• Nie Znaleziono Wyników

Some Attempts of Electrochemical Oxidation of Human Blood Hemoglobine on the Gold Electrode

N/A
N/A
Protected

Academic year: 2021

Share "Some Attempts of Electrochemical Oxidation of Human Blood Hemoglobine on the Gold Electrode"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S ____ FOLI A C H I M I C A 8, 1908

B o g u s ł a w Gr ze lak*, W i e s ł a w A u g u s t y ni ak **, Jan M. R o g o ziń sk i |***, S t a n i s ł a w R o m a n o w s k i *

SOME A T TE MPT S OF E L E C T R O C H E M I C A L O X I D A T I O N OF HU MAN BL OOD HE M O G L O B I N E ON THE GO LD E L E C T R O D E * * * *

C y cl ic c h r o n o v o l t a m p e r o m e t r i c m e t h o d was a p p l i e d in a t t e mpt s of o x i d a t i o n of d e o x y h e m o g l o b i n hu man b l oo d s o l u t i o n s in d i f f e ­ rent a n t i c o a g u l a n t s on the gold el ec tro de . On the basis of ob t a i n e d results it was as su m e d that the o x i d a t i o n of h e m o g l o b i n in 3.8% sodi um ci tr a t e s o lu tio n and also in 1% NaCl and 0.5% NaF m i x t u r e s is possible.

H e m o g l o b i n e (Hb) - the main c o l o u r e d c o n s t i t u e n t of e r y t h r o c y t e s pl ays e x t r e m e l y im po rta nt role in h u ma n o r g a n i s m as .the o x yg en and carb on di ox i d e carrier. It is built up of four he m m o l e c u l e s with two pairs of p o l y p e p t i d chains:

H O O C C O O H

Mo l e c u l e of hem

*

De p a r t m e n t of Ge ne ral and In or gan ic Ch em ist ry , In st itu te of Ch em ist ry , U n i v e r s i t y of L6d2.

**

St at i o n of Bl ood Donors, MSW Hospital, D e p a r t m e n t of In ternal M e d i c i n e M i li tar y Medi cal Academy, L<5d2.

Clin ic of O i a b eto lo gy , Ac ad emy of Me di cin e, L 6 dt . * * * *

This p a pe r has been done and s u p p o r t e d in the f r a m ewo rk of the I n t e r d e p a r t m e n t Pr oj e c t MR I— 11.

(2)

B i v a l e n t iron in the p o r p h y r i n c o m p l e x is ab le to fix the o x y g e n w i t h o u t c h a n g i n g the v a l e n c e in m o l a r r a ti o 1 : 1 . O x y g e n a d d i t i o n to Hb c a ll ed o x i d a t i o n is not a c o m p l e t e l y r e v e r s i b l e process. In the o x i d a t e d co mp l e x very slow c h e m i c a l o x i d a t i o n of the b i v a l e n t iron takes p l ac e the e f fe ct of w h ic h is the c r e a t i o n of m e t h e m o g l o b i n e (MetHb) c o n s i s t e d of p o r p h y r i n c o m p l e x e s Fe (I II) c a ll ed hemines, he nce the anot her name of m e t h e m o g l o b i n e - he mi- gl ob i n e [ l , 33].

En zy m e s redu cin g M e tH b to Hb i n c l u d e d in bloo d c e ll s o p po se this p r o c e s s but the c o n t e n t of M e t H b in the o x i d a t e d bl ood a p p r o x i m a t e s 2%. G r e a t e r am mo unt of M e t H b c a us es the s t at e of s i c k n e s s m a i n l y b e c a u s e of the r e d u c e d v e n t i l a t i o n p r o p e r t y of h u ma n bloo d [1-5, 30, 31].

