- A

st-riking behaviour of Lhe emj"ssion anisot,ropy as a fu;:clion of Lenperat.ul'e is found, part,1cularly for cc:_llcaL calat'acL Ienses, indicaLino

(2)

ut il i zed

for lhe

for Lbe ea.l Y

evaluaLion of

deLecLiol., ol caLaracL t11l and Lhe anLicalaract drug effi cacy

L121

chromophores

Cfluo.ophores), also referred to as fluorogens' h;ve

al.aady been ident-ified t13-151 . AhrsorPlion .in Lhe UV

.egion belo\r 3OO nm is mainly due Lo Lhe aromaLic amino acids Lr'ypLophan, L)4'osine and Pheny.Lalanine Present, in .Ieirs prot-eins 1n t-e.tns of visual caPabilily lhis absorplion is insignificani. Chromophores absorbing in the visible range , however , conlrrbule d.irecLIy Lo the loss of Lhe .Lens Lransparency. A haze caLrsed by

their flrjorescence may also ini-erfe.e wilh vision t6l The idenlif.ied, visible lighl absorbing fluorophores

A nunber of

.i-r),?t-ophan deri vaLi ves

Pioperlies Cincluding raPid nano- and Picosecond

Prccesses). The --xLreme single Phot-on sensiliviLy of

mcde.n fl-uorescenge i-echniques Logelher wiLh Lhe hJs<iFrir i.\r +roir Eitu non-destr ucti ve

view of Lhe

N'-formylkl.nurenine, L-kynurenine and O-B -D-ql ucosi de oi 3-hydroxy- L-k),'nurenine, as we.L 1 as 3'3'-biLl,'rosine

anC anlhrani.Iic acid Cl,3-151 . In addii-ion, Lhel.e is a pcssibility of lhe accumufai-ion and relention of n!!ne. ous exLraneolrs tluorescenL comPounds, in paj_Lrcular orugs. such as Psoralens, Phenothj. azi nes, pc.ph),'rins or ai.lopurinol f161 .

Fluorescence nelhods are one of the moderr',

.a3idly developing, Loofs fo. probing Lhe biomofecula. s):sLenls t171 . Since fluorescence is sensit-ive Lo 't-he

P].cp-or!i es of lhe f I uoioPhore' s mol ecul ar envit_onm-anl,

i-hese melhods may be used Lo provide infortnaLion abouL il and in parlicular about its slrucLural and dl/namic

(3)

l.ansparency an imporLanl properLy is lLs absorptlon

speclrum 1n lhe vlslb].e range from abcrl 38O nanoneLers

ro

about, 7q9.

!?q?l1L-9tli.

a9._9!13!qr _q,i:"ect measuremenLs of lhe spect-I'at disLribuLion of absorbed light are, owlng Lo slrong light- scaLLeriDg and lhe shape of lhe lens,very d-ifficulL Lo perform. T:)ese dlfficuliies can be avoj-ded eiLhef by using :ne phoLoacouslic

met-hod t3,1al o. by record.ing '-he fluorescence

lnlensily as a funclion of fhe exci_,aLion wavelenglh

Clhe ftud.escence excilation spectrrm) al a fixed emission wavelengt.h tal- Such a spect-rirn i"

"ti" to li'" abso.plion speclrum and may be, in p.tnc.iple, measqred in sitz as well as other fLuo.escence characterislics (i-ncluding ils emission sPecL.um, 3olarizaLion and

decay).

