• Nie Znaleziono Wyników

Heterozja dla plonu i jego składników w krzyżowaniu diallelicznym rzepaku (Brassica napus L.)

N/A
N/A
Protected

Academic year: 2021

Share "Heterozja dla plonu i jego składników w krzyżowaniu diallelicznym rzepaku (Brassica napus L.)"

Copied!
8
0
0

Pełen tekst

(1)

Tom XXVII

R

OŚLINY

O

LEISTE

– O

ILSEED

C

ROPS

2006

Farhat Farhatullah, N.A. Khan, S.J. Abbas

Department of Plant Breeding and Genetics NWFP Agricultural University Peshawar, Pakistan

Heterosis for yield and yield components

in diallel crosses of Brassica napus L.

Heterozja dla plonu i jego składników w krzyżowaniu diallelicznym

rzepaku (Brassica napus L.)

Key words: Heterosis, heterobeltiosis, Brassica napus, L., F1 hybrids

Four Brassica napus varieties, Rainbow and Oscar (canola type) and Maluka and Koral (non-canola type), were crossed in a full diallel fashion to study heterosis (mid parent) and heterobeltiosis (best parent) for various parameters. Means of parents and hybrids were significantly different for all

parameters except number of plants per m-2. The highest heterosis value was recorded for seed yield

and number of branches plant-1. Almost all the crosses surpassed even their better parents for seed

yield plant-1. The heterosis in the number of branches plant-1 was responsible for the heterosis in

yield. Significantly positive heterosis was recorded in 50% crosses for days to flowering whereas only one of the crosses could exceed the better parent. Seventy five percent of the crosses were positive and significant for 1000-seed weight over better parent. The least heterosis and heterobeltiosis were computed for plant height where 7 out of 12 crosses manifested negative values. The best heterosis

and heterobeltiosis were recorded for hybrids Oscar × Rainbow (seed yield-1), Oscar × Maluka

(number of plants m-2), Maluka × Rainbow (1000 seed weight) and Koral × Maluka (days to podding

and maturity). These crosses are recommended for commercial utilization of heterosis in future breeding programs.

Słowa kluczowe: heterozja w odniesieniu do średniej rodziców i do lepszego rodzica (heterobeltioza),

Brassca napus L., rzepak, mieszańce pokolenia F1

Cztery odmiany rzepaku, Rainbow i Oskar (typu canola) oraz Maluka i Koral (typu nie canola) zostały skrzyżowane w układzie pełnego allelu dla przeprowadzenia badań nad heterozją w odnie-sieniu do średniej rodziców i lepszego rodzica (heterobeltioza) pod względem różnych cech. Średnie

rodziców i mieszańców różniły się istotnie dla wszystkich cech z wyjątkiem ilości roślin na m2.

Najwyższa wartość heterozji była oznaczona dla plonu nasion i liczby rozgałęzień na roślinie. Prawie wszystkie mieszańce przewyższały w plonie nasion z rośliny nawet lepszego rodzica. Efekt heterozji w liczbie rozgałęzień przypadających na roślinę był skorelowany z efektem heterozji plonu. 50% mieszańców charakteryzowało się istotnie dodatnim efektem heterozji pod względem ilości dni do kwitnienia, ale tylko jeden mieszaniec przewyższał lepszego rodzica. 75% procent mieszańców było istotnie dodatnio lepsze pod względem masy tysiąca nasion od lepszego rodzica. Najmniejszą heterozję i heterobeltiozę wyliczono dla wysokości roślin, gdzie 7 mieszańców z 12 wykazało wartości ujemne. Najlepszą heterozję i heterobeltiozę zanotowano dla mieszańców: Oskar × Rainbow

(plon nasion), Oskar × Maluka (liczba roślin na m2), Maluka × Rainbow (masa 1000 nasion) i Koral ×

Maluka (liczba dni do zawiązania łuszczyn i do dojrzałości). Takie mieszańce są zalecane do zastosowania w przyszłych programach hodowlanych.

