• Nie Znaleziono Wyników

Delocalization of the Information Stored in a Holographic Memory

N/A
N/A
Protected

Academic year: 2021

Share "Delocalization of the Information Stored in a Holographic Memory"

Copied!
8
0
0

Pełen tekst

(1)

( ? y . L . P .

Delocalization of the Information Stored in

a Holographic Memory* *

*

^

B y itlu m in a tin g th e d a ta m ask of a holographic m em ory ^y an a rra y of c o h e ren t p o in t sources, th e in fo rtn a tio n sto red in a ho lo g ram can be delocalized, i.e. th e re exists a th ree dim en sio n al reg io n a ro u n d th e focal p lan e over w hich th e in fo rm atio n is d is trib u te d uniform ly. In consequence of th e m eth o d described sto rag e re d u n d a n c y can be achieved, an d som e p ro p e rtie s of th e F o u rie r sp ectru m can be, m oreover, k e p t in th e v ic in ity of th e F o u rie r plane. T he calculations h av e been verified b y a m odel experim ent.

1. Introduction

1 §. In fo rm a tio n stored in holographic m em ory has th e form of th e F o u rie r sp ectru m of a p rim a ry d a ta m ask, c o n tain in g tra n s p a re n t an d opaque squares, corresponding to th e b it c o n ten t. W hen th e d a ta m ask is illum inated by a plane or h om o centric wave, th e n each sq u are gives th e sam e am p litu d e d istrib u tio n in th e F o u rie r p lan e, b u t th e phase facto r is p ro p o rtio n al to th e lo catio n of th e bit-square. The F o u rie r sp ectrum of th e whole d a ta m ask is produced b y th e in terferen ce of th e in div i­ d ual b it spectra. Such a k in d of sp ectru m will be called a Mwi/orw sp e ctral d istrib u tio n .

F o r reco n stru ctio n of a b it-sq u are from its holographic record only th e c e n tra l p a rt of th e d iffractio n p a tte rn is needed, i.e. th e region defined by resolutio n req u irem en ts. F ro m th e uniform ity it follows consequently th a t for th e reco n stru ctio n of th e whole d a ta m ask th e sam e region is needed as for an ind iv idu al b it-sq u are. T hus, th e system of a holographic m em ory can be th e follow ing [1 ]: A block of d a ta is realized in th e fo rm of a d a ta m ask, th e m ask is th e n reco rd ed in a hologram of fin ite e x te n t, called su bhologram . The whole storage a re a consists of side by side subholo­ gram s.

D ifficulties arise, how ever in th e realizatio n of th e storage red u n d a n c y . A m ere increase in

* I n s titu te for P hysics, B u d a p est.

** This w ork h a s been sponsored by th e S ta te Office of T echnical D evelopm ent.

th e size of th e subhologram s allows to record only sp atial frequencies t h a t a re u n im p o rta n t for th e re c o n stru c tio n ; th e reliab ility of th e device does n o t increase w hile its cap ac ity dim inishes. A fu rth e r pro b lem is t h a t th e F o u rie r spectru m a p p e ars only in th e im age plane of th e lig h t source. H ence, th e sm allest m isalignm ent of th e recording p lan e in th e direction of th e lig h t p ro p ag a tio n leads to th e recording of th e F resn el in ste a d of th e F rau n lio f- fer diffraction. I n th e F resn el diffractio n p a t ­ te rn th e field s c a tte re d b y th e b it sq uares is n o t d istrib u ted u n ifo rm ly an y m ore, th e p a tte rn s of th e in d ivid u al b its being locally shifted. A dam age of th e h ologram p la te m ay lea d to th e loss of some b its in th e re c o n stru c te d im age.

The en h ancem ent of th e region over w hich th e in form atio n is d istrib u te d uniform ly is c a l­ led delocalization. D elocalization can be ach ie­ ved in several w ays. T he sim plest m eth o d is th e illum ination of th e d a ta m ask th ro u g h a gro u n d glass p late . T hen, how ever, th e speckle noise of th e re c o n stru c te d field will be v e ry high, like in th e case of rough surface objects [2]. A m ore a d v a n tag eo u s p ro ced u re is th e illu m in a ­ tio n of th e m ask th ro u g h a d iffractio n g ra tin g [3], since due to v a rio u s orders of th e d iffra c te d lig h t F ra u n h o ffe r p a tte rn s a re sh ifted a n d consequently, th e sp e ctru m is m ultip led.