MATERI ALS AND METHODS

A Lolal of 102 lenses obtained as a resulL of inLracapsul.ar cat.al'acL exlractlon from Lhe Ey" DeparLnenL ot lhe Joinl Provincial H3spiLal in Torurl wer_e sludied The age of patienls ran3ed f.oJ11 O lo 87. Int-acL .Lenses were placed ln a special hotder belween

lwo quarlz windovs of O.5 tnm i-hickness conlaining no fluids and measuremenls were pei_formed Cunless oi-her.wise sLaLed) al room Lempefalure about one houa afler t-he operaLion . In some cases lhe fenses were

sT-ored for several days al OoC. Le;:s e\-Lracts were prepared accord-ing Lo Lhe follcwing pfocedure-DecaFsuleled ]enses were dessicaled in Lhe presence of

P-O^ for 4 daF .cu! rnt.o iour parls and pounded. Each par! was Lhen mixed wlLh a solvenL Cl:_is buifer pH 7.5

(4)

lhe nd><Lure '.ras honogenized fo. 1O minut-es 1n an ul!:_asonic bath and cen!!'ifuged. Aqueous sofut-ions were

adcjlionally dialysed lo reduce lighL scat-le.ing'

ot-i.e.l^llse inlerfertng wj.Lh absorplion measuretlent-s ' and lo slu<iy lhe effecl of .emoval of ProLeins and oLher

rhaca orno.I ec ul, a. malerial 0n Lheir f.Luorescence

AbsorpLion sPecl.a ware measured using a Specord

uV--rT S specLroPholomeLer fl'otn C. Zeiss'Jena CEasL Ge.:.any) - Fl!lo.escence excilat-ion antl emission sPeclra

v,/ere recorded on a home bu-ifL versalile

comPuler-cor-'-r ol I ed photon-counLing speclrofl uori met,e. equtPPed v/i'-r': Dolarizers. MeasuremenLs ot fluoaescence

ex.:'-at-ion spect,.a required the use of Lhe qurntum

co'.i!ef sofuLion of rhodam-ine B in eLhylene glycot

C3g,'1).-in Lhe reference channei of Lhe insli'umenL. Wilh

lh:s quant-um count-er lhe highest- accuracy rs obrained

in --ire range of excilalion wavelenglhs tt'rriled t,o 36() -6CC nm. Emission sDeclra \teFe nol correcled for Lhe

specLral sensii-iviLy of lhe deLecling sysLem. Ftu.rescence decay curves were measured wilh a home

burll !ime-cor.e]aLed single photon Danosecond flL3roneLe. using a niliogen-filIed flashlanP. The f i:'-: Le lime-widLhs of Lhe excillng lighL pulse and Lhe ins:.umenLal .esponse Can ove.all halfwidlh ot abou! 2 na::3seconds) .equired t-he use of a deconvolut-ron

'he fl!:=rescance inlensiLy lo an infinitely shorL

€x.:t-ai-ion pul.se Clhe so calIed imPulse response). A

leasl squares filt-inq deconvol.uLion p.ocedure was used

lo .ecover t.he fluorescance decay parameLel.s t1Sl . In aI: exci taLi on-eni ssi on sLudies, fron! face exciLaLion

of the anLerior part of lhe -Lens was aFF.lied. fbe ill'rnrinaLed area, abouL a mmz, was cenL-ared on lhe

(5)

di.recLion made an angfe of 45- wl!h' Lhe lens axis and

Lhe fluorescence erlission was observed along Lhis axis. Conslruclion det-ails of ou. inslrurnent-s are avallable

LeL us first. presenl Lhe resulLs obLained for

cat-aracLous lens e\'lracLs. TyPl ca.t absorPlion specLra

ol such exlracls are shovrt iTr-:iFigsiti and

2-AceLon-it.ile e\.!racts absortrLlon in i-he 2OO

-exhi bi led

600 nm range- The

st-rongesi-t-he f] uorescence -of i-he sludied ex-Lracls. In

absorDlion was found for aqueous exl-.ac1-s and app-aars lo be main.Iy due to lhe Presence of Lhe aromatic amino

acids in lhe exLraci-ed sutrslance. The speclra' ot e!hano]ic and cyclohexane e).Lracfs are similar lo each

olher,bul dllfer slrongly in t-heir inlensiLy' shape and posit-ion wiLh resPecl Lo lhe speci-ra of aqueolJs ex'LracLs. It is lnteresLing Lo nole LhaL Lhe aqueous

ex-L.acls spectl'a markedly exLend iDLo t-he .visible range for nucLear ar,d

'rli xed cal-aracLs CFig. 1) ' bul

nol for Lhe sugar calaract- CF.ig.2)