(2)

Introduction

Pakistan has made an improvement in the development of the agricultural sector, but the chronic shortage of edible oil has persisted unabated for the past 15 years. Local varieties of rapeseed are traditionally old and poorly yielded. In spite of economic importance of oilseed crops, no major breakthrough has been made in the improvement of this crop. The yield unit-1 area in Pakistan is low as compared

to that of developed countries. Therefore, it is felt that providing farmers with new canola varieties is the only promising option for increasing per acre yield. Simple selection in this self-pollinated crop has not been fruitful. Thus the choice of diverse parents for hybridization must be based upon the combining ability of the parental lines.

For the synthesis of genetically superior rapeseed, variety/hybrids possessing harmonious combination of desirable parameters and increased adaptability to a wide range of climatic conditions is prerequisite. The estimation of the value of heterosis and heterobeltiosis for understanding the genetic control of these parameters in different cross combinations under the prevailing conditions is very important. The ultimate goal would be the development of hybrid cultivars of winter rape that can potentially use the total amount of heterosis available. Therefore, the studies reported here were undertaken to quantify the contribution of various high yielding parental lines in the production of hybrid cultivars, having high seed yield. The selected hybrids will be recommended to be included in national oilseed breeding program in Pakistan.

Materials and methods

The experiment was conducted at Pakistan Oil Seed Development Board (PODB), Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan. Four varieties of Brassica napus viz. Oscar, Rainbow (canola type), and Maluka and Koral (non-canola type) were crossed in a full diallel fashion and F1 seed along

with their parents were sown in rabi season in a Randomized Complete Block Design with three replications. The data was recorded on randomly selected plants in two central rows on seed yield plant-1 (g), number of branches plant-1, days to

50% flowering, podding and physiological maturity, number of plants m-2, plant height (cm), and 1000 seed weight (g).

The data was statistically analyzed, using analysis of variance techniques (Steel and Torrie 1980). The heterosis (mid-parent) and heterobeltiosis (best-parent) for various crosses were calculated for all parameters (Walter 1987). The t-test was used as a significance test for positive heterotic and heterobeltiotic values of various F1 hybrids (Wynne et al. 1970).

(3)

Heterosis for yield and yield components in diallel crosses ... 11

Results and discussion

The genotypes were significantly different for seed yield plant-1, days to flowering, podding, and physiological maturity, plant height, number of branches plant-1, and 1000-seed weight in rapeseed canola. Significant variations for various

traits in brown sarsoon have also been reported (Yadava et al. 1985). However, in radish, the variations between crosses and their reciprocals were nonsignificant (Vahidy and Hartmann 1972).

Mean performance of the parents and their F1’s are presented in Table 1.

Among canola type parents, Rainbow produced the maximum number of plants m-2

(10.20) and took maximum days to maturity (208). Oscar produced the highest plants (228 cm) having maximum seed yield (19.63 g) with more branches plant-1

(8.67) and took maximum days to flowering (141.67). In non-canola type parents, Maluka maintained superiority in all characters except for number of plants m-2. On

average, canola type parents were better in number of plants m-2, 1000 seed weight,

and days to flowering, podding, and maturity. The non-canola type parents produced plants with higher number of branches plant-1.

In F1 crosses, the hybrid Koral × Oscar was almost intermediate to both parents

and took 143.67 and 205 days to 50% flowering and physiological maturity, respectively. This hybrid also produced the shortest plants (183 cm) as compared to the parents. The reciprocal of the same combination was the earliest in maturity (191.33). The intermediate values for reciprocal crosses of radish have been reported (Vahidy and Hartmann 1972). The cross combination of non-canola type Maluka × Koral gave maximum seed yield plant-1 (42.81 g), produced the tallest

plants (243.33 cm). Manner (1959) also observed higher F1 plants as compared to

their parents in a cross made between summer and winter mustard. The hybrid Maluka × Rainbow gave the maximum 1000 seed weight (4.6 g). The hybrid Koral × Maluka took the maximum days to 50% podding (175.33) and the minimum days to flowering (128). On average the canola type parents (Rainbow and Oscar) were late while non-canola types (Maluka and Koral) were early in maturity. Interestingly, the F1’s of canola × canola were early, while canola ×

non-canola were late in maturity as compared to their respective parents, which might be due to the additive gene effect. Similarly in turnip rape, Manner (1959) reported late maturing F1 hybrids as compared to summer cultivar in cross between summer

and winter mustard. Two F1 hybrids of canola × non-canola types (Rainbow ×

Maluka and Oscar × Koral) had early, while one hybrid (Koral × Oscar) had late maturity. In rapeseed, Ahmadi (1993) obtained early maturing F1 hybrids from