The s p e c i f i c c h a r a c t e r of Hb a b i l i t y of fixi ng the o x y g e n and also its very slow c h a n g e into M e t H b can be o b s e r v e d in the e x p e ­ ri me n t s wi t h the o x y g e n o x i d a t i o n in the s y n t h e t i c h e m o - s i m i l a r co mp oun ds . P o r p h y r i n c o m p l e x e s Fe(I I) wi th p r o t e i n c h a i n s are o x yg en o x i d a t e d 1 0 8 times faster th an n a t u r a l Hb [6]. P i r i d i n i a n s o l u t i o n s of s y n t h e t i c p o r p h y r i n c o m p l e x e s with Fe(I I) n e i t h e r pr es e n t p r o p e r t i e s of c o n n e c t i n g w i t h o x y g e n nor they o x i d a t e to c o m p l e x e s w i th Fe(III). Only the a d d i t i o n of w a te r to the s o l u t i o n c a us es qu ick a u t o - o x i d a t i o n [5] .

The d e o x i d a t e d Hb ( d e o x i h e m o g l o b i n e ) very q u i c k l y a t t a c h e s the o x yg en fr om the air. 2, 3 - g l y c e r i n e d i p h o s p h a t e (2, 3-OPG) has a great i n f l uen ce on the Hb a f fi nit y for the oxygen. The d e c r e a s e of 2, 3-DPG c o n t ent in huma n b l oo d o b s e r v e d d u r i n g long b l o o d pre­ s e r v a t i o n in f l u e n c e s the i n c r eas e of Hb a f f i n i t y for the o x yg en and its mo r e d i f f i c u l t r e l e a s e ( r e d uce d v e n t i l a t i o n ) [30, 31],

The p r e s e n c e of o x i d a t e d or d e o x i d a t e d Hb can be e a si ly stat ed by c o m p a r i n g a d s o r p t i o n s p e c tra of Hb so lu tio ns . The o x i d a t e d Hb g i ves two clea r a b s o r p t i o n band s at 578 nm and 540 nm in the visible part of a b s o r p t i o n sp ec trum, w h i l e the d e o x i d a t e d Hb g i ve s only one at 555 nm [ l , 4] .

The o x i d a i i o n of Hb to M e tH b can be e a si ly c a r r i e d out th ro u g h the p o t e n t i o m e t r i c f e r r i c y a n i d e ti tr ati on . The n o rm al H b / M e t H b p o t e n t i a l in these c o n d i t i o n s d e p e n d s on pH and it c h a n g e s from 0.175 V (SHE) at pH * 6 to 0. 040 V (SHE) at pH = 9; pH of h u m a n blood is about 7.4. This r e a c t i o n is not 4 - e l e c t r o n as it s h o u l d have b e en s u s p e c t e d but n value i n c l ude s itself w i t h i n the limi ts from

(3)

1.1 to 2.7 in d e p e n d e n c e of pH [ l - 4 ] . It is p r o b a b l y c o n n e c t e d with the c h an ge b o th in the hem s t r u c t u r e and in the w h o l e h e m o ­ g l o b i n ę .

In the recent ye ars the b i o e l e c t r o c h e m i c a l e x p e r i m e n t s c o n ­ c e r n i n g the b i o l o g i c a l l y a c ti ve m e t a l l o c o m p l e x e s h a v e be e n of great interest. In these e x p e r i m e n t s the iron c o m p l e x e s p l ay the i m p o rta nt role. In ma ny w o r k s [7-29] the o b j e c t s of e x p e r i m e n t s are s y n t h e ­ t i c a lly o b t a i n e d h e m o - s i m i l a r c o m p lex es . One can state, ho wever, lack the e x p e r i m e n t s of Hb o x i d a t i o n to M e t H b on the s o li d e l e c t r o ­ des ęnd on the me rcury. The gr eat Hb m o l e c u l e (mole ab out 65 000) is s u p p o s e d to be an i m p o r t a n t o b s t a c l e in this type of m e a s u r e ­ ments. The e x p e r i m e n t s of the k i n e t i c s of Hb o x i d a t i o n r e a c t i o n on s o li d e l e c t r o d e s w i t h o u t o x i d i z e r s or the i n f l u e n c e of c e r t a i n co m p o u n d s (e.g. m e d i c i n e s ) on the r e a c t i o n rate w o u l d be a p r e c i o u s i n f o r m a t i o n m a i n l y for the i n s t i t u t e s d i r e c t l y c o n n e c t e d with h e a l t h service.