The fluoaescence speciaa were' measured for all df lhe prepared e\-|racls,using Lwo exciLatlon wavelenqLhs:

366 nm and 436 nrA. OnIy lhe aqueous e\-t-racls exhibiled

nreasurable fluol'escence under Lhese condilions and lhe posit-ion and shape oi Lhe enrission band \'/er e iound to

be exciLalion wavel englh-dePendent cFig- 3). The same

figure also shows lhe p.onounced effecl oi dialysis on parlicula. dialysis leads lo a several-fo-ld increase of Lhe emission inLensiL,y and shifLs Lhe maxi tnum of Lhe e)llission exciLed wit-h Lhe 436 nrn ligh! fl'on about- 5OO

(6)

nm Lo 52O nm.

All of Lhe following .esu.It-s were obt.aj- ned fol'

whole lnlacL lenses. Flgure 4 sho\'.s examFLes of normalized f.luorescence spect-ra of lhree .lehses. These spect-ra are strongly e),-ci!a!ion rtavefengl-h-dependenl,

revea-Iirig Lhe he|erogeneit-y of f.Luoraphore,s. Flgufe 5

displa]s Lhe same speci-ra, buL wiLh l'elalive inlensllI€.s p.eserved for each excitat'ion wawelenglh.

Figure 6 pl.esenls lypical f.Luorescence exciLalion specL.a {Lhe .aLio or LI_,e Dumber of em-ilLed phoLons Lo Lhe nunber of incide.lt- phoLons as a funclion af Lhe excilalion wavelengLh) of Lranspareni Ca) and cat-aracLous Ct',cf IenEes. These excilaLion specLra

sLrongly depend on t-he wavel, ength used to observe

fluorescence (5OO,55o,600,650 and 7OO nm) which is again arr -indicat.r,rn of t-he hele.ogeneily of t-"he

fluorophare populalion CFartlcularly evldent- in Fig.6 b

and c)-An inleresting flndinq is Lhat 5 oul of 6 su€raf

cal-aracL fenses are charact-erized bv Lhe same sDecLra *hown 1n Fig.6c.

Figure 7 p.esenls fluorescence exciLaLj-on speclr.a

detined as

4J ll-1ry761 ll.s 211 , where I and T- are the parallel

and Lhe Ferpendicular polai_lzalion cor*ponents af Lhe ffuorescence inlensiLy lrt Lhe case of a linearly pofarized excitat-lon ligh!, fo. Lwa Lyp.i ca.L cases ot

cataraclous and t-t.anspafenL Ienses. The enlsslot) anisoi-foFy aFFears Lo be essenLia.Il.y consLanL across t-he exclLaLion specLrum. A sfiEhl increase \cl t-h rising

excilat-ion wawelenglh may p.obabfy be attriL'uled Lo

some Ieakage of the st-rongly scaLt-ered excitalion l-ighl lhrough Lhe evldsslon monochr'omaLor. This effecl is more

F.onounced fo. t-he cat-aracLous Iens.

(7)

deDendence of Lhe emission anisot-ropy' oblained on healing CFigs.8,s) and bot-h on heat-ing and cooliDg.

Typicat resulLs oi Lhe fLuorescence decay measuremenLs lor lenses no.6'F and I Csee exciLation speclra in figures 4 and 5) obt-ained using lhe 337 nio

ex.il-aL.ron are shown in TabIe 1. T1-t"y .ePresen! Lhe

inpulse response of fluorescence' which was assumed Lo

be a sum of three exDonent-ials: T],"" " ',

TABLE 1

A:ri i Ludes d Cre]al-rve) and Decay Times

F!uorescence Dec.y for Lenses

"".$"fl ana 5 d:fferenL Endssion Wavelenglhs Xen

\tavel engt.h: 337 nrn. ExcilaLion I ns] t nml I nsl lnsl

6(

o. e4 1.34 o.7 o.a o.7 4.7 o.5 o.24 o. a6 o.17 o.