(4)

Tabl M eans of Paren ts and t h ei r F 1 hy bri d s for vari ous t rait s i n Brassi ca napusŚredni e dl a rodzi ców i ic h mi esza ńców dla ró żnych cech Lines hyb ri d s Odmiana mieszaniec Day s to flower ing

Liczba dni do kwitnien

ia

Day

s

to podding Liczba dni

do zawi ązania łuszc zy n Day s to ma tu rity Liczba dni do dojrza ło ści Pla nts m -2 Liczba roślin na m 2 Plant h eight Wysoko ść ro ślin [cm] Branches plant -1 Ilo ść rozga łę zie ń na ro ślinie S eed weigh t Masa 1000 nasion [g] S eed yi plant Plon nasion z ro [g] Rainbow ( R ) 139. 67 ± 1. 45 3 165. 33 ± 1. 45 3 208. 00 ± 1. 15 5 10. 20 ± 0. 551 167. 00 ± 2. 64 6 4. 00 ± 0. 577 4. 0 ± 0. 12 12. 23 ± 1. Oscar ( O ) 141. 67 ± 0. 33 3 163. 67 ± 0. 66 7 203. 00 ± 0. 57 7 7. 60 ± 1. 600 228. 00 ± 7. 63 8 8. 67 ± 0. 667 3. 9 ± 0. 18 19. 63 ± 2. M aluka (M ) 133. 00 ± 1. 15 5 151. 00 ± 1. 15 5 194. 00 ± 1. 15 5 6. 60 ± 1. 002 216. 00 ± 6. 11 0 9. 33 ± 0. 667 3. 8 ± 0. 06 24. 61 ± 1. Kor al (K) 130. 00 ± 0. 57 7 148. 00 ± 0. 57 7 192. 67 ± 0. 66 7 8. 23 ± 1. 571 197. 33 ± 9. 33 3 4. 33 ± 0. 333 3. 8 ± 0. 15 23. 32 ± 5. R x O 137. 67 ± 0. 66 7 154. 33 ± 0. 33 3 199. 33 ± 0. 66 7 8. 47 ± 0. 970 187. 00 ± 5. 56 8 5. 67 ± 0. 333 3. 9 ± 0. 07 25. 33 ± 3. R x M 142. 67 ± 0. 88 2 162. 00 ± 0. 57 7 190. 67 ± 0. 66 7 7. 73 ± 0. 203 212. 00 ± 5. 29 2 7. 00 ± 1. 155 3. 3 ± 0. 19 16. 87 ± 2. R x K 141. 00 ± 1. 15 5 164. 00 ± 0. 57 7 192. 00 ± 1. 15 5 8. 47 ± 0. 546 214. 67 ± 10. 7 29 6. 00 ± 0. 577 3. 8 ± 0. 09 27. 81 ± 2. O x R 136. 67 ± 0. 88 2 158. 33 ± 0. 88 2 198. 67 ± 0. 66 7 6. 02 ± 1. 625 185. 00 ± 2. 88 7 9. 33 ± 0. 333 3. 8 ± 0. 03 34. 55 ± 2. O x M 142. 33 ± 0. 66 7 163. 00 ± 1. 15 5 192. 00 ± 1. 15 5 7. 97 ± 1. 811 203. 33 ± 0. 88 2 5. 00 ± 0. 577 4. 1 ± 0. 07 24. 57 ± 2. O x K 137. 67 ± 0. 33 3 155. 67 ± 0. 33 3 191. 33 ± 0. 66 7 7. 00 ± 2. 515 221. 67 ± 6. 00 9 13. 00 ± 2. 309 3. 7 ± 0. 12 26. 41 ± 2. M x R 130. 00 ± 0. 57 7 149. 00 ± 1. 15 5 199. 33 ± 0. 66 7 5. 65 ± 1. 366 212. 67 ± 2. 40 4 7. 33 ± 1. 202 4. 6 ± 0. 03 32. 72 ± 2. M x O 138. 67 ± 0. 88 2 156. 00 ± 0. 57 7 195. 33 ± 0. 66 7 4. 13 ± 0. 133 236. 33 ± 4. 48 5 7. 33 ± 1. 667 3. 3 ± 0. 22 30. 32 ± 5. M x K 130. 67 ± 0. 88 2 151. 00 ± 1. 15 5 201. 33 ± 0. 66 7 5. 15 ± 1. 380 243. 33 ± 17. 6 38 7. 00 ± 2. 000 4. 3 ± 0. 09 42. 81 ± 4. K x R 139. 00 ± 1. 15 5 158. 00 ± 0. 57 7 198. 00 ± 0. 57 7 6. 13 ± 2. 474 207. 00 ± 10. 2 14 5. 33 ± 0. 333 3. 8 ± 0. 42 27. 94 ± 2. K x O 143. 67 ± 0. 88 2 157. 67 ± 0. 33 3 205. 00 ± 0. 57 7 6. 90 ± 1. 721 183. 00 ± 6. 08 3 7. 33 ± 0. 667 3. 3 ± 0. 06 23. 51 ± 2. K x M 128. 00 ± 0. 57 7 175. 33 ± 0. 88 2 203. 33 ± 0. 66 7 5. 90 ± 1. 400 202. 67 ± 16. 8 26 8. 67 ± 1. 856 4. 2 ± 0. 09 29. 62 ± 3.

