• Nie Znaleziono Wyników

A Compound of an Inflated Pascal Distribution with the Poisson One

N/A
N/A
Protected

Academic year: 2021

Share "A Compound of an Inflated Pascal Distribution with the Poisson One"

Copied!
12
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

F O L IA O E C O N O M IC A 194, 2005

ľadeusz Gerstenkorn*

A C O M P O U N D OF AN INFLATED PASCAL D ISTR IBU TIO N W ITH T H E P O ISS O N O N E

Abstract

In this p a p e r there is presented a c o m p o u n d o f an inflated Pascal d istrib u tio n with the P oisson one.

In the in tro d u c to ry p a rt o f the p a p er is giving an overview o f the last resu lts in topic o f co m p o u n d in g o f d istrib u tio n s, considering also the Polish resu lts. In succeeding Sections, p ro b ab ility function o f the com pound distrib u tio n Pascal-Poisson, factorial, crude and incom plete m o m en ts as well recu rren ce re la tio n s o f th is d istrib u tio n are presen ted .

M S C Iassilication: 60

Key words: c o m p o u n d d istrib u tio n s, c o m p o u n d inflated Pascal-P oisson d istrib u tio n , inflated Pascal d istrib u tio n , P oisson d istrib u tio n , facto rial, c rude and incom plete m o m en ts, recurrence re la tio n s for the m om ents.

I. IN T R O D U C T IO N

T h e problem o f the com pounding o f probability d istrib u tio n s goes back to the tw enties o f the 20lh century. It is w orth here to m en tio n the papers by M . G reenw ood and G .U . Y ule (1920; they to o k th e p aram eter o f the Poisson d istrib u tio n as a gam m a variate) and E.S. P earson (1925; he gave a device o f m aking the param eter o f a distributio n o f Bayes theorem ). In forties the problem was dealt w ith by L. L und berg (1940; the Pólya d istrib u tio n as a com pound one), F .E . S atterth w aite (see a rem ark on the com p ariso n o f S atterth w aite’s idea o f the generalized P oisson d istribu tion w ith a com p o u n d distribution in W. F eller’s paper, 1943; 390), W. Feller (1943; som e com pou nd d istributions as “ co n tag io u s” ones), G . Skellam (1948; the binom ial-beta giving Pólya-Eggenberger distribution), M .E. C ansado

* P ro fesso r, F a c u lty o f M ath em atics, U niversity o f Ł ó d ź and U niversity o f T ra d e , Ł ódź.

(2)

(1948; com poun d Poisson distributions). Som e in terrelatio n s am o ng com ­ p o u n d and generalized d istribution s gave J. G urlan d (1957). Im p o rtan t theoretical problem s arc contained in papers by II. T cicher (I960, 1962), W. M o len aar (1965) and W. M o lenaar and W .R . Zw ct (1966). A lso in sixties we find the results by T. Ś ro d k a (1964; R ayleigh with gam m a, gam m a with R ayleigh; 1966 - Laplace with n o rm al N (0, 3) left trun cated at zero, with gam m a, R ayleigh, W cibull, exponential), by S.K. K a tti and J. G u rla n d (1967; Poisson-Pascal), D.S. D ubcy (1968; com p o u n d W cibull). T h en we have p apers by D. S. D ubcy (1970; co m p ou nd gam m a, beta and F ), T. G e rsten k o rn and Ś rodka (1972; generalized gam m a with gam m a), H . Jakuszcnkow (1973; Poisson with norm al N(m, n) left trun cated at zero, w ith generalized tw o -p a ram eter gam m a, with M axw ell an d R ayleigh), W. D yczka (1973; binom ial with beta (incom plete m om ents)) T. G ersten ­ k orn (1982; binom ial with generalized beta), T. G e rsten k o rn (1994; gene­ ralized gam m a with exponential), T. G ersten k o rn (1996; Pólya with beta), G .E . W ilm ot (1989; Poisson-Pascal and others). M .L . H u an g and K .Y . b u n g (1993; D com pound Poisson d istributio n as a new extension o f the N eym an T ype A distribution).

A wide list of references to the problem considered on e can find in review studies by N .L. Joh n so n and S. K o tz (1969; ch a p te r 8: 183-215), G. P. Patil et al. (1968) and now adays by G. W im m er and G . A ltm ann (1999).