04

13. 6 o.

05

17. L o.

04

s.4 o.

02

10.3 o.

01

12. 6 q? o- 56 o.55 o.5e 1.8 r-4 o.27 o. 1s o. eo o.

oos

27. a o.

04

10.9 o.

01

e7.7 o.

oo4

86.2 a6 o.70 o.55 o.50 o.6 1.5

o.4t

o.25 o.

o9

7.7 o.

04

14. a o.

os

11.8

(8)

The resulLs shown .in Table 1 indicale lhal Lhe ffuorescence decay of a lral.tsParent- Iens no.5 tnay

indeed be .epresenl.ed by Lhree exponenLials wiLh decay lirnes essenlially independenL of lhe emission

\ravelengLh, bul in Lhe case of Lhe lenses no.6 and 7 more componanls are requ.ired i-o adequalely represenr

lhe daLa.

Dl SCUSSI ON

Fluorescence heLerogeneily of cat-aract-ous eye

lenses is maniiesLed in aII ol Lhe resulls Presenled

in t-he foregoing secLion. Dialysis did nol remove.lhe excilaLion wavelengLh dePendence of the aqueous ex'lracLs, \rhich indicales Lhat t-he main faclor in Lhe observed helerogeneiLy is t-he p,'esence ol warious

fluorophores, white Lhe effecl of lbe f.Luorophore si!e

heLerogeneiLy rs ]ess imporLanL. The inlLuence of Lhe macromolecu.lar env.!ronment cabsenL rn dialysed a\-|raclsl nanifesLs it-seff, howeve. ' in Lhe quenchinel

of lhe ffuorescence emission in Figure 3. A

dialysis, in Figul'e 3b, indicat-es LhaL Lhe environmenL

ol lhe ftuorophores seleclive]y exciled wil-h Lhe 436 ntn

IiqhL is in non-dialyzed e\-i-ract-s mosl likery hydrophob.i c.

' Fluorescence sPecLl'a shown in Figure { demonslrat'e lhaL Lhe Lluorophore PoPuIaLion oi the Lransparent- neonalaf lens is -.Iess heterogeneous

comFared wiLh mat-ure and s--n-i]e caLa.act- lenses This

concfusion is supporled by t-he decay Lime dala sho\{r1 i-n Table 1.

(9)

The lluorescence of lhe ll.anspa:'enL lens 1s of rele!j.vely smal,I int'ensii-y CFig-5). In parLicular'

ccxnpa:ing Lhe inLensiLjes in F.igure 5c one can iudge

!:::.! Lhe concentratlon of f.IuoroPhiores Lhe t:ans?arenL lens, exciLed with Lhe 4O5 nm Irght-' is a:oul lv/o orders of magnilude smaller Lhan in the Lwo

c_-her lenses.fhis conliI'ms earlier findings t15l LhaL l:ght absorption of 'he aging lens rs proerressj vely e!'LenCing inlo .Lonqer wavelengLh' regions of lhe

s:ec L l_ uJlr.

SirdLar .ernarks can be made aEoal lhelruoieltence axcilat-ion speclra in lhe visible range shown in Figu.e e. f:1 addi!ion, bowever, one observes a disLincl

s?,ecl:_a] palle.n foi^ suga. cat-a'.acL Ienses

CFig-6c)-ResulLs of lha emlssion anrsotropy measu'.emenLs canncr be unFqu.iwoca--y InterpreLed. ILs val ue rs 1::tluenced by t-oo many factors involving lhe f: qorcphores and their environmenL' .which are beyoid

canLrol- These include Lhe sl.uctural' ordering '!he r::lransic angles belween abso.pt-j-on and emiss.ion dpo-Les of aluo.ophores, Lherr rol-alional mobiliLy and i:)lernal f.Iexibilily on lhe nanosecond Lime-scale, Lhe e:ect-ronic exciLalion energy transfer t17l and also l:gh! scattering and brrelrr ngence r2Ol of the Iens