(5)

Heterosis for yield and yield components in diallel crosses ... 13

The maximum number of branches plant-1 (13) were recorded for F1 hybrid

crossed between canola (Oscar) and non-canola (Koral) rapeseed which was also early in maturity. The hybrids between Rainbow and Oscar or Koral produced the maximum number of plants m-2.

Heterosis

The performance of single-cross hybrids can only be enhanced by adding favorable alleles from donor inbred lines. The heterosis and heterobeltiosis results are presented in Table 2. All F1 hybrids exhibited significant (p < 0.01) heterosis

(except Rainbow × Maluka) and heterobeltiosis (except Rainbow × Maluka, Koral × Oscar, and Oscar × Maluka) for seed yield plant-1. The hybrid Oscar × Rainbow was

the best for seed yield plant-1, which exhibited the highest significant heterosis

(116.9%) and heterobeltiosis (76%). Significant heterobeltiosis for single plant yield in Indian mustard (Pradhan et al. 1993), oilseed rape (Grant and Beversdorf 1985) and mustard (Pental et al. 1995) has been reported. Significant heterosis for seed yield has also been reported in winter oilseed rape (Krzymanski et al. 1993 and Sernyk and Stefansson 1983), rape seed (Srivastava and Rai, 1993) and Indian mustard (Baisakh et al. 1994).

Only four hybrids Oscar × Maluka, Maluka × Rainbow, Maluka × Koral (and its reciprocal) exhibited significantly (p < 0.01) positive heterosis and heterobeltiosis for 1000 seed weight. Habetinek (1993) and Pszczola (1993) reported positive heterotic and heterobeltiotic effects for 1000 seed weight in Brassica napus in their respective studies. However, Grant and Bevrsdorf (1985) found non-significant heterosis for 1000 seed weight in oilseed rape.

Half of the hybrids exhibited positive and significant heterosis for days to 50% flowering. The Rainbow × Maluka, was the only hybrid that exhibited both heterosis (p < 0.01) and heterobeltiosis (p < 0.05) for days to flowering. However, Schuler et al. (1992) and Virk and Pooni (1994) found no heterosis for days to flowering in Brassica rapa and sunflower, respectively. The positive heterosis for this character in the group of crosses (canola × noncanola) signifying the role of genetic divergence in the expression of heterosis.