The m ethod in v e stig a te d b y us [ I ] can be reg ard ed as a generalizatio n of th e d iffractio n g ratin g m ethod. E a c h b it sq u a re is illu m in ated b y an in d iv id u al p o in t source (Fig. 1). The F o u rie r sp ectrum of a b it, illu m in a te d in th is w ay, is th e co n v o lu tio n of th e sp e ctru m of

(2)

w here a single h it a n d th a t of th e illu m in a tin g beam .

This re su lta n t sp ectru m consists of an infinite n u m b er of elem en tary hologram s given by a plan e wave source. Thus, th e r e s u lta n t

spec-Fig. 1. P o in t m a trix illu m in atio n

f — poin t sources, J f — d a ta m a s k : FT/ — F o u rie r tra n sfo rm lo ts, 77 — hologram plane, / — focal len g th

of th e F o u rie r tran sfo rm lens

tru m is g ettin g b lu rred regularly. The coherent p o in t sources can be produced by using a fly's eye optics, th e distance betw een th e le n sle ts being eq u al to th e side of th e b it squares. Such m eth od w as used for re d u n d a n t recording of p ic tu re ­ like inform ation [5]. The fly 's eye illu m inatio n has also been described in [6] w ith o u t d etailed analysis.

2. Theory

2 §. A t firs t we shall discuss th e m ost p o p u lar F o u rie r (or quasi-F o u rier) m eth o d of tra n s p a ­ ren cy tra n sfo rm atio n . A plane w ave falls on th e d a ta m ask (Fig. 2) a n d th e hologram is

F ig. 2. P lan e w ave illu m in a tio n 717 — d a ta m ask, 7<'7i — F o u rie r tra n sfo rm lens, 7, —

reference beam

reg istered in th e focal plane of a lens. L et th e tra n sp a re n c y of th e b inary m ask co n tain in g A" b its be V V ?(3ku, ,'/u) =

y y

C /¿=i ;=i o.X'X'T/ 37 .'/a - < ^.iy " 77.u X

- ( X X )

(1) rect(.r) [ l!% l< l /2 i Ol.r] > 1 /2 '

l/i; a re th e co ordinates on th e b in ary m ask ; 771, is th e size of a b i t ; A ^y is th e distance betw een th e b it-c en tre s; a n d = 0 or 1 depending on th e con tent. E lectric field in th e hologram

/by) is [7]: -^*(''7/? /by) f ( F r ( 4 r + ?///) = — e x p — — ----V ) / / a ) X

x

exp - (x.t/.'/y + //n.'b/) < ^ , (2)

w here 7 denotes th e w av elen g th , A', th e a m p litu ­ de of th e incident lig h t w ave a n d / is th e focal len g th of th e F o u rie r lens. T ak ing in to account (1) we get for th e field (in th e following we neglect th e p ro p o rtio n a lity facto rs):

1! where -^Jiy/2 ^(^yy; /fyy) = f -Uiy/2 - bn/2 < 2 Try x e x p l ---X a n d /by) V .V = A_a(Arx + b /;,) j. (5)

^(37/'//yy) fu n ctio n will be called th e M specb'dw /;/ucbow, because it describes th e sp ectru m of a single bit. The F (tr^ , /by) fu n ctio n is called th e cu/dc/d .s-prcb'/rw /Mucbo/q since it describes th e sp e ctru m of a m ask on w hich th e bits a re rep resen ted b y d fu nctions. As an exam ple Fig. 3 shows th e co n te n t sp ectrum

F ig. 3. A re s u lt of th e oue dim ensional c o m p u te r sim u la ­ tio n of th e c o n te n t sp e c tru m

(3)

fu n ctio n of 20 ran d o m ly selected b its of a one­ dim ensional m ask. I t can be seen th a t th e co n te n t sp ectru m spreads over th e whole holo­ gram plane, so th e sp ectru m to be recorded on th e hologram for th e reliab le storage is d eterm ined by th e b it sp e ctru m function.

F o r p lan e w ave illu m in a tio n th e b it spectru m fu n ctio n is

Kbbu- 1/n ) - D ^ s in c ^ " j b n c ^

(6) w here sinc(;r) = simr/.r.