The obt-ained t-emperalure dependence of the e:!ission anisolropy is qu-ile challenging CFigs-a,S and 13)- For i-nsLance, lhe incl'ease of Lhe emission

a.iisolropy wilh rising lemperaLure CFj.gs.8 and 10) is inexplicable. one would ralher expect- iLs value lo deci'ease, which is fhe (lsual properLy of the f-uorescence anrsoLr.opy of solulions t17l and is caused

b-,' rapld .andom:zalion ol phoi-ose]ect-ed

,n3fecular o.ient'at-ions due Lo fasLe. roLalional d:ffusion aL elevai-ed lenp-^raLures. A st-rikiner

(10)

behavlour of the emission a-isotropy is obserwe,d for co.llcal caLaracL Ienses (Fl9,9). 1l appears lhat, a sorl of phase transiL1on Lakes pface in Lhese lense,s aL

abouL zO-C. A diflerenl palt-din is Sbsefve(faoa't

auga-shovrn in Fiqure 14. These spec1-r a cor r espond calaract- .Iens CFig- 1O) whose enlssion anisot.opy

dlsp-Lays a m.inimum, z.1so al abouL zOoC, on heating.

This lrdnimum does nol appear on cooling.

In view of lhe above findiners il seems approprtale lo draw lhe at-lenLion ot olher inve.st.igat-ors lo Lhe necessiry of Lhe temperaLure conLrol Cwithin 1oC) in Lhelr sLudies of physical p].ope.Ltes of lhe lens.

The daLa shown in :table 1 were analy.zed in lerms

of lhe fract-ldnal cont-ribuLions f CX€m) - d?., t .x.r. Ci = 1,a,3) of each of t-he t.hnee cornponenLs i-o lhe t'olal fluorescence int-ensiLy. This unique., Lhree component, decomposiLion was posslble only fol.

-Lhe

lr_ansparenl neonalal lens no.6. ResulLs oi such an anall.'sis are shown in Figufe 11- The fracLionaL

conlrib(llions f CX ) were Lhen used Lo resolve Lhe

composlle emission spect,.um of Lhe Iens no.6 CLhe solid fine in Fig.4a) inLo t-hree componenLs- This vas accompfished by simply nulLip-lying the composi !e speclrum by f and Lhe resulLing componenl s'pecLra are presumably t.o lhrae diffefent- ffuo.escent species.

Such a unrque lhree componenl decomposit,ion was

not Dossible for lenses no.it and no.tr which indrcares a larger helerogeneily ot lhe fluorophore populalion

Cmore t.han Lhree speci--s) in opacified Ienses.

Sioce the presented resuf!s raise more questions Lhan trrovide furlhel. si-udies of Lhe eye_ .Iens

fluorescence are needed. ,The author hopes Lhat lhis oplnion wiII be shared by lhe l'eadef.

(11)

ACKNOWLEDGE}'€NTS

T::e author is graleful for Lhe cooperation of

L, tsi €;qz:!3\,,sk i , M. D. and lhe personne] ol Lhe Ey.

De?aI.L=e:l'. ol t-he Jolnt- Provincia] Hospit-al in

Torun-Ti? assisLance of :f. Marszalek, A. Prenlka, A. iaai.bcL::r.zek and D. Heweli is also appreciai.ed- The v,c.k r_a-: ca''.ie.d oui under lhe - Fesearch Projecl

RR.

1.1:-REFERENCES

1. Re5:-,a.r1d J: Sur 1a fluorescence des milieux de 1'ce:: chez I'homme eL quelques mammi feFes,

L' I ::s--i:ul 26: 41OC1aSA)

2. Ku.:el RB,HoIbarshL ML and Yamanashl BS: Spectral sLu:ies on no.rnal and caLaracLous inlacl humarr

4.