The hybrids Maluka × Koral (and its reciprocal), and Koral × Oscar produced significant (p < 0.01) and positive heterosis and heterobeltiosis for days to maturity. Hirve and Tiwari (1991) and Virk and Pooni (1994) also found significant heterosis for days to maturity in Indian mustard and sunflower, respectively. However, in summer turnip rape Schuler et al. (1992) got negative heterosis for days to maturity.

All crosses (except Oscar × Maluka and its reciprocal) produced significant (p < 0.05) and positive heterosis for branching plant-1. Four crosses Rainbow ×

Koral (and its reciprocal), Rainbow × Oscar, and Oscar × Koral showed positive and significant heterobeltiosis in which the hybrid Oscar × Koral exhibited the highest value of 100% for number of branches-1. It is clear from the results that

(6)

Hetero sis (Mi d p aren t) and h eterob eltio sis (High p aren t) fo r v ariou s trait s in Bra ssica na pu s Het erozj a ( w o dni esi eni u do ś redn iej rod ziców ) i h eterob ellio za (w odn iesien iu do lepszeg o rod zica ) d la ró żnyc h cec h r zep aku Day s to flower ing

Liczba dni do kwitnien

ia

Day

s

to podding Liczba dni

do zawi ązania łuszc zy n Day s to ma tu rity Liczba dni do dojrza ło ści Pla nts m -2 Liczba roślin na m 2 Plant h eight Wysoko ść ro ślin [cm] Branches plant -1 Ilo ść rozga łę zie ń na ro ślinie S eed weigh t Masa 1000 nasion [g] S eed yi plant Plon nasion z ro śliny [g] Hy b ri d s Mieszaniec Het Hetb Het Hetb Het Hetb Het Hetb Het Hetb Het Hetb Het Hetb Het R × O –2.1 –2.8 –3.4 –6.6 –3.2 –4. 3 –2.3 –15.0 –5.3 –17.9 –7.6 33.3 ** –1.3 –2.5 59.3 ** O × R 2.8** –3.5 –3.9 –4.2 –3.2 –4.3 –32.1 –41.0 –6.3 –18.8 38.4 ** 0.0 –4.8 –6.0 116.9 ** M × K –0.3 –1.5 1.0 0.0 3.9 ** 3.6 ** –30.6 –37.0 17.8 ** 12.6 7 .7 ** –22.2 13.7 ** 13.1 ** 78.7 ** K × M –2.6 –3.7 17.0 ** 15.9 ** 4.9 ** 4.6 ** –19.7 –27.6 –1.8 –6.2 38.4 ** 0.0 11.9 ** 11.3 ** 23.6 ** R × M 4.7** 2.1* 1.8 –2.4 –4. 9 –8.2 –7.2 –23.0 10.7 –1.8 7 .7 ** –22.2 –15.4 –17.5 –8.7 M × R –4.7 –7.1 –5.7 –9.7 –0. 9 –4.3 –33.7 –45.0 11.0 –1.6 7 .7 ** –22.2 16.9 ** 14.0 ** 77.7 ** R × K 4.4** 0.7 4.8 ** –0.6 –4.2 –7.7 –6.0 –15.0 17.9* 8.9 50.0 ** 50.0 ** –3.1 –6.0 56.5 ** K × R 2.9** –0.7 0.9 4.2 ** –1.2 –4.8 –34.8 –41.0 13.7 5.0 25.0 ** 25.0 ** –2.0 –5.0 57.1 ** K × O 5.8** 1.4 1.3 –3.6 3. 5 0.9 –14.8 –18.5 –13.8 –19.7 7 .7 ** –22.2 –13.1 –15.3 9.5 ** O × K 1.4 –2.8 0.0 –4.0 –3.5 –5.9 –9.7 –13.5 4.3 –2.8 100.0 ** 44.4 ** –2.6 –5.1 23.1 ** O × M 3.2** 0.0 3.5 ** –0.6 –3.3 –5.4 10.0 ** 4.0 * –8.4 –10.8 –44.4 –44.4 6.5 ** 5.1 ** 10.8 ** M × O 1.1 –2.1 –0.1 –4.9 –1.5 –3.9 –42.8 –45.9 6.4 3.6 –22.2 –22.2 –14.3 –15.3 37.1 ** * — significant at 5% lev el (p < 0 .05) — isto tne na poziomie 5% ( p < 0,05) ** — significant at 1% lev el (p < 0 .01) — isto tne na poziomie 1% ( p < 0,01) R = R ainbow O = Oscar M = Maluk a K = Koral

