• Nie Znaleziono Wyników

Source of uranium in the Elbląg Formation (Upper Buntsandstein): sedimentological approach

N/A
N/A
Protected

Academic year: 2021

Share "Source of uranium in the Elbląg Formation (Upper Buntsandstein): sedimentological approach"

Copied!
5
0
0

Pełen tekst

(1)

1932. Radiolaryty polskich Karpat wschodnich i ich po-równanie z radiolarytami tatrzańskimi (Radiolarites des Karpates polonaises orientales et leur com-paraison avec les radiolarites de la Tatra). Spraw. Państw. Inst. Geol. 7, z. l, Warszawa.

1932. Wpływ pustyni na osady Morza Czerwonego (In-fluence du desert sur la sediments de la Mer Rouge). Spraw. TNW 24, Warszawa.

1933. Badania petrograficzne liasu płaszczowinowego w Tatrach (Recherches petrographiques du Lias de la Tatra). Posiedz .. nauk. Państw. Inst. Geol. 35, Warszawa.

1933. Niektóre spongiolity z Tatr i Karpat (Sur certains spongolithes de la Tatra et des Karpates). Spraw. Państw. Inst. Geol. 35, 7 z. 2, Warszawa.

1933. Presence de Radiolaires du groupe des Phaeodaria dans le Carbonifere inferieur de · Pologne. C.-r. Acad. Sc. 196, Paris.

1933. Radiolaryty dolnokarbońskie Gór Świętokrzyskich (Radiolarites du Carbonifere inferieur du Massif de Ste Croix). Spraw. Państw. Inst. Geol. 7, z. 4, Warszawa.

1937. Budowa mikroskopowa niektórych skał jurajskich z Pienin (Structure microscopiques des quelques roches jurassiques des Klippes des Pienines).

Po-siedz. nauk. Państw. Inst. Geol. 48, Warszawa. 1937. Radiolaryty dolnogotlandzkie Gór Świętokrzyskich

(Les radiolarites du Gothlandien inferieur des monts de Ste Croix en Pologne). Spraw. Państw. Inst. Geol. 9, z. 1, Warszawa.

1938. Serie szypockie na Huculszczyźnie (Les series de Szipot dans les Karpates-polonaises orientales. Etude geologique et petrographique d'un complexe de Flysch). Pr. Państw. Inst. Geol. 3, Warszawa. 1948. Some problems of manganese nodules. XVIII

In-tern. Geol. Congr. Lond„ Abstr. 1948, Rep. 8, 1950, London.

1951. Note on a pebble with Radiolaria from the 100 ft terrace at Swanscombe (in Baden-Powell D.F.W.: The age of interglacial deposits at Swanscombe). Geol. Magaz. 88, no. 5, London.

1952. A verage composition of the sedimentary rocks. Amer. J. Sc. 250, no. 5.

1957. Flysch sedimentation. Geol. Soc. Amer. B. 68, no. 5, New York.

1958. Diagenesis. Amer. Ass. Petr. Geol. B. r. 42, no. 11, Tulsa.

1930. Różycki S. Z., Sujkowski Z., Radiolaryty w obrębie Karpat fliszowych. Wszechświat, Warsza-wa.

KRZYSZTOF JAWOROWSKI Instytut Geologiczny

SOURCE OF URANIUM IN THE

ELBLĄG

FORMATION (UPPER BUNTSANDSTEIN):

SEDIMENTOLOGICAL APPROACH

The Geological Institute subsurface studies on uranium mineralization in the Triassic of the Peribaltic Syneclize (2, 6 - 8) showed that the mineralization is the richest in the Elbląg Formation (sensu A. Szyperko-Śliwczyńska, 1 O). Drill cores from that formation have been covered by thoroughtful studies, within the frame of which the Author dealt with sedimentology of uranium-bearing sediments*. Sedimentological studies, preliminary results of which have been published in 1981 (5), made possible identification of the following sedimentary environments: braided rivers, meandering rivers, and shallow-water brackish basin with sandy barriers and shoals. A very similar interpretation was given by R. Strzelecki in 1985 (9).