I enses, Exp. Eye. Res.17:65C1973)

Ler:-a;: S , Yamaneshi BS ,Pa]mer RA ,Roark JC and

Bork-an R: PhoLoacoust.i c, fL uor escence and lighL

t-ra:_-s::lission spectra of nol'mal ,aglng and cat-aaacLous

-t e.5es, OphLhal ni c Res.1O:16aC1S7a)

Jac.3s R and Krohn DL : Fluorescence inlensily of human .I ens

I nwes--. ODhi-haImol.2O: 117( 1981)

Bes', jA van , TJin A Tsoi EWSJ , Bool JP and

Oos_,e:r':'ris JA : In v-i vo assessmenL of lens

ira::-s--lssion fo. blue-gr€,en lighl by

aul.:ilro.escence measuremenl, Ophthatrdc Res.

17:3'::1SaS)

WeLe RA : Human Ienticular fluorescence and t-ra:-s::ssrviLy,and rheir effecLs on vision, Exp. Eye

Res, {1: 457C1985)

Ba:..e. A, Biegano\^,ski L and Mal.szalek T:

Phc_-.]urni nescence oi lhe ocu.lar tenses.Kllnika Oczna SO: 4:-: ( I gAA), in Po]ish

8. Bal-,e. A, B-i eqano\^rsk -i L, Macie-je\,ski K and

Mars:al ek T: Measul'ehen.-s ol i-he speclra of fIu=:e..ence of t.ranspafenL and cat,aracLous

.Iense,s, Kf inika Oczna gO:474C1S88), in polish

g. BaI'-g;. A : Ftuorescence excit'atj.on speclra of opa.c::ied Ienses, Klinika Oczna SO: 476C1SaA) , in

(12)

Pol i sb

10.

Yu NT,

Cal ltz,

Ho DJY

.I aser -scanni ng-mi crobearn

ana.Lysi s

and Kuck JFP Jr. : Autom,aLed

ll uor escence,,Raman l mage

.Iens wlLb mu.I ti channel

deLect.ion: Evidence for neLabofic production of a

green fluorophor, Pfoc. NaLI _ Acad. Sci. USA a5: 103( 1 gAa)

11. Lel'man S: NMR and lluorescence spectroscopy oi the nol.tnal ,aging and calaractous Iens:rn vrtro and rn vivo appl i caLi ons, Lens Pesearch 1:175C1S43)

12. Le.man S: In v-ivo melhods to eval.uaLe ocula. drug

effi cacy and si de eflecLs , Concept"s Toxi cot .

4: ATaLSAT)

13. Heyningen R wan :Assay of fluorescent glucosides rn the human 1ens,Exp. Eya Res.15: t2!CIg73)

14- Garcia-Cast,:ineiras S, DilIon J -:and Speclor A: Non-LrrcLophan lluorescence associaLed wiLh human

Iens protein: apparent comp_Lexity and isola.lion of bil),.rosine . and ant,hl.anific acid, Exp. Eve Res. 26: 461C197a)

15. Lerman S:Radiant. energy and Lhe eye, Macnfl]an, New

York 1gao

16. Dayha!/-Ba.ker P, Fo.bes D, Fox D, Lerman S, McGi nness J, Waxl er M and Fel ten R : Diug phololoxicity and vrsual heallh. 1n Oplical Radialion and Visual HealLh Cvaxler M and Hilchins VM,eds. ),Boca Ralon,CRC P'.ess C1SA6),pp.747-L75

17. Lakowicz JR: Principtes of iluorescence

specLroscopy, PIenum Press,New York 1983

1E. Bel'nini U, Reccia R, Russo P and Scala A :

QuanLit-at,ive phoLoacousLic spectroscopy of J. Phol ochem,

Phot.obioL ,B: Bloloqy 4:4O7C199O)

19. Demas JN: Exc-i,i-ed st-ale fifelilne measuremenLs.

Acadenic Press. Ne\v York 1983

aC. V/eale RA: Sex, age and Lhe birefringence of tha human c.ysLalIina .Iens, ExpI Eye Res:2S: 449C1979)

(13)

Figure capt-ions

FI CURE 4

Normalized fluorescence speclra of leises oblained al warious exciLaLion wavelengt.hs: 3Oe ni - doLled line, 334 nm - broken line, 4O5 nm - solid l:ne.