(7)

Heterosis for yield and yield components in diallel crosses ... 15

high seed yielding genotypes had positive heterosis both for seed yield and number of branches. Panday and Zehr (1999) reported that higher seed yielding hybrids have a greater number of productive branches. Kumar et al. (1990) concluded that crosses possessing positive heterosis for seed yield also had positive heterosis for primary and secondary branches in Indian mustard. Only two hybrids Rainbow × Koral and Maluka × Koral exhibited significant and positive heterosis at p < 0.01 and p < 0.05 levels, respectively, for plant height. None of the hybrids manifested heterobeltiosis for this parameter. Rao (1977) experienced variable estimates of heterosis for plant height. The only hybrid Oscar × Maluka showed significant positive heterotic values over midparent (p < 0.05) and better parent (p < 0.01) for plants m-2.

These results suggest that hybrid vigour should be exploited by the production of a hybrid variety. The hybrid variety may be based on transgressive segregantes expected in the segregating generations of these crosses for selection.

Conclusions

The results suggest that bright prospects exist for development of F1 hybrid

cultivars in rapeseed canola breeding programs. The F1 derivatives Oscar × Rainbow

(seed yield), Oscar × Maluka (plants m-2), Maluka × Rainbow (1000 seed weight)

and Koral × Maluka (days to podding and maturity) may be included in the future rapeseed breeding programs.

References

Ahmadi M.R. 1993. Study of agronomic value of resynthesized rapeseed lines and early generation of crosses “resyn-line × improved varieties”. Iranian J. Agric. Sci., 24: 3-4.

Baisakh B., Panda S., Nayak B.K. 1994. Heterosis for yield in Indian mustard. Envi. and Ecol., 12: 572-574.

Grant I., Beversdorf W.D. 1985. Heterosis and combining ability estimates in spring oilseed rape (Brassica napus L.). Can. J. Genet. Cytol., 27: 472-478.

Habetinek J. 1993. Heterosis and combining ability in a diallel cross of five varieties of winter swede rape (Brassica napus L.). Sbornic Vysoke Skoly Zemedelske v Praze, Faculta Agronomicka. Rada-A, Rostlinna Vyroba., 55: 151-160.

Hirve C.D., Tiwari A.S. 1991. Heterosis and inbreeding depression in Indian mustard. Ind. J. Gen. Plant Breed., 51: 190-193.

Krzymański J., Piętka T., Krótka K. 1993. Combining ability and heterosis in diallel crosses of

double-zero winter swede rape. 1. F1 generation. Postępy Nauk Rolniczych, 5: 41-52.

Kumar P.R., Arora R.K., Singh N.P., Yadav R.C. Kumar P. 1990. A study of heterosis in Indian mustard (Brassica juncea L. Coss. and Czen.). Acta Agron. Hung., 39: 1-2.

(8)

Manner R. 1959. Studies in F1 and F2 of crosses between winter and summer turnip rape.

Maataloustiet. Aikak., 31: 31-37.

Pandey L.B., Zehr B.E. 1999. Commercial Heterosis of F1 Hybrids in Oilseed Brassica. “New

Horizons for an old crop” Proceedings 10th International Rapeseed congress, Canberra, Australia. Pental D., Pradhan A.K., Sodhi Y.S., Arumugan N., Mukhopadhyay A. 1995. Heterosis breeding in

mustard (B. juncea) and rapeseed (B. napus) by a combination of molecular and conventional methods. Proceedings 9th International Rapeseed Congress, Cambridge (UK), pp. A-44.