T he sp ectru m has app reciable values only in th e v icin ity of th e op tical axis (.r^ = 0, 2/n = 0).

The spectru m described in (3), (1), (3), (6), is recorded on th e F o u rie r h ologram of th e d a ta m ask.

In th e reco n stru ctio n process th e in te n sity d istrib u tio n a t th e d e te c to r gq,, y ^ plane is

.Vo)

const} j* J

w here /* is th e focal len g th of th e re a d out F o u rie r lens, a n d a re th e coordinates of th e cen tre of th e sp ectral b a n d used for th e reco n stru ctio n an d A denotes th e w id th of th e rec o n stru c te d F o u rie r sp ectru m . The d efo rm a­ tio n of a bit of th e re c o n stru c te d signal is shown in Fig. I as a fu n ctio n of th e re c o n stru c te d sp ectral rang e (i.e. /;) for th e case = 0,

=

b-Fig. 4. D eform ation of a b it of the. re c o n stru c te d signal as a fun ctio n of th e re c o n stru c te d sp e c tra l range

(calculation)

I t can be seen t h a t th e m ain p a r t of th e inform ation is co n tain ed w ithin th e spectral ran ge determ ined by A r'^ = y ^

= 0 ; th e re is no reaso n to ta k e larg e r areas for reconstructio n as th e o u tp u t signal increases only slightly.

M oreover, a n y la te ra l shift of th e cen tre of th e reco n stru cted a re a (from th e origin of coordi­ nates = 0, y", = 0) will lead to h ig her los­ ses (Fig. 3). Therefore, from p ra c tic a l p o in t

/ 7 / \ ---/ \ + -/ / \ /' \ /' \ / \ / \ / \ w

Fig. 5. In te n sity d istrib u tio n in th e d e te c to r plane for several values

7t = oo for th e co n tin u o u s curve, 7t = 1A //D ^ for th e o th e r curves (calculation)

of view th e re c o n stru c tio n region of th e holo­ gram can be defined by *

iyn! < ( S )

Therefore th ere is also no reaso n to record larger subhologram s, such subhologram s are not r e ­ d u n d a n t, an d losses in th e hologram yield inform ation losses in th e re c o n stru c te d im age.

Fig. 6. L ens m a trix illu m in a tio n

F J7 — lens m a trix , J f — d a ta m ask, F F — F o u rie r tran sfo rm lens, 7? — h o logram plane, F — focal plan e

3 §. L et now a m a trix of lenses be placed in fro n t of th e d a ta m ask (see F ig. 6) so, th a t th e axis of each lens in te rse c t th e d a ta m ask a t th e centre of th e corresponding b it square. The b its

* The lim it defined in (8) is tw ice th a t req u ested by th e R ayleigh criterion.

(4)

a re illu m in ated by spherical waves

F .e x p ^ + '

w here

r — denotes th e distance betw een th e focal p lan e of th e lens m atrix a n d th e d a ta m ask. T he field a t a distance / ' m easu red from the F o u rie r lens is th en .1/ f exp [* m /Ar ) in 1 1 — %?i,} exp ¿y t (9) (F or sim plicity we discuss only a one-dim ensi­ onal case, th e relations for tw o dim ensions are obvious.) T he firs t fac to r in th e in te g ran d in (9) describes th e spherical w ave, th e second is th e tra n sp a re n c y of th e m ask, th e th ir d describes th e focusing action of th e F o u rie r tra n sfo rm lens, a n d th e fo u rth is th e p ro p ag a tio n term . A fter some bo rin g calculations for th e field d iffracted by th e &-th sq u are we get

= e x p { - ^ [ ( R d ^ ( a + y ) - a T r ( l + p ) ) 2 +

+ y)]j x

X <P 1^2 ^ ^ 6 <P w here * 1^2 ^ 'd ^ y + ^ g ( l + l ) \ y i f \ 2 (10) <P(r) = J e s dt

is th e F resnel in teg ral, y is th e defocusing facto r ch aracterizin g th e m isalignm ent of th e hologram p late, defined as

a n d a sta n d s for

y = ¿ - . f f

a (1 1)

The fo rm u la (10) is h ard ly d isputable. W e shall con cen trate th e discussion on th e role of th e p a ra m e te r a containin g both th e defo­ cusing facto r a n d th e spherical wave illum ina­ tio n of th e bit. If tt^ -0 an assim p to tic a p p ro ­ x im atio n is to be used [8] a n d [10] tu rn s into th e F o u rie r tra n sfo rm of th e square(6). The c a ­ se, a = 0 b u t y ^ 0 an d r =/= oo, corresponds to th e realizatio n of th e F o u rie r tra n sfo rm atio n , w hen th e F o u rie r plane is th e im age p lane of th e source [7]. The case r ^ o o an d y-sO has been discussed in § 2.