No.6 - transparenl neonatal rens, no.p - partj.ally opaque .lens f.om an enucleaLed eye, no.$ - senfle

cat-aract- lens.

exLracls for wiLtsl O. O? %

31 , .lens no.e

-spec!.a ob',ai ned

^L fi>(ed : a) Lransparent, Iens, b) and

Absoipl-ion specLl.a of caLa.ac,t-ous fens

cm opLical paLh: a) tris buffer pH 7.5

added, b) elhanol , c) cyclohexane.

Lens no. 1 - nuclear caLaracL, ma-Ie mi xed calaracL, fema.Ie 85.

FI GUPE 2

Same as in figufe 1 fo. sugar cat-a.acl- lenses.

Lens no-3 - f.76, .Lens no.4 -

f.65-..

Influence of diatysis on the fluciescence aqueous axLract. oi Lhe ..Ie!1s no. 1 exciLed'

v/avelenglhs: a) 366.nn and b) 436 Dm.

FI GURE 5

Same as in iigure 4, bul wiLh rela.,ive inLensil.ies

FI GURE 6

F.Iuorescence e)<ci Lali on emission wavel englhs for c) cat-al.act-ous .Lenses.

NiNg

FI GURE 7

Typical flliorescence exciLat-ion sp--c:-.a obt-ained for lhe 55O nm emission and t-he correspc:ding spect.ra ot

(14)

TemperaLul.e dependence of Lhe ffuorescence anisc]Lropy

of: four' lenses: a) f.66 and b) f.Aa - m-i xed cat,aract

.IeDses, c) f.61 - almost transpareni- non-cataracLous

-.--fens--cf f.68 - nucl€ar- cai-aiact fens.

Temperat.ure dependence of

for L\..o cor!ical calaract- lenses: a) f.6a, b) the fllrorescence ani m.59:soLropy

dependence of lhe fluoiescence anlsot..opy caLaract- Iens Cf.78): a) on Lhe day of the

b) five days l aler

-FI GURE 10

FT GURE 11

Fr acLi cnal .inLensilies of lhe

full .ci rc-I es -Csee Tab]e 1).

Lhre- .fluorescence decay

opeD.ircles - z.

FI GURE 12

Li feLi cte-r esol ved speclral components of !he UV

exciLei C334 n tluorescence emission of t.he lransFarenL neonalal Iens Clhe decomposilioD of lhe solid fine speclrum In Fig.4a).

(15)

0.8

T,q,4

(]

n

0l

5

LtJ

(J

z

m

tr

a

co

54

LENS

N0.

WAVENUMBER

I 103

cml

l

(16)

50

Ll-l

z.

<^

c0u

t

tn

co

LENS

4L

r-,

o

frq

(17)

n

LENS

NO. 1

1"""

=

366 nm AF ILK UIALY5IJ BEFORE DIALYSIS

F

Q

z

LU F z. Lrl c)

z

trj (J LU

c

o

J L! LU F .J LU

E

600

.

500

7.

I

nm ] 400

['1

l"

i

fi,,).t*

(18)

l^

LENS

NO.,I

l.*".=

436

nm

AFTER

DIALYSIS

BEFORE

DIALYSIS

F

(n

z

l--z

!u (-)

'z

Lll (J

a

LU

E

l

J

L! LIJ F J LU

450

s00 600

I

Inm

I

i1;'"

4 (lrrr

(19)

:...t

tr'. z. z. LLI {

t

'i

i'\

O LJ) c)

o

rt,

o

r)

O

o

O c\ O.: Ltl C O c) -T-Ln ;--1 z.

6r!

LU

-o

O-u

\t=

a

U)

H:

O !o LN O O LO O LN O {.. r-N Cf) ul O

./^n.n--

? -a'"

r''

O

z.