Pradhan A.K., Sodhi Y.S., Mukhopadhyay A., Pental D. 1993. Heterosis breeding in Indian mustard (Brassica juncea L. Czern and Cross): analysis of component characters contributing to heterosis for yield. Euphytica, 69: 219-229.

Pszczoła J. 1993. Estimation of combining ability for selected traits in winter swede rape in two sets of diallel crosses. Postępy Nauk Rolniczych, 5: 33-40.

Rao T.S. 1977. Genetics of yield components in brown sarson. Genet. Iber., 29: 219-227.

Schuler T.J., Hutcheson D.S., Downey R.K. 1992. Heterosis in intervarietal hybrids of summer turnip rape in western Canada. Can. J. Plant Sci., 72: 127-136.

Sernyk J.L., Stefansson B.R. 1983. Heterosis in summer rape (Brassica napus L.). Can. J. Plant Sci., 67: 147-151.

Srivastava K., Rai B. 1993. Expression of heterosis in intervarietal hybrids of rapeseed. Het. Breed. In crop plants: Theory and Application. Short Comuni. Symp. Ludh., pp. 23-24.

Steel R.G.D., Torrie J.H. 1980. Principles and procedures of statistics, a biological approach. McGraw Hill Inc, New York, Toronto and London.

Vahidy A.A., Hartmann R.W. 1972. The genetics of flowering time in Raphanus sativus L. III. Early

× late crosses, F1 and F2 generations. Pak. J. Bot., 4: 89-97.

Virk P.S., Pooni H.S. 1994. Genetic potential of selected sunflower crosses for producing early flowering recombinant inbred lines. J. Genet. Breed., 48 (1): 47-54.

Walter R.F. 1987. Principles of cultivar development. Theo. and Tech. MacMillan Publ. Co. 3rd Av. NY. 1: 115-116.

Wynne J.C., Emery D.A., Rice P.W. 1970. Combining ability estimates in Arachis hypogaea L.

II. Field performance of F1 hybrids. Crop Sci., 10: 713-715.

Yadava A.K., Singh H., Yadava T.P. 1985. Inheritance of non-waxy trait in Indian mustard and its reaction to the aphids. J. Oilseeds Res., 2: 120-123.

Cytaty

Powiązane dokumenty

Celem niniejszej pracy była próba oceny wyżywienia 25 studentek z kierunku wychowania fizycz- nego Uniwersytetu Kazimierza Wielkiego w Bydgoszczy na 10 dniowym letnim obozie

Nawożenie mineralne, tak w postaci saletry amonowej, jak i saletry z dodatkiem mikroelementów, istotnie podwyższało w porównaniu z obiektem kontrolnym wielkość plonu ziarna

Przy zbiorze plonu z całych poletek efekty oddziaływań brzegowych znacząco wpływały na ocenę rzeczywistego plonu ziarna owsa w doświadczeniach, powodując zawyżenie tej

Mechaniczno-chemiczne niszczenie naci ogranicza ponadto porażenie PVY (Kürzinger, 1999; Wróbel, 2001), a także niekorzystne oddziaływanie preparatu chemicznego na rośliny ziemniaka

w sprawie najwyższych dopuszczalnych poziomów pozostałości środków chemicznych stosowanych przy uprawie, ochronie, przechowywaniu i przewozie roślin, które mogą

Plonotwórcze działanie sodu, wyrażone wzrostem plonów korzeni, przejawiało się w każdym z kolejnych lat badań, lecz zdecydowanie jednoznacznie tylko w suchym 1999 roku..

Celowe zatem wyda³o siê okreœlenie zawartoœci o³owiu i kadmu oraz azotanów V i III w owocach aronii czarnoowocowej (Aronia melanocarpa) i bzu czarnego (Sambucus ni- gra) pozyskiwanych

W wyniku 3-miesięcznego stosowania wody dejonizowanej w sposób i dawce jak wyżej, stwierdzono statystycznie znamienne podwyższenie stężenia cholesterolu całko- witego oraz