The aim of this paper is to present further evidence supporting previously published hypothesis on source of uranium in the Elbląg Formation (5). The hypothesis has been put forward on the basis of results of sedimento-logical survey of area of typical development of the forma-tion - the vicinities of Elbląg, or more precisely area between that town and„„Mierzeja Wiślana.

GENERAL SEDIMENTOLOGICAL CHARACTERISTICS

Fig. 1, showing key to sedimentological logs, may

be also treated as some kind of list of the most characteristic

*

In analyzing drill cores the Author used information and materials kindly supplied by R. Strzelecki, A. Szyperko-Śliwczyń­

ska, E. Barejowa, and M. Sałdan, petrographic data of M. Nowicka, and micropaleontological data of T. Marcinkiewicz, O. Styk, and T. Orłowska-Zwolińska.

UKD 553.495.061.6:551.861.l :551.313(438-17) features of the Elbląg Formation. The formation is ter-rigenous, made up of conglomerates, coarse- and medium--grained sandstones, finemedium--grained sandstones and sandy mudstones, mudstones and marls. The contribution of the latter is subordinate. Conglomerates are polymictic and almost completely structureless. Sandstones include arenites and wackes, represented by their lithic and arcosic varieties. Sandstones and sandy parts of conglomerates display horizontal lamination and current ripple lamiila-tion. Sediments of the formation are characterized by gray-green and brick-red to red colours and attain from 20 to 1 OO m. in thickness (9, 1 O).

The list of features (Fig. 1) should be supplemented by the records of micro- and megaspores, agglutinated foraminifers, ostracods and fish scales in mudstones. Ostracods indicate brackish nature of the sedimentary basin. Attention should be paid to the scarcity of sedi-mentary structures (Figs. 2- 6). This is due to the fact that Elbląg Formation rocks, especially sandy ones, are very poorly cemented, which makes sedimentological analysis of core materiał very difficult.

The above mentioned features of the deposits make it possible to draw the following conclusions:

1) the Elbląg Formation displays features typical of so-called red beds, most often interpreted as alluvial, lacustrine or e.olian sediments;

2) red colour of sediments, presence of plant remains, and the lack of evaporites evidence hot, semiarid climate; 3) conglomerates and sandstones with sedimentary structures related to action of flowing waters, were formed in alluvial environment;

(2)

T l 7 h---.. 8 9 u 10

*

11 b m d n o

s

14

Fig. I. Explanations of symbols used in Figs. 2-6.

1 - marls, 2 - mudstones, 3 - sandy mudstones, 4 - fine-grained sandstones, 5 - coarse- and mediumgrained sandstones, 6 conglomerates, 7 vertical distribution of sedimentary structures, 8 -current ripple lamination, 9 - horizontal to slightly inclined lamination, 10 - bioturbations, 11 -coalified plant remains, 12 - scale bars (in meters),

13 - vertical extent of uranium mineralization, 14 - sedimentary environments: b - braided rivers, m meandering ririvers, d deltas, n -nearshore zone and lagoons, o - offshore zone, s - sandy shoals and barriers; 15 - vertical range

of Elbląg Formation.

Ryc. I. Symbole użyte na ryc. 2-6. - margle, 2 - mułowce, 3 - mułowce piaszczy-ste, 4 - piaskowce drobnoziarnipiaszczy-ste, 5 - piaskowce grubo- i średnioziarniste, 6 - zlepieńce, 7 -

wy-stępowanie struktur sedymentacyjnych od - do, 8 - laminacja riplemarkowa, 9 - laminacja pozioma lub prawie popozioma, 10 bioturbacje, 11

-zwęglone szczątki roślin, 12 - podziałki w metrach, 13 - pionowy zasięg mineralizacji uranowej, 14

-środowiska sedymentacji: b - rzek roztokowych, m - rzek meandrujących, d - delt, n - wód

przy-brzeżnych i lagun, o - wód odległych od brzegu,

s - płycizn i barier piaszczystych; 15 - pionowy

zasięg formacji elbląskiej.