The s t a r t i n g of the a t t e m p t s of e l e c t r o c h e m i c a l r e s e a r c h of Hb s o l u t i o n s has be e n m o t i v a t e d by the i m p o r t a n c e of the pr oblem, by g r ea t i n t e r e s t of the a u t h o r s r e p r e s e n t i n g d i f f e r e n t s c i e n t i f i c b r a n c h e s and by the o b t a i n e d e l e c t r o c h e m i c a l r e s e a r c h po te nti al .

Jx£er^mental

The a t t e m p t s of e l e c t r o c h e m i c a l o x i d a t i o n of Hb s o l u t i o n s we re ca r r i e d out u s in g the c y c l i c v o l t a m m e t r y m e t h o d (CVM) in a s t a n d a r d t h r e e - e l e c t r o d e s y s t e m w i th the gold w o r k i n g e l e c tro de , the c y l i n ­ dric al p l a t i n u m a u x i l i a r y el ec tro de , and the s a t u r a t e d calo mel re f e r e n c e electrode.

The w o r k i n g e l e c t r o d e in fo rm of wire of d i a m e t e r 0 = 1.0 mm and the su rf a c e A = 0.52 c m 2 was p u r i f i e d in the c o n c e n t r a t e d H 2 S 0 4 (p.a.) and e l e c t r o c h e m i c a l l y by m e an s of c y cl ic p o l a r i z a t i o n in the po t e n t i a l ra nge from -1.1 V to +1.4 V with the s w ee p p o l a r i z a t i o n po t e n t i a l rate 0.2 V . s -1 up to the time of o b t a i n i n g the ty pi cal CVM c u rv e in s u p p o r t i n g e l e c t r o l y t e (0.5 M H2S0^).

Eq u i p m e n t set c o n s t r u c t e d in the D e p a r t m e n t of G e n e r a l and In o r g a n i c C h e m i s t r y of the U n i v e r s i t y of Łó dź ( p o t e n t i o s t a t , line ar sw eep p o t e n t i a l g e n e rat or , di gi t a l co nt r o l m e t e r s ) e n a b l e d to o b ta in C V M cur-ves on the B A K- ST register. The s w e e p p o l a r i z a t i o n

(4)

a small but cl ear hump that co uld s u g g est Hb o x i d a t i o n pe ak was r e g i s t e r e d .

It has been de ci d e d then to use the o x i d a t e d Hb for the m e a s u ­ rements. For it may be as su med that the o x yg en added to Hb mo le cule, can, in an im portant way, "scireen" hem m o l e c u l e s in cl u d i n g Fe'' and not to let them to the e l e c t r o d e surface.

Mo re over, as the s t r u ctu ra l e x p e r i m e n t s ha ve proved, the oxyg en in Hb m o l e c u l e caus es its d e f o r m a t i o n th ro ugh the protein c h ai ns [32] shift. D e o x i d a t i o n of Hb s o l u t i o n in v a cu um c o n d i t i o n s p r ov ed to be of a small use b e c a use of the long time of de ox ida ti on , stro ng f oaming of the s o l u t i o n and its d i s t i n c t c o n c e n t ra ti on.

Some p o s i t i v e re su lts have been o b t a i n e d duri ng d e o x i d a t i o n th ro ugh the t r a n s m i t t i n g the p u r i f i e d ar gon th ro ugh the solution. Each time argon was t r a n s m i t t e d t h r o ugh the s o l u t i o n in 20 m i n u tes time. Gas flowed out from a c a p i l l a r y (with d i a m e t e r inside 0 = 0.2 mm) under a p r e s s u r e of 50 Atm. The a d d i t i o n of Na BH^ in this te chnics a p pe are d to be needless.

CVM curv es of the d e o x i d i z e d Hb in the ci tr a t e s o l u t i o n were cl ea rly d i f f ere nt from CVM curv es of the s o l u t i o n s w i t h o u t Hb. The s u p p o s e d Hb o x i d a t i o n peak lies too near of the ci tr a t e o x i ­ dati on peak and it is of the shap e of a hump on the rising part of the curve (Figure 2).