II. T H E C O M P O U N D IN G O F P R O B A B IL IT Y D IS T R IB U T IO N S

Below, we give a definition and relations needed for the com pounding o f d istribu tions.

Definition 1. T he com pound distribution

L et a ra n d o m variable X y have a d istributio n function ,Г(л:|у) depending on a p aram eter y. Suppose th a t the param eter у is considered as a random variable Y with a distribution function G(y). T h en the d istrib u tio n having the d istrib u tio n function o f X defined by

H (x ) =

J

F (x \c y)d G (y) (1)

— 00

will be called co m pound, with th a t с is an arb itra ry co n stan t o r a con stan t bounded to som e interval (G urland, 1957; 265).

I he occurrcncc of the co n stan t с in (1) has a practical justification because the d istrib u tio n o f a rand om variable, describing a p henom enon,

(3)

often depends on the param eter which is a realization o f an o th er ran do m variable m ultiplied, how ever, by a certain constan t.

T h e variable which has distribution function (1) will be w ritten dow n in sym bol as “X л Y " and called a coi. .pound o f the variable X with respect to the “ co m p o u n d in g ” У. R elation (1) will be w ritten sym bolically as follows:

H (x ) = F (x \c y ) A G ( y ). (2)

У

C o n sid er the case w hen b o th variables are discrete, the first one with a probab ility fu nction P (X = X i \kn) depending on a p aram eter n being a ra n d o m variable N with a probability function P (N = n).

T h en (1) is expressed by the form ula

h(Xl) = P ( X = x t) = £ P ( X = x t\N = k n ) - P ( N = n). (3) /1=0

III. T H E IN F L A T E D PA S C A L л P O IS S O N Y

Definition 2. T h e distrib u tio n of the form

P£X = i\Y) = 1 — s + s ■ P ( X = j'ol ľ ) for i = i0,

s • P (X = i\Y ) for i = 0, 1, 2, i0 - l , i 0 + l , n,

(4)

where 0 < s < 1 and the variable У, being in the condition, has a distribution

G (y), we call an inflated conditional distribution. It is a discrete d istrib utio n

w ith an inflation o f the distrib u tio n P (X = i|Y ) at a point i = i0.

D istribu tion (4) were introduced, nam ed as inflated, by S.N. Singh (1963) and M .P . Singh (1965-66, 1966) and later discussed by m any au th o rs. Some in fo rm atio n a b o u t these results one can find in T. G e rsten k o rn (1977) and G. W im m er, G. A ltm an n (1999).

Lemma 1. T h e com pounding o f an inflated d istrib u tio n w ith an o th er d istrib u tio n gives a distrib u tio n with the same inflation.

T h e p ro o f, as ra th e r easy one, is here om itted.

Theorem 1. W e assum e th a t X is a v ariab le w ith in flated Pascal d istrib u tio n P a s{nk, p) depending on a p aram eter n, i.e.

(4)

Pas(nk, p) - Pa,( X = i\N = n) =

Cnkf°•"«

,0 * ---n i«! 1 — s + s (---p ° qnk for i = i0

1 №>•-». °

iS— j — p-qnk for i = 0, 1, 2, i0 ~ 1, i0 + 1, ... where p > 0, /c > 0, p + q = 1 and x 11' - 11 = jc(x + l)(x + 2)...(x + 1 - 1) is the so-called ascending factorial polynom e.

Let N be a variable with the Poisson distrib u tio n Pa(n, Я)

P0( N = n, Я) = — e ~ A, n = 0, 1, 2, ..., Я > 0 .

n!

By using the form ula (3) we get

M O =

1 — s + s P - ; ‘olexp(0 — Я) for i = i0,

h'-for i = 0, 1, ..., i0 - 1, i0 + 1, ... (3)

w here p > О, Я > 0, 0 = qk and

Vm = Í * [i’ l]d F (x) (6)

is the so-called ascending (or reverse) factorial m o m en t determ ined by the equality:

Mm = Е[(кХУ ‘-~4 = X ( k n f ‘- exp( - 0),

n\

Proof. A t first we determ ine /1,(10) = P (X = i0): hs(i0) = P S(X = i0) = 00 rni-V'-- 1 ! J = £ ( l - s + s ----7 7— p ioqnk) - cxp( — Я) = n= 0 ■ 1 «о! п=о n\ (7)

(5)

A nalogously we calculate /1,(1').