Fig. 4. Sedimentological log of the Elbląg Formation in the borehole

Ptas~kowo IG-I.

Ryc. 4. Profil sedymentologiczny for-macji elbląskiej w otworze

wiertni-czym Ptaszkowo IG-I.

11

,,,...

l

1

J

.L b n Fig. 2. Sedimentological log of the Elbląg Formation in the borehole

Ptaszkowo IG-5.

Ryc. 2. Profil sedymentologiczny for-macji elbląskiej w otworze

wiertni-czym Ptaszkowo IG-5. n s o T .L s n d o

+

T

I

/)"-.... l

"'

1

n ? m b m n s

o

b /)"-... n

Fig. 3. Sedimentological log of the Elbląg Formation in the borehole

Marianka IG-I.

Ryc. 3. Profil sedymentologiczny for

-macji elblqskiej w otworze wiertni-czym Marianka IG-I.

T

l

T u .l. T n s s n ? d n ?

Fig. 5. Sedimentological log of the Elbląg Formation in the borehole

Ptaszkowo IG-3.

Fig. 6. Sedimentological log of the

Elbląg Formation in the borehole

.l.

~

d

Ryc. 5. Profil sedymentologiczny for-macji elbląskiej w otworze

wiertni-czym Ptaszkowo IG-3.

Paslęk IG-I.

Ryc. 6. Profil sedymentologiczny for-macji elbląskiej w otworze

wiertni-czym Pasłęk IG-I.

(3)

suspension taking place mainly (but not exclusively) in brackish waters.

SEDIMENTARY ENVIRONMENTS

Fig. 2 shows sedimentological log of the Elbląg Forma-tion from borehole situated in the northern part of the studied area. A simplified log of the whole formation (drawn on a smaller scale) clearly indicates its bipartity (cf. 10): its lower part consists almost exclusively of conglo-merates and sandstones, and the upper - alternating sandstones and mudstones, with subordinate share of conglomerates. A fragment of the log, given in a larger. scale, displays alluvial sedłments interpreted as deposited by braided rivers. Sediments of that type form here se-quences sometimes attaining over 50 metres in thickness. They are mainly represented by conglomerates and sand-.

stones deposited in active braided river channels. Mud-stones, sporadically found here, are interpreted as formed in abandoned channels. The recorded sedimentary struc-tures include horizontal (upper regime) lamination and current ripple lamination.

Fig. 3 shows the next example of sediments of braided rivers. In that log, coming from southern part of the studied area, the sediments are rich in fine plant remains and horizontal lamination predominates. Attention should be paid to shows of uranium mineralization in lower part of the log, close to contact of braided river sediments · and underlying interlaminated sandstones and mudstones representing nearshore part of brackish basin.

It should be noted that the Elbląg .Formation sand-stones interpreted as braided river sediments do not dis-. play large-scale cross-bedding, so common in such sedi-ments. In accordance· with physical model of sedimenta~ tion of alluvial sandy sediments (1 ), sandstones with horizontal lamination and small-scale cross-lamination indicate large curvature and small depth of river chann~l, and (in the case of sandstones displaying horizontal lamina-tion only) relatively large water surface slope. This is in agreement. with the view that these deposits originated

in braided river environment. ·

A detailed log fragment (Fig. 3) also shows sediments of meahdering rivers. Deposits of this type can only ·rarely be found. They appear as sequences 2 to 4 metres thick.

·The sequences are fining-upward. They consist of con-glomerates, sandstones, and interlaminated sandstones and mudstones. The latter .are ińterpreted as floodplain deposits. Most possibly conglomerates ... correspond. to channel lag while . sandstones · are believed to represent point bar sediments. Top part of the detailed log displays possible transgressive muds formed in nearshore part of the brackish basin.