Fig. 2. CVM curv es for the 3.8% s o d i u m c i t r ate solution: a) not c o n t ain g Hb; b) cont ain g Hb. Sw eep p o t e n t i a l rate v = 0.02 V . : 1

(5)

A mo re cl ear peak ha ve been s u s p e c t e d in the s o l u t i o n s of s o ­ di um c h l o r i d e and s o d i u m fluoride. As 1% NaCl s o l u t i o n c h o s e n as a p h y s i o l o g i c h u mo ur o c c u r i n g in h u m a n o r g a n i s m does not poss es a n t i - c o a g u l a n t pr o p e r t i e s , the m i x t u r e of 1% NaCl and 0. 5% NaF of (different c o m p o s i t i o n has be en us ed as a basi c so lu tio n. In these s o l u t i o n s the p r e s e n c e of Hb al so c a u s e d the f o r m a t i o n of humps on the r i si ng part of the cu rve (F ig ure 3). The p o t e n t i a l at w h ic h h u mps o c c u r e d was h i gh er in c o m p a r i s o n w i th the p o t e n t i a l of the c i t r a t e s o l u t i o n s curves.

S C E

Fig. 3. CV M c u rv es for the s o d i u m c h l o r i d e and s o d i u m f l u o rid e s o l u t i o n (0.5% NaF and 1% NaCl in v o l u m i n a l ratio 100 : 1): a) not c o n t a i n i n g Hb; a) c o n t a i n i n g Hb. Sweep p o t e n t i a l rate v = 0.02 V.s'1

If we a s su me that Hb m o l e c u l e d e v o i d of m o l e c u l a r o x y g e n is able to such d e f o r m a t i o n in the e l e c t r i c field that iron ions F e ++ of this m o l e c u l e c o ul d done an e l e c t r o n t r a n s f e r wi t h the el e c t r o d e , we s h ou ld expe ct a gr eat o v e r v o l t a g e of this process. Thus it is not s t r a n g e that instead of peak p o t e n t i a l eq ual about 0 . 20 0 V (SCE) (near to E° at f e r r i c y a n i d e ti t r a t i o n ) it is found at about 0.750 V (SCE) (in the c i t r a t e so lu t i o n ) or ev en at about 0.95 0 V (SCE) (in NaCl + NaF solutio ns ).

(6)

The distinct c h a r a c t e r of the curv es in the ca to d i c part also s u g g e s t s the e l e c t r o d i c o x i d a t i o n of Hb. Peaks a p p e a r i n g on the c a t o d i c part of the curve reffer to the d e s o r p t i o n or r e d u cti on of o x i d a t i o n p r o d uct s of the basic s o l u t i o n (Cl , F ).

In the s o l u tio ns c o n t a i n i n g Hb they occur at d i f f e r e n t p o t e n ­ tials and they have di s t i n c t l y di ff e r e n t c h a r a c t e r (Figure 4).

Fig. 4. CVM curv es for the s o d i u m c h l o rid e and s o di um f l u o rid e solu­ tion (0.5* NaF and 1% NaCl in vo luminal ratio 1:100): a) not c o n ­ ta in ing Hb; b) c o n t a i n i n g Hb. Sweep p o t e nti al rate v = 0.05 V.s"1

Th ere is ob vi ous ly a p o s s i b i l i t y of the e l e c t r o d i c o x i d a t i o n of the grou ps o c c u rin g both in hem and Hb p r o t e i n chains^. In the pape r [19] de s c r i b i n g the r e d u c t i o n of -S-S- gr oup in p r o t e i n c h ai ns of many s u b s t a n c e s b i o l o g i c a l l y active, it has been stated that Hb in which only -SH grou ps o c cu r does not give any po la r o

(7)

g r a p h i c wave in the e x a m i n e d p o t e n t i a l range. H o w e v e r it is little p r o b a b l e that any g r ou p in the p r o t e i n c h ai n w o u l d oxidated mo re e a s i l y than F e + f . On the ba sis of the o b t a i n e d r e s u lts it was a s s u m e d that the o x i d a t i o n of the d e o x i d i z e d Hb is po ss ibl e. The ex p e r i m e n t , however, m e et s a lot of te ch n i c a l troubles.