If in (5) we take s = 1 we obtain the com pound Pascal-Poisson distribution w ith o u t inflation

h(i) = - - ^ ‘- е х р ( 0 - Л ) , / = 0, 1, 2, ...

R. Shum w ay and J. G urlan d (1960) have also o b tain ed this result but using a m ethod o f generalization o f distributions.

T h e m o m en t (6) or (7) is to be determ ined in dependence on crude o r factorial m om ent.

In the p ap e r by R. Shum w ay and J. G u rla n d (1960; 92) we find the follow ing form ula

м и = z s : k ‘ f s ‘j

/= i ;= i

w here Sj are Stirling num bers o f the second kind, к is a p aram eter and <*[,■) is a factorial m o m ent

“m = I x tadF (x) — 00

where x r‘] = x ( x — l)(x — 2 )...(x — i + 1) and S ' arc Stirling num bers o f the th ird kind.

In general the factorial m om ent a m are easier to be calculated th a n the crude ones. But one can pass from the factorial m o m ents to the crude ones.

T his problem has been exactly discussed in the p ap e r by T. G ersten k o rn (1983) where one can also find a table o f Stirling num b ers o f th e third kind.

IV . T H E C O M P O U N D P A S C A L -P O IS S O N D IS T R IB U T IO N A N D IT S M O M E N T S

T he com pound Pascal-Poisson w ithout inflation can be written symbolically

Pap(k, p, Я) ~ Pa(nk, p) л P 0(X)

П

T his d istrib u tio n has been presented in an equivalent form by S.K. K a tti and J. G u rla n d (1961) as a generalization o f the Poisson distribution w ith the P ascal one.

(6)

Corollary 1. T h e m o m en t o f the rlh order o f the co m p o u n d d istribution P ascal-P oisson is the m ean value o f an a p p ro p ria te m o m en t o f Pascal d istrib u tio n if the param eter n appearing in the form ulae o f m om ents o f the Pascal d istrib u tio n is considering as a ran d o m variable o f the Poisson d istrib u tio n , i. e.

fyr](k, P, X) = a[r](nk, p) л P 0( l )

П

br(k, p, A) = ar(nk, p) л P 0(A).

П

T ak in g in account these form ulae, we have

Theorem 2. T he factorial m om ent b[r](k, p, A) o f the com pound distribution P ascal-Poisson is expressed by

b[r](k, p, A) = u fá (8)

where ^ir] is the reverse factorial m om ent o f the Poisson d istrib u tio n , i.e.

t w !r' - n - , e x P( - X ) . (9)

n = 0 n '

Proof. b[r](k,p, A) = л В Д = ( ^ j ( ( n k ) [r~ 1] л Р Д ) ) =

A lready in G. B ohlm ann (1913; 398) we find the re latio n between the crude and factorial m om ents

br = Í s rjb lr] (10)

]= о

w here S j are Stirling num bers o f the second kind. T he table o f these n u m b e rs ca n be fo u n d , fo r in stan ce, in A. K a u fm a n n (1968) o r in J. Ł ukaszew icz and M. W arm us (1956).

Corollary 2. D irectly from (8) and (10) we have

br( k ,p , A) = W - Y / ť l (11)

j= o W

(7)

Rccurrcncc relations for crudc m oments

Theorem 3. C rude relations o f the com pound P ascal-P oisson Pap(k, p, A) d istrib u tio n arc expressed by

1) br+ t (k, p, X) = £ ( ) £ S}bu+ n(/c, p, A), (12) i = o V / J = 0 2) br+ |(fc, p, A) = Yj S fr v + n(k, P, A) -I- - ^-br(k, p, A). (13) 4 0 P ro of A d 1)

br+ i(k , p , A) = ar+ i(n/c, p) л P„(A) =

/I

= nkP„ í ( - V m + 1. p) a =

<11=0 V1/ "

= f Ź ( r\ n k a f r k + l , p ) A P„(А)). (14)

4 i-0 \ v я

Now we will calculate the expression in parentheses using (10), some properties o f factorial polynom ials, and the following proposition:

Proposition 1. F actorial m om en t o f the Pascal Pa(n k ,p ) d istrib u tio n is given by W ' ’ 11 (see: D yczka, 1973: 223 (63), (64)). n ka ^n k + 1, p) л P„(A) = П = I S lj ( - \ \ n k + l ) ^ - i ] л P 0(A) = 7=0 W = Ż S j^ Y (n fc(n fc + l))W --4 A P 0(A) = ;=o \ 9 / я = Z S j ^ W +1' - 1 , A P o(A )= j=o \ 9 / n ^=0

(8)

A d 2) W. D yczka (1973: 225 (70)) has show n th a t

a,+ i(n k, p) = P (nkar (nk + l , p ) + — / . ar(n k ,p )).