Fig. 4 shows other example of t ·aided rivers sedi-ments, from northern part 'Of the stl died area. The cha-racteristic bipartity of the Ell?ląg Formation is also clearly visible here: lower part of the formation ·is built of sand-stones and conglomerates (mainly those of braided. river environment}, and the upper - alternating sandstones and mudstones of other sedimentary environments. A lower part of the detailed log demonstrates deltaic sediments. Attention should be paid to shows of uranium mirieraiiza-. tion, marked across boundaries of different rock types. Another example of deltaic sediments from the same, northern part of the studied area, may be found in Fig. 5. In the Elbląg Formation, deltaic sediments form co-arsening-up-ward sequertces compnsmg mudstones; · in-terlamjnated mudstones and sandstones, ancl saridstónes,

above which again mudstones and· interlaminated mud-stones and sandmud-stones appear. These are sediments refer-able to prodelta, delta front and delta plain respectively. The coarsening-upward · sequences are sometimes overlain by fining-upward ones. The latter consist of conglomerates, · sandstones and mudstones~ They are ·supposed to be formed in distributary ·channels. Channel sediments are missing in several deltaic sequences .. · . .

Deltaic sequences of the Elbląg Formation ~re 4 to 8 m thick. · So small thickness indicates shallow-water· character of the deltas.

A detailed log of upper part of the section from Fig~ 5. shows nearshore, lagoon, sandy shcial and -barrier, and offshore sediments. The latter are represented by mud-stones, -sometimes with thin -sandy intercalatións. The offshore sediments, varying from a few to · about a dozen· metres in thickness, are_ almost completely barren in or"'.

ganie remains, except for scarce coalified plant remains. Attention should be paid to shows Of uranium mineraliza-tion -in sandy barrier deposits and · those of nearshore, lagoon part of the sedimentafy basin. Here again the uranium mineralization cuts .boundaries of different rock types.

Nearshore sediments are also .shown in Fig. 6. This figure demons.trates sedimentological log ·of the strato-type section of the Elbląg F.o'i·mation (cf. 10).-The sec-tion has been revealed by borehole situated in· southern . part of the studied-area. A detailed log of lower part of the stratotype · section shows deltaic sequen:ce overl<;tin

-by transgressive. nearshore sediments; It should be em-phasized than · uranium mineralization has beeri found i_n sediments of prodelta, delta front and . possibly a dis-' tributary ·channel. Along with development of the trans-gression, -sediments of sandy barriers and shoals shifted

. landwards over the riearshóre sediments. Sediments of this type are also visible in upper part .of the section (Fig. 6).

D~posits interpreted as . representing sandy barriers and shoals include fine-grained .~andstones,. ;1 few metres thick, interbedded with. mudstones. The sandstones often -display a parallel, · almost łiorizóntal lamiriation, responsible for. their płaty parting. Organie remains ą.re practically missing here (except for occasional findings of coalified plant remains).

Nearshore and lagoon sedinieri'ts are represented by mudstones and inte-rlaminated mudstones and sandstones up to a f ew-metres thick, · with · pl~nt remains and

agglu-tinated · foraminifers. There also occur bioturbations of the feeding burrow type (Fig._ 6) and, sometimes, calcare-ous nodules a· few centimetres in size. The latter seem to reflect temporary emergence and onset of soil-form-ing processęs. lt is worth to note uranium mineralization in the -interlaminated sandstones and mudstones inter-preted as' formed in nearshore part of the brackish basin (Fig. 6 - upper part of the log).

-Interfłngering offshore and nearshore sediments and those of shoah; and barriers form specific sequences up _ to-70::m thick, mainly known from upper part of the forma--tion.