More d i s t i n c t e f f e c t s are e x p e c t e d from the m e a s u r e m e n t s of the s o l u t i o n s of g r e a t e r Hb c o n c e n t r a t i o n (up to this time im p o s s i b l e b e c a u s e of the s p e c t r o p h o t o m e t e r se ns i t i v i t y ) . The q u a n t i t y i n t e r ­ p r e t a t i o n of the o b t a i n e d Hb o x i d a t i o n hu mps will be p o s s i b l e when the n u m e r i c a l m e t h o d s of e l a b o r a t i n g the re su l t s of CV M m e a s u r e ­ me nt s are used. They e n a b l e to c a l c u l a t e the c h a r a c t e r i s t i c p o in ts of the curve and on this ba sis to e v a l u a t e the k i n e t i c p a r a m e t e r s of e l e c t r o d i c r e a c tio n in a case when the peak of the p r o c e s s is not cl ea r l y s h ap ed (when two p r o c e s s e s take p l ac e at clos e p o t e n ­ tials). This m e t h o d is just be ing test ed on the k n ow n objects.

¿ ¿ f e r e n c e s

[1] A n t o n i n i E . , B r u n o r i M., H e m o g l o b i n and M y o ­ gl ob in in Their R e a c t i o n s wi th Li gands, N o r t h - H o l l a n d Publ. Comp., A m s t e r d a m (1971).

[2] M c A n 1 i f f e C. A., T e c h n i q u e s and Topics-in B i o i n o r g a n i c Ch em istry, Wi ll i a m C l ow es and So ns Ltd., L o n d o n (1975)

[3] C a n g h e y W. S., A. Rew. Bi oc hem., J56, 811 (1967)

[4] A n t o n i n i E . , B r u n o r i M., A. Rew. Bi oc hem .,

21

,

977 (1970).

[5] C o r w i n A. H . , E r d m a n J. G., J. Am. Chem. Soc., 68, 2473 (1946). [6] K a o 0. H. W. , W a n g J. H., Biochem. 4_, 342 (1965). [7] C o h e n J. A . . C a n g h e y W.S., Biochem. , 1_, 636 (1968). [8] K a d i s h K. M., J o r d a n J., J. E l e c tro ch em . Soc., 125, 1250 (1978). [9] K a d i s h K.M., L a r s o n G., L e x a 0., M 0 m e n- t e a u M., J. Am. Chem. Soc., 97, 282 (1975).

[10] L e x a D . , M o m e n t e a u M . , M i s p e l t e r 3., Bio- chim. Biophys. Acta, 338, 151 (1974).

[11] K a d i s h K. M., D a v i s D. G., Ann. N. Y. Acad. Sci., 2 0 6 . 495 (1973).

(8)

[12] G y g a x H. R., J o r d a n J., Disc. Farad. Soc., 45., 227 (1968).

[13] D r y h u r s t G., E l e c t r o c h e m i s t r y of Bi o l o g i c a l Mo le cul es , Acad. Press, L o nd on (1977).

[14] M i l a z z o G., Topics in B i o e l e c t r o c h e m i s t r y and B i o e n e r g e ­ tics, Vol. 1, ed. J. Willey, New York (1976).

[15] W o l b e r g A . , M a n a s s e n J . , J . Am. Chem. Soc., 9 2 , 2982 (1970).

[16] B e d n a r s k i T. M., J o r d a n J. ,J. Am. Chem. Soc., 86, 5690 (1964). [17] C a u g u i s G . , M a r b a c h G., B i o e l e c t r o c h e m . Bio- e n e r g . , X, 23 (1974). [18] J o r d a n J., F e i n b e r g B. A., G r o s s M., K a ­ d i s h K. M., M a r a n o R. S., P a c e , S. J., B i o e l e c t r o ­ chem. Bioenerg., _1, 73 (1974). [19] C e c i l R., W e i t z m a n P. D. J., Biochem. J., 92, 1 (1964). [20] B r o w n E . R . , M c C o r d T . G . , S m i t h D . E . , D e F o r d D. D., Anal. Chem., 38., 1119 (1966). [21] D a v i s D. G., 0 r 1 e o n D. J., Anal. Chem., jSJL I 79 (1966). [22] W a n g J. H., N a k a h a r a A., F l e i s c h e r E. 8., J. Am. Chem. Soc., 80, 1109 (1958).