A m ore im p o rta n t case is when a is a large nu m b er, i.e. th e distance y is m uch less th a n th e focal len g th / , b u t th e m isalignm ent is n o t too high (y 1). T he d istrib u tio n rem ains n early uniform , if for th e tw o (in dep end ent of th e co­ o rd in ates a?,,) te rm s (11) of th e F resn el in teg ral a rg u m e n t th e following cond ition holds :

-- —-- ^

---/ a I 2

i.e. w hen th e defocusing fac to r

a M

2A; A j; y 2AA^

F o r = 1.5, % = 50 a n d y/y = 30 th e lim it of th e rela tiv e m isalign m ent is

lyl 4 1/15 ^ 6 % , w hich can be easily achieved.

I n th e absence of th e lens m a trix (y = oo) th e te rm d e p e n d en t on th e locatio n of th e sq u are will be

A'/li; l y (see (10) a n d (11)), in ste a d of

th u s th e accuracy of th e lo n g itu d in a l alig n m en t is fa c ilita te d by th e fa c to r y/y.

The field d istrib u tio n m u st be calculated fro m F resn el in teg rals. I n Fig. 7 we show some c a lc u la te d d istrib u tio n s for some v alu es of

y/y. As it can be ex p ected , th e w itd h of th e in te n sity d istrib u tio n c u rv e increases w ith th e

y/y ratio . ( I t is clear, t h a t th e case, w hen th e ap p ro x im atio n of th e g eo m etrical optics is v alid, th e illu m in atio n of th e F o u rie r p lan e by a b it betw een th e shadow m arg ines is c o n sta n t.)

(5)

F ig. 7. D ependence of th e in te n s ity d istrib u tio n of th e b it sp e ctru m on th e focal le n g th of th e fly 's eye lenses ( D ^ = 0.19 m m , / = 300 m m , A = 6328 A) (ca lcu la­

tion)

W hen th e whole data, m ask is illu m in ated by a lens m atrix , th e field d istrib u tio n in th e holo­ g ram p lan e is

-E(ah?) = A

w here -E^aq?) is given b y (10).

The rec o n stru c te d in te n s ity d istrib u tio n in th e d e te c to r plan e is

I(a?^) = const] < -E(.r^)e ' da?g] . -A+a^

(12) The re c o n stru c te d in te n s ity d istrib u tio n (12) fo r th e case / / r = 100, y = 0 w as calculated

F ig. 8. C alculated in te n s ity d is trib u tio n a t th e d etecto r p la n e in th e case of fly 's eye lens illu m in a tio n for se­

v e ra l it v alu es; = 0

num erically. Fig. 8 p rese n ts th e c a lc u la te d d istrib u tio n in th e case of = 0 for several v a lu ­ es of A. C om paring Figs 4 a n d 8 we can see, t h a t a satisfacto ry re c o n stru c tio n w ith p lan e w ave an d fly's eye lens illu m in a tio n m eth o d s req u ires th e sam e sp e ctral b a n d (A = 1 ) . T he e n la rg e ­ m en t of th e re c o n s tru c te d a re a (A > 1) gives an enlarged signal in th e d e te c to r p ro p o rtio n a l to th e en largem ent of th e re c o n stru c te d area, i.e. th e storage red u n d a n c y is p ro p o rtio n a l to th e enlarg em en t of th e h o lo gram size. I n F ig. 9 th e rec o n stru c te d in te n sity d istrib u tio n is p lo t­ te d for b a n d w id th A = /A /7 l„ b u t th e cen tre shifted up to = 3.75 The g ra p h shows no significant d isto rtio n com pared w ith th e centred b a n d (cu rv e a in F ig . 9), in con­ tra d ic tio n to th e case of th e p lan e w ave il­ lum ination (Fig. 5) w hich pro ves th e equivalence of different p a rts of th e sp e ctru m .