PALEOGEOGRAPHY

Results of analysis of vertical succession of sediments, briefly discussed . above (Figs. 2 - 6) gave the basis for construction of a model of sedimentation of the Elbląg Formation. This model shows interfingering of alluvial sedimentation with sedimentation in a vast brackish basin (Fig. 7). Sandy materiał and pebbles were mainly supplied

(4)

~ÓDŁO MATERIAŁU KLASTYCZNEGO source of clastic material

Tvvvvvvvvvvvvvl

vvvvvvvvvvvvv.I

.vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

SPŁYWY

RUMOSZU . STOŻKI

debris ZALEWY ZALEWY NAPŁYWOWE

flows WARSTWOWE STRUMIENIOWE alluvial

sllleet stream fa.us

floods floods RZEKI ROZTOKOWE braided rivers

I

RZEKI MEANDRUJĄCE meanderi~ rivers RÓWNINA ALUWIALNA alluvial plain

EL~LĄG:~~~

? -- -~km _ _ _ -

I

ELBLĄ~:

. . - - - -e? . ·A: : . -- - -O Skm

c

-L _ _ j

li

Fig. 8. Paleogeographic maps of the Elbląg Formation between

Elbląg and Mierzeja Wiślana.

- - - + - - - - i - - - + - - - I lower operational unit, II upper operational unit, A

-MUŁY WÓD PRZYBRZEŻNYCH I LAGUN

nearshore aµd la~oonal muds

PŁYCIZNY ·I BARIERY PIASZCZYSTE sandy shoals and barriers

MUŁY WÓD ODLEGŁYCH OD BRZl:;GU offshore Iiluds DELTA ZBIORNIK BRAKICZNY brackisll bas in

Fig. 7. Model ofsedimentation of the Elbląg Formation.

Ryc. 7. Model sedymentacji formacji elbląskiej.

by a system of braided rivers. IIi accordance with classic models of sedimentation, alluvial sediments pass into those of alluvial fans along with decrease in distance from source areas. Alluvial fans have not been found in the studied area but it may be assumed that they are

. present farther to the north.

Three facies associations occur in the studied area (Fig. 7): alluvial plain, delta, and brackish basin associa-tion. The first of them comprises sediments of braided and, partly, meandering rivers, the deltaic association -those of prodelta, delta front and delta plain and, some-times, distributary channels, and the brackish basin associa-tion - nearshore and offshore sediments, separated by those of sandy shoals and barriers.

The recorded organie microfossils make possible assig-riation of the Elbląg Formation to the Rhot (fide 8) but appear insufficient for further biostratigraphic subdivision. Therefore, two arbitrary operational units were dif-ferentiated for construction of paleogeographic maps: lower and upper. Boundary between these units was arbitrarily drawn in the middle of thickness of the forma-tion in all the studied borehole columns. For each opera-tional unit in each of the sections studied, facies associa-tion dominant in thickness was found. Then symbols of dominant associations have been plotted on the map next to location points of the sections measured. Sub-sequently, boundaries of the areas of different facies associations have been drawn and paleogeographic map for a given operational unit has been obtained (Fig. 8). The maps of the two operational units were constructed for the area shown in Fig. 9.

The comparison of these maps showed that in the course of sedimentation of the Elbląg Formation there has taken place a regression, followed by transgression

alluvial plain facies association, B - shallow-water delta facies association, C - facies association of brackish sedimentary basin.

Ryc. 8. Mapy paleogeograficzne formacji elbląskiej między Elblą­

giem a Mierzeją Wiślaną.

I - dolna jednostka operacyjna,· II - górna jednostka opera-cyjna, ·A - asocjacja facjalna równiny aluwialnej, B - asocjacja facjalna płytkowodnej delty, C - asocjacja facjalna brakicznego

I I I I I I

:~~ff/

//

--v/

/ I I zbiornika sedymentacji. O SOiem ' - - - '

s

CZJ

1

E;;;) 2

~ 3 ~ 4

[3s

c:::::;> 6

Fig. 9. Paleogeographic map of the Elbląg Formation in the Ba/tie

coast area.

- ex tent of pre-Triassic rocks (cf. 3): CBS - crystalline rocks of Baltic Shield, Cm - Cambrian, Or - Ordovician, S - Silurian, D Devonian, C Carboniferous, P Permian; 2 -extent of Lower Triassic sedimentary basin (cf. 10), 3 - alluvial fans, 4 - extent of conglomeratic-sandy sedirilents of alluvial plain (shallow-water deltas locally in the south), 5 - muddy and sandy sediments of brackish sedimentary basin, 6 - major

directions of transport of clastic materiał.