[23] W a n g J. H., J. Am. Chem. Soc., BO, 3168 (1958).

[24] S u t i n N., C h r i s t m a n D. R., J. Am. Chem. Soc., 8 3 . 1773 (1961).

[25] D a v i s D. G., M a r t i n R. F., J. Am. Chem. Soc., 8 8 , 1365 (1966).

[26] M a r i c o n d i C . , S w i f t W . , S t r a u b D . K . , J. Am. Chem. Soc., 91, 5206 (1969).

[27] H a 1 a d i j a n J . , B i a n c o P . , S e r r e P . A . , J. Electro an al . Chem., 106, 397 (1969).

[28] T a r a s e v i c h M. R., B o g d a n o v s k a y a V. A., Mater. 2nd Intern. Symp. on B i o e l e c t r o c h e m . , Pont a ’M o u ß s ö n (1973).

[29] K w e e S . , L u n d H., Mater. 2nd Intern. Symp. on B i o e l e c ­ trochem., Pont a ’Mo us s o n (1973).

(9)

[31] Ł u k a s i a k S . , G a c z k o w s k i A . . D a s z y ń s k i J., Probl. Krwiod. Kr wiol., 15, 20 (1978).

[32] B r z o z o w s k i A., D o c t o r a l Thesis. Univ. Lodz. (1979). [33] K w i a t k o w s k i J., Pol. Tyg. Lek., 2 5 , 1302 (1970).

B o g u s ł a w G r z e l a k . W i e s ł a w A u g u s ty ni ak , [Jan M ._ Rogoziński! , S t a n i s ł a w Ro m a n o w s k i P R ÓB Y E L E K T R O C H E M I C Z N E G O U T L E N I E N I A H E M O G L O B I N Y KRWI L U D Z K I E J NA E L E K T R O D Z I E ZŁOTEJ M e to dą c h r o n o w o l t a m p e r o m e t r i i c y k l i c z n e j w y k o n a n o prób y u t l e ­ n i e n i a r o z t w o r ó w o d t l e n o w a n e j h e m o g l o b i n y w ró żn y c h a n t y k o a g u l a n - tach na e l e k t r o d z i e złotej. Na p o d s t a w i e o s i ą g n i ę t y c h w y n i k ó w s u g e ­ ruje się, że jest m o ż l i w e u t l e n i e n i e h e m o g l o b i n y w 3,8* r o z t w o r z e c y t r y n i a n u sodu i w m i e s z a n i n a c h 1% NaCl z 0, 5 % N a F .

Cytaty

Powiązane dokumenty

In order to determ ine w hether there is a correlation betw een the antibacterial effect o f phenolic substances and their physicochem ical behaviour - represented by

[et al.], M inim ization of volatile nitrogen oxides interference in the determ ination of arsenic by hydride generation atomic absorption spectrom etry, Spectroche-

Compact monopolar electrochemical stack designs using electrode arrays or corrugated electrodes.. Because all four sides of the flow channels are electrodes, this design takes up

Ceria electrochemistry essentially assimilates the kinetics of the electrochem- ical reactions at the 2PB and the bulk transport of oxide-ion vacancies and electrons. The overall

Similar to the nickel anode, a misalignment between 34 experimental and simulated peaks is also apparent for wet CO (figure 11 b). 35 Relative contribution of hydrogen and

To conclude, we unravelled CuBTC electrosynthesis to proceed in a two-step oxidation mechanism at the electrode surface: Cu is first oxidized to Cu 1+ 2 O in the presence of H 2 O or

Electrochemical Study of Potential Materials for Cochlear Implant Electrode ArrayN.

Conventionally adopted anodes for the electrochemical oxidation of land fill leachates may contain critical raw materials (Tab. 1), such as platinum, iridium, ruthenium, and