4

J p

A

Using this fo rm u la in (14) and regarding the first co m p o n en t, we have

nk ^ ar(nk + 1, p) л Pn{X) = nk ^ £ S ' ( J ) (nk + 1 ) [J-~ 11 л Pn( l ) = J

J

=

t ^ ^ Y +V ü b t , =

is'jblj+

1](k,p,k).

J = 0 W j = o

I hen regarding the second co m ponent we have

P d ar(nk, p) л P0(X) =

J

d{ P d

f „/pV

P d u<l

n

T h e result (13) is th en evident. Incomplete moments

A n incom plete (truncated, generalized) crude m om en t mr(t) o f o rd er r o f a d istrib u tio n function F (x) is defined by

00

mr(t) = jV d F (x ).

(9)

F o r incom plete factorial m om en t we have analogously mrn(0 = \ x [r]dF (x).

In the discrete case we assum e th a t t in the sum is an integer. It is quite evident th at a com plete m o m ent is a special case o f the incom plete one.

W. D y czka (1973: 212, (22)) has show n th a t incom plete cru de m om ents arc expressed by the incom plete factorial ones in th e follow ing way:

*=o

w here S', are Stirling num bers of the second kind. U sing this n o tio n for our case, we have

Theorem 4. Incom plete factorial m om ents o f the com pound Pascal-Poisson

Pap(k, p, A) d istrib u tio n are expressed by

where 0 = qkl and ß [r + 4 is the reverse factorial m o m en t given by (9). Proof. W . D yczka (1973: 227, (73)) has show n th a t

delink, p, t) = a[r](nk, p)a0(nk + r , p , t - r ) = i - о

C o m p o u n d in g this expression w ith P 0(A), we have

(<f*(n/c)tr+,,- 1]) л P 0(;.)) = A.

П

L et us calculate the expression in parantheses:

00 (ak) У

qnk(nkyr+i.-i] л p до = у (nfc)[,+1 .-1 1 H - ^ - e x p ( - Я) =

„=n n!

= exp(0 - A) £ (nk)[r+l- 11 exp( - 0) = exp(0 - ?)ц{г+п.

„ = r. n\

00 nn

(10)

T ak in g in account these calculations, we have A = t-r-lp T + l u w - E t1= n exp(° ~ ^ + = = br(k, p, A) - exp(0 - X)pr £ P.. ß [r+n-I = П »•

As a sim ple conclusion, we have

C orollary 3. Incom plete crude m om ents o f the co m p o u n d Pascal-Poisson

Pap(k, p, A) d istrib u tio n are expressed by

B o h lm an n G . (1913), F o rm u lieru n g und B egründung zw eier H ilfssätze d e r m athem atischen S tatistik , M ath. A nn., 74, 341-409.

C an sa d o M .E . (1948), O n the c o m p o u n d and generalized Poisson d istrib u tio n s, A nn. M ath. S la t., 19, 414-416.

D ubey D .S. (1968), Л co m p o u n d W eibull d istribution, N aval Res. le g is t. Q uart., 15, 2, 179-182. D u b ey D .S . (1970), C o m p o u n d g am m a, beta and F d istrib u tio n s, M e trik a , 16, 1, 27-31. D y czk a W. (1973), Z asto so w an ie sk lad an ia ro zk ład ó w d o w y znaczania m o m en tó w (A pplication

o f c o m p o u n d in g o f d istrib u tio n s to d e term in atio n o f m om ents; in Polish), Z e s z y ty N auk. Politech. łó d z k ie j, 168, M a tem aty k a 3, 205-230.

Feller W . (1943), O n general class o f „ co n tag io u s” d istrib u tio n s, A n n . M ath. S ta t., 14, 389-400. G ersten k o rn T ., Ś ro d k a T. (1972), Kom binatoryka i rachunek prawdopodobieństwa (C om binatorics

an d p ro b a b ility theory; in Polish), PW N , W arszaw a, V ll ed.: 1983.