Ryc. 9. Mapa paleogeograficzna formacji elbląskiej w obszarze

nadbałtyckim.

- granice występowania skał przedtriasowych (por. 3): CBS

-skały krystaliczne tarczy bałtyckiej, Cm - kambr, Or -

ordo-wik, S - sylur, D - dewon, C - karbon, P - perm; 2 -

za-sięg zbiornika sedymentacji dolnego triasu (por. 10); 3 - stożki

napływowe; 4 - zasięg zlepieńcowo-piaszczystych osadów

rów-niny aluwialnej (na południu - lokalnie płytkowodne delty);

5 - mułowce i piaszczyste osady brakicznego zbiornika

(5)

-of . brackich basin waters. In the studied area the trans-gression was proceeding generally from the south north-wards.

The last step in the paleogeographic analysis was cónnected with attempt to draw a hypothetical extension of the obtained image in adjacent areas. This was made using the model of sedimentation (Fig. 7), after its adjust-ment to regional frames of the basin (Fig. 9). The obtained sketch image shows source area of clastic materiał in the north. Granitoid pebbles found in the Elbląg Formation conglomerates evidence that erosion reached crystalline basement of the Baltic Shield. The conglomerates also contain pebbles of limestones, dolomites, marls, clay-stones and quartzites from Paleozoic and oider Bunt-sandstein deposits. The inferred zone of alluvial fans was stretching along the margin of that source area, and alluvial plain and brackich basin - farther to the south.

SOURCE OF URANIUM

As it was emphasized above, shows of uranium mi-neralization often cut boundaries of different rock types in the Elbląg Formation, which indicates their epigenetic nature (7). The major difficulty in explanation of origin of uranium from epigenetic sedimentary deposits is con-nected with the fact that its concentrations in such deposits are uncomparably higher than in the case of syngenetic disseminations. This requires assumption of erosion of gigantic rock masses in the neighbourhood (but outside the sedimentary basin) in the course of natural enrichment of the sediments in uranium (4). The question arising here is where such area may be found? The paleogeographic map from Fig. 9 gives fairly convincing answer. lt shows that clastic materiał for the Elbląg Formation has been transported from the Baltic Shield in the north. Triassic erosion affected there both crystalline basement of the shield and sedimentary rocks at its margin, iµcluding the Cambrian. In the case of the latter, the Alum Shales are well known to be markedly enriched in uranium. Thus it seems quite probable that these shales acted as a source of uranium found in the Elbląg Formation. Groundwaters carrying uranium compounds were flow-ing to the south, i.e. in direction of original, sedimentary dip of alluvial sandy bodies. This process was presum-ably taking place in the end of Triassic as it may be assumed that synorogenic Early Cimmeric movements have-resulted in uplift of northern marginal parts of the sedimentary basin and increase in southward dip of aquifers.

The most interesting shows of uranium mineralization are found in sandy-conglomeratic deltaic sediments (Figs. 4, 6). The shows found in conglomeratic-sandy bodies deposited by braided rivers (Fig. 3), sediments of sandy shoals and barriers and muddy-sandy sediments of near-shore part of the brackish basin (Figs. 5, 6) are less in-tense but also fairly interesting.

All the record-ed shows of uranium mineralization are connected with conglomeratic-sandy or sandy sediments interbedded with mudstones. This is due to the fact that the Elbląg Formation has been formed along a regional

188

front of alluvial-deltaic sediments interfingering with those of the brackish basin (Fig. 9). Along that front there have been active numerous reducing chemical traps, responsible for precipitation of uranium from solutions migrating through permeable sandy bodies.

REFERENCES

1. A 11 en J.R.L. - Studies in fluviatile sedimentation: a comparison of fining-upwards cyclothems, with special reference to coarse member composition and interpretation. J. Sedim. Petrol. 1970 vol. 40 no. 1. 2. B a r ej a E., S a ł d a n M., S t r z e 1 e c k i R.