Fig. 9. C alculated in te n s ity d istrib u tio n a t th e d e ­ te c to r plane for several values (It = 0 .7 5 A //D ^; -D3; = 0.19 m m ; / = 300 m m ; A = 6328 A ; / / r = 100)

3. Experimental

§ 4. F o r th e sake of sim plicity in th e e x ­ p erim en ts we h av e used a pinhole in ste a d of th e fly 's eye lens a rra y . T he a rra n g e m e n t of th e pinholes on an opaqu e m ask w as id en tic a l to th a t of th e b its in th e b in a ry m ask. P lacing th e pinhole a rra y in ste a d of th e lens a rra y th e b its were illu m in a te d b y th e beam s d iffra c te d from th e pinholes. T he d istan ce betw een th e pinhole a rra y a n d th e b in a ry m ask was chosen so t h a t each b it be illu m in a te d b y lig h t com ing only from th e pinhole. I t is obvious th a t p in ­

(6)

hole a rra y can n ot replace th e fly 's eye lens a rr a y in every respect because of th e loss in lig h t power.

The d a ta m ask used for te st is shown in

F ig. 10, while Fig. I t d em o n strates its im age w hen centred stops of v ario u s d iam e te r were p u t in th e focal plane of th e F o u rie r tra n sfo rm

lens. F o r p ictu res a-d p arallel wave an d for pictures aa-d d m a trix illum inatio n were used. A ccording to § .1, no significant d ev iatio n for sy m m etrical sp e ctra is observed a t both kinds of illu m in ation . The size /; = is sa tis­ fac to ry for m aking fair records.

Fig. 12 is a side-band p ic tu re using stop of diam eter 2Â//_D^ shifted by 3/4A //7t^. Fig. 12a was tak e n w ith p a ra lle l beam , Fig. 12b with a m atrix . The difference betw een th e two re ­ cords is obvious. The fu rth e r a d v a n ta g e of th e m atrix illu m in atio n is d e m o n stra ted in Fig. 13, showing th e result of th e off focal plane m isalig­ nm ent. The im age of a plane wave illum inated m ask is cut off a t th e corners a n d strongly d isto rte d in th e sides, in d icatin g th e absence of th e u n ifo rm ity , while th e p ictu re take]] w ith th e m a trix shows no local losses in th e co nten t, th e u n ifo rm ity being observed.

* * * * *

* w w # # # # .

# w # # w # w #

W W W # # # # #

w # #

# #

# # # # # # # # w # # # # # # # * # * # # # # ( , w # w w *

* w w w w w w *

W W W W W W W W

w w w w w w w w

W W W

w w

W W W W W W W W W W W W W W W W W W W W W W W W aa d dd

F ig. 11. I n te n s ity d istrib u tio n a t th e d e te c to r p la n e : a —d: p a ra lle l w ave illu m in a tio n , a a - d d : ma t r i x il­ lu m in atio n , a , aa : 7;. = 1 (A//D jt;). b , b b : A = 0 . 8 3 ( 4 / / c,ee, : A = 0.7 (A//Z),M), d ,d d : A = 0 .0 ( 4 //D j/) , ,r ^ = 0

(7)

a b

b ig. 12. E x p e rim e n ta l com parison of th e p la n e w ave (a) and m a trix (b) ¡d o m in atio n m eth o d (7t = 0.75 = 0.75 (A //D ^)).

a b

Fig. 13. E x p e rim e n ta l com parison of th e p lan e w ave (a) and m a trix (b) illu m in a tio n m eth o d (7t = 1 (A //D ^), ". //r = 1"". У = "-I-'')

4. Conclusions

C alculation a n d ex p erim en ts sliow th a t a sa tisfa c to ry sto rag e red u n d a n c y can be achie­ ved w hen each b it of th e b in ary m ask is illu m in ated se p ara te ly b y an iden tical d iv e r­ g en t beam . The use of d iv erg en t illum in atio n does n o t increase th e m inim al size of th e hologram , so th is m eth o d does n o t decrease th e m ax im ally a tta in a b le sto rage d ensity. T he req u ired sto rag e re d u n d a n c y can be achie­ ved by a p ro p o rtio n a l en larg em en t of th e holo­ g ram size. U sing o u r m eth o d th e spectrum rem ains unifo rm for th e hologram s of out-of F o u rie r planes ju s t as well. C onsequently, F o u rie r tra n sfo rm lenses w ith larg e a n g u lar a p e rtu re can be used, a n d th e recording m aterial need n o t be m a tc h e d to th e c u rv e d focal plane, because th e p ro p erties of th e F o u rier tra n sfo rm are conserved in d ep th .