G ersten k o rn T . (1977), Jednow ym iarow e rozkłady dyskretne ze zniekształceniem (Onc-dim cnsional inflated d iscrete d istrib u tio n s; in Polish), [in:] M eto d y sta tysty c zn e w sterow aniu jakością (S tatistical m eth o d s in q u a lity c o n tro l), ed. Sz. F irkow icz, R e p o rts on the conference o f the Polish A cad , o f Sciences (Ja b ło n n a, N o v . 23-28, 1975), O ssolineum , P olska A kadem ia N a u k , W rocław 1977, 195-208.

G e rsten k o rn T . (1982), T h e co m p o u n d in g o f the binom ial an d generalized beta distrib u tio n s, [in:] Proc. 2 '“‘ Pannonian Conf. on M athem . S ta tistics (T atzm a n n sd o rf, A u stria, 1981), ed. W. G ro ssm an n , G . C h. Pflug, W. W ertz, D. Reidel P ubl., D o rd re ch t, H o llan d , 87-99. G e rste n k o rn 'Г. (1983), R ela tio n s betw een the crude, facto rial and inverse facto ria l m om ents,

[in:] Trans, o f the N in th Prague Conf. on Inform ation Theory, S ta tistica l D ecision Functions and Random Processes (P rague, Ju n e 28 -Ju ly 2, 1982), A cad em ia P ubl. H ouse o f the C zechoslovak A cad, o f Sciences, P rague 247-252.

G e rsten k o rn T . (1994), A c o m p o u n d o f the generalized g am m a d is trib u tio n w ith the L aplace distribution truncated at zero, Bull. Soc. Sei. Letters Ix>dz, 44, Recherches sur les deformations,

hr( k ,p ,X ,t ) = X ( S ; / ) M( / c , p ,A ) - p j c x p ( f l - ; .) L

цИи+ц-r

R E F E R E N C E S

(11)

G e rsten k o rn T . (1996), Л c o m p o u n d o f the Pólya d is trib u tio n w ith the b e ta one, Random Oper, and Stoch. E qu., 4, 2, 103-110.

G reen w o o d M ., Y ule G .U . (1920), A n in q u iry in to the n a tu re o f freq u en cy d istrib u tio n rep resen tativ e o f m u ltip le h ap p en in g s with p a rticu la r reference to the occurance o f m ultiple a tta c k s o f disease or o f rep eated accidents, J. R r /. S ta t. Soc., 83, 255-279.

G urlan d J. (1957), Som e interrelations am ong com pound and generalized distributions, Biometrika, 44, 265-268.

H uang M .L ., F u n g K .Y . (1993), D com pound Poisson distribution, Statistical Papers, 34, 319-338. Jak u szen k o w H. (1973), N ow e złożenia ro z k ład ó w (N ew co m p o u n d s o f d istrib u tio n s; in Polish),

P rzegląd S ta ty sty c z n y , 20, 1, 67-73.

J o h n s o n N .L ., K o tz , S. (1969), D istributions in S ta tistics - D iscrete D istributions, H o u g h to n M ifflin C o m p ., B oston.

K a tti S .K ., G u rla n d J. (1961), T h e Poisson-Pascal d istrib u tio n , B iom etrics, 17, 527-538. K a u fm an n A . (1968), Introduction á la com binatorique en vue des applications, D u n o d , Paris. L u n d b erg O. (1940), On Random Processes and Their A pplication to Sickn ess a n d Accident

S tatistics, A lm q u ist and W iksells B oktryckeri - A. B., U ppsala.

Ł ukaszew icz J., W arm u s M . (1956), M e to d y num eryczne i graficzne (N u m erical an d graphical m eth o d s; in Polish), P W N , W arszaw a.

M o le n aa r W. (1965), Som e re m a rk s on m ixtures o f d istrib u tio n s, Bull. Intern. S ta tist. Institute, 35й1 Session o f the In tern . S tatist. In st., B eograd, B ook 2, 764-765.

M o ie n aa r W ., van Zw et W .R . (1966), O n m ixtures o f d istrib u tio n s, Ann. M a th . S ta t., 37, 1, 281-283.

Patii G .P ., Joshi S.W ., R ao C .R . (1968), A D ictionary and Bibliography o f Discrete Distributions, O liver and B oyd, E d in b u rg h .

Pearson E.S. (1925), Bayes’s theorem , exam ined in the light o f experim ental sam pling, Biometrika, 17, 388-442.