U) z. LU _\_:\_= I

I

paz]lDurrou

l

AllsN

llNl

(20)

O O (o O Lt) O O t') \ O Lr' O O u_) Lt) ' _T'

z

L.IJ LU

/'1 <

z

o

@

o(n

cq>

,t!

a

!n O LN

T

O |, E

c

ct ce O Lr) .J r-rt

z

a

z

tJJ I (

(o

.'

dl

u)l

z;

LI ,'

F-O

z

(n

z

ul E

c

N

o

c.) ( \

d

\ I

t

t.^

(21)

-z c]-|1, z tr

i

E Eo E

.t

{"r

.n

e E

lltsNtlNr

tJNStslS0n-H 3A tiv't

l8

(22)

1n

t

i.

L i:

400

500

3lu

TRANSPARENT

LENS

450

0.5

1.0

F

a-z.'<

L!

LLI

F-

o-rllO

t\rY

lrllJ

() vl

AZ

H<

>z

JC)

tr

--a

..a

=>

J

LJ-l

E.

CATARACTOUS

LENS

EA

?..'7

t Itltt

l"*.

Inm

J

500

(23)

0t

0.3 1-0 30

10

20 o_

O

E, F

o

(t

z

lrJ

z

t!

a

L!' G

o

f

l,.L

ri.

t

20 10 30 a

..'arTla

_{;6

TT6Q'f

qAe-

.I al

I)o

.9

(24)

t.t::)J:-0.3 40 30 20 10 0.? U.J o_

o

&

f-o

t")

z

LLI (-)

z

(_) U)

c

l

_) l! 0.1

40

rt'cl

r:r Ll

/\,1.:rll",,

It

t

a-

-o

I

(25)

0.3

t0

30 20 JO 0.2 0./. o-O

c

F

o

I

z

LrJ CJ UJ (J

a

LrJ E.

l

J L!

I

Y II

-I

d

Yr

A -r- - I r r I

'Y 9QiI

{Y-Eir

t--Tt'Cl

.A

A

Id ?'

Y T'

T-!t

i

ooQ T

I

1

i

T-6dxbI-

.IY:

T Q

1--

{-o

heoiing o.

Fi7

to

\

' [y-t

(,r

(26)

LENS

NO.

5

400

450

500

550

WAVELENGTH

Inm]

1.0

-a

z

Lrl

F

n6

z

''-J

z,

t-O

U.4

t-LL

02

n

U |', .4

A

btt(v'

(27)

1.0

t--6

nc

z ""

LU

F

z

t!

L)

z

0.6

LU (-)

a

t!

t-O

':

J nt

LL

u.

'l

trj

F

tJ

^^

tr

u.l

n

400

450

500

sso

WAVELENGTH Inm

]

.

l\

''

n

LENS

NO

5

\-2

ft1.

tt,

A

Cytaty

Powiązane dokumenty

In the sixties, Tadeusz Batóg published two important purely logical papers dealing with the generalized theory of classification (TB 9, 10; both written to- gether with

Read forum posts about common hair problems and match the questions from users with the correct answers.. Przeczytaj posty na forum dotyczące częstych problemów z włosami i

For the first time on Mars, InSight includes the ability to use the wind- and pressure-induced perturbations from seismic measurements by SEIS for atmospheric science 7,11,12,57

After the incident at the Zmrzlik’s house, the discussion-conducive atmosphere was greatly diminished. The Hussites started to pay greater attention to with whom, where and how

The time John takes to swim a length is 6 seconds more than he took to swim the previous length.. The time Ann takes to swim a length is 1.05 times that she took to swim the

That unapproachable writer, he thought, “an alleenloper, as some male animals are: loner” (Coetzee 2009: 133), had agreed to let John write his biography because, having read

In this work we studied the damage produced in silicon dioxide films by helium implantation and then we removed, by etching, the silicon dioxide with the aim to improve the

Attempts have previously been made to link some of the marks noted on barrels found aboard the Copper Ship to merchants, principally from Toruń and Gdańsk, active in the