-Wstępne wyniki badań mineralizacji uranowej w utwo-rach triasu w rejonie Krynicy Morskiej-Pasłęka. Kwart. Geol. 1980 nr 4.

3. Da d 1 ez R. - Some geological problems of the Southern Baltic Basin. Acta Geol. Pol. 1974 no. 1. 4. Ga be Im a n J.W. - Sedimentology and uranium

prospecting. Sediment. Geol. 1971 vol. 6 no. 3. 5. Ja w or owski K. - Warunki sedymentacji

ura-nonośnych osadów triasu w syneklizie perybałtyckiej. Kwart. Geol. 1981 nr 4.

6. Kanasiewicz J„ Sałdan M„ Uberna J. -Uranonośność pstrego piaskowca okolic Pasłęka. Biul. Inst. Geol. 1965 nr 193.

7. Sałdan M., Strzelecki R. - Uranium in the Bunter Sediments of the Polish area. Ibidem 1980 nr 328.

8. Str ze 1 e ck i R. - Wyniki badań mineralizacji ura-nowej w triasie syneklizy perybałtyckiej. Kwart. Geol. 1980 nr 4.

9. S t r z e 1 e c k i R. - O sedymentacji górnego pstre-go piaskowca w syneklizie perybałtyckiej. Prz. GeoL 1985 nr 4.

10. Szyper ko -Ś 1 i w czyń ska A. - Trias dolny w północno-wschodniej Polsce. Pr. Inst. Geol. 1979 t. 91.

STRESZCZENIE

Z analizy sedymentologicznej wynika, że materiał klas-tyczny formacji elbląskiej transportowany był głównie rze-kami roztokowymi, płynącymi z północy na południe (ryc. 9). Na obszarze tarczy bałtyckiej triasowa erozja objęła zarówno skały krystaliczne jak i pokrywę osadową. Naj-prawdopodobniej uran został uwolniony z erodowanych, kambryjskich łupków ałunowych Skandynawii. Związki

uranu migrowały epigenetycznie poziomami wodonośnymi, zgodnie z pierwotnym (sedymentacyjnym) pochyleniem warstw północnego skłonu basenu sedymentacyjnego, tj. na południe. Proces ten miał miejsce zapewne w końcu triasu. Uran był strącany w redukcyjnych pułapkach che-micznych, występujących wzdłuż regionalnego frontu osa-dów aluwialno-deltowych, zazębiających się z osadami brakicznego zbiornika. Mineralizacja uranowa jest zwią­ zana głównie z osadami płytkowodnych delt i rzek rozto-kowych.

Cytaty

Powiązane dokumenty

Keywords: public finance crisis, general government debt, Greece,

e/ A group of current students and alumni gathered to officially remove the shroud covering the plaque in honour of the founder of the college.. A group of current students and

The upper part (early Tithonian) of the Ludharwa Member corresponds to the Lanela Member (early Tithonian) of the Baisakhi Formation exposed more northeastwards at the Bhadasar

Pierwsze wystąpienie w ramach Interdyscyplinarnych Seminariów Naukowych z cyklu „Migotanie znaczeń” odbyło się 14 kwietnia 2014 roku, na którym autor nowo wydanej

Within the scope of a com pre hen sive pro gram of the State Geo log i cal Sur vey of Po land, des ig nated to pro tect and com pre hen sively study stratotype sec tions in

These anal y ses are in agree ment with re flected light thin sec tion ob - ser va tions (Fig. 2A, C), that con firm the pres ence of crys tal line as well as of cryptocrystalline

bons (Fig. 3A) re veals that the Up per Cam brian shales are mainly mod er ate or even good source rocks. This as sess ment is prob a bly in valid due to irradation of or ganic mat

In the model as sumed (Więcław et al., 2010b), for the off shore part of the Łeba Block, the Mid dle Cam brian source rocks reached the ini tial stage of hy dro car bon gen er a