S a ttc rth w aile F .E . (1942), G eneralized Poisson d istrib u tio n , A nn. M ath. S ta t., 134, 410-417. Seweryn J.G . (1986), Som e probabilistic properties o f Bessel distributions, Z e sz yty N auk. Politechn.

Ł ó d z k ., 466, M a te m a ty k a 19, 69-87.

Shum w ay R ., G u rla n d J. (1960), A fitting p ro ced u re fo r som e generalized P oisson distrib u tio n s, Skandinavisk A ktu a rietid skrift, 43, 87-108.

Singh M .P . (1965-1966), Inflated binom ial d istrib u tio n , J. Sei. Res. Banares H indu Univ., 16, 1, 87-90.

Singh M .P . (1966), A n o te on generalized inflated binom ial d istrib u tio n , Ind. J. S la t., Ser. A , 28, 1, 99.

Singh S. N. (1963), A n o te o f inflated Poisson d istrib u tio n , J. Ind. S ta t. A ssoc., 1, 3, 140-144. S kellam J. G . (1948), A p ro b a b ility d istrib u tio n derived fro m th e binom ial d istrib u tio n by

re g ard in g the p ro b a b ility o f success as variable betw een th e sets o f trials, J . R oy. S tatist. S o c., Ser. B, 10, 2, 257-261.

Ś ro d k a T . (1964), N ouvelles com p o sitio n s de certaines d istrib u tio n s, Bull. Soc. Sei. In u r e s , 15, 5, 1-11.

Ś ro d k a T . (1966), Z łożenie ro z k ła d u L ap lace’a z pew nym uog ó ln io n y m ro zk ład em gam m a, M axw ella i W eibulla (C o m p o u n d in g o f the L aplace d istrib u tio n with a generalized gam m a, M axw ell a n d W cibull d istrib u tio n s; in P olish) Z e s z y ty N a u k . P olitech. Ł ó d z k., 77, W łókiennictw o, 14, 21-28.

T eicher H . (1960), O n th e m ixtures o f d istrib u tio n s, Ann. M ath. S ta t., 31, 55-72. T eichcr 11. (1962), Iden tifiab ility o f m ixtures, Ann. M ath. S ta t., 32, 244-248.

W illm ot G .E . (1989), A re m a rk o n the Poisson-P ascal and som e o th er c o n ta g io u s d istrib u tio n s, S ta tist. Probab. L ett., 1, 3, 217-220.

(12)

Tadeusz Gerstenkorn

ZŁOŻENIE INFLACYJNEGO ROZKŁADU PASCALA / . ROZKŁADEM POISSONA

Streszczenie

W p racy p rezen to w an e jest złożenie inflacyjnego ro zk ład u Pascala z ro zk ład em Poissona. W części w stępnej p racy p o d a n y je s t przegląd w yników badaw czych d otyczących tem atu złożeń ro zk ład ó w ze szczególnym uwzględnieniem polskich a u to ró w .

W d alszych rozd ziałach p o d a n o funkcję p raw d o p o d o b ień stw a ro zk ład u złożonego Pascal- -Poisson o ra z jeg o m o m en ty silniow e, zwykłe, niek o m p letn e o raz zw iązki rekurencyjne.

Cytaty

Powiązane dokumenty

The aim of the paper is to state the conditions by occurrence of which it is possible to give the recurrence relation for the incomplete (and complete)

From some formulas given in this note one can obtain as particular cases, the formulas for the recurrence relations for the moments of the simple binomial,

Moreover, we find the distribution of the sums of a generalized inflated binomial distribution (a value x 0 is inflated) a hd the distribution of sums of random

At that time the binomial distribution does not precisely reflect the probability of number of bad pieces, especially when k — 0. The reasons are given that the p(a)

Recurrence Relations for Moments of Inflated Modified Power Series Distribution.. Wzory rekurencyjne na momenty dla zmodyfikowanego rozkładu szeregowo-potęgowego

Computing the Distribution of the Poisson-Kac Process 11 result that, was proved using a strictly probabilistic approach (Lemma 1, [26]) with the analytic formulas such like

In the case of the Laplace equation we can transform the basic problem into an integral equation on the boundary of the domain by using the single or double

Z przeprowadzonych analiz wynika, że metoda bezpośredniego wyzna- czania wskaźnika standaryzowanego opadu z rozkładu gamma, któremu podlegają miesięczne sumy opadów w