*

* *

T h an k s are due to Mr. F . K irhly for his active assistance in th e ex p erim en ts.

Le d ép lacem en t des in fo r m a tio n s m a g a sin é e s dans u n e m é m o ir e h o lo g ra p h iq u e

A u m oyen de l'éc laira g e de la m a sq u e c o n te n a n t des données de la m ém oire h o lo g rap h iq u e p a r un systèm e des sources de lum ière pon ctu elles cohérentes il est possible de déplacer les in fo rm atio n s stockées dans un hologram m e ; cela v e u t dire q u 'a u to u r du plan focal il ex iste une zone de tro is dim ensions, su r laquelle les in fo rm atio n s so n t disposées u n ifo rm é ­ m ent. E n se se rv a n t de c e tte m éth o d e on p e u t o b te n ir u n surplus de m ém oire; en plus, ce rta in e s p ro p rié té s d u spectre de F o u rie r peuvent, être prése rv é es d an s l'en to u ra g e du p la n de F o u rie r. L es calculs o n t été vérifiés p ra tiq u e m e n t su r u n modèle.

Перемещение информации, хранимой в голографической памяти Путем освещения маски с данными голографическом памяти системой когерентных точечных источников можно перемещать информацию, хранимую в голограмме. Иначе говоря: существует трехмерная зона вокруг фокальной плоскости, на которой информация одинаково размещена. Применением описанного метода можно получить избы­ ток памяти, а некоторые свойства спектров Фурье могут, сверх того, сохраниться вблизи плоскости Фурье. Расчеты проверены эмпирически на модели. ОрттсА ArPLiCATA V , 3 -4 , 1975 4 1

(8)

References

[1] VANDER LuHHT A ., A pplied O ptics, Vol. 12, p. 1675 (1973).

[2] ENLOE L. H ., B ell S yst. Tech. J . Vol. 46, p . 1479 (1967).

[3] GRRRITSEN H. J ., HANNAN W . J . , RAMBERG E. J ., A pplied O ptics Vol. 7, p. 2301 (1968).

[4] BENCZE Gy., VARGA P ., P re p rin t K F K I-7 4 -2 6 (1974).

[5] FlRESTER A. H ., F o x E. 0-, &AYESKI T. E ., HANNAN W . J . , LuRiE M., RCA R eview Vol. 33, p . 131 (1972).

[6] VERBOVETSKIT A. A ., FEDOROV V. B ., Z h u rn . T ekh. F iz. Vol. 42, No. 10, p. 2203 (1972). [7] COLLIER J . , BURCKHARDT B ., LlN H ., OpMcai

H oloyrapky, A cadem ic P ress, L o n d o n 1971, C hap. 5 -6 .

[8] SoMMERFELD A ., Op he, W iesb ad en 1950, C hap 5.

Cytaty

Powiązane dokumenty

The intensity distribution in the aberration spot as well as the incoherent modulation transfer function (MTF) of this lens are presented in Figs.. 2a and

W niosek adwokata lub radcy prawnego, ustanowionego dla stro­ ny zwolnionej od kosztów sądowych w całości lub w części, o zasą­ dzenie od Skarbu Państwa kosztów

2 Publikacja została dofinansowana ze środków przyznanych Wydziałowi Zarządzania Uniwersytetu Ekonomicznego w Krakowie na utrzymanie potencjału badawczego w 2019

Item idem dominus dux habens in prospectu et iusta racione monilia clenodina ac certas summas pecuniarum in auro et argento, que et quas illustrissima olim domina dux

Nawet jeśli korzystanie z mediów społecznościowych i narzędzi analitycznych, z procedur związanych ze stażem pracy i możliwościami awansu, nie jest spójne w ramach jednej lub

All das blieb natürlich nicht ohne Konsequenzen für die sprachliche Gestaltung des Textes: Das Evangelienbuch Otfrids hat als autochthoner Bibeltext eine diskur-

Książka autorstwa Karstena Dahlmannsa i Artura Dariusza Kubackiego może bardzo przydać się zarówno studentom filologii germańskiej, uczestnikom seminariów