• Nie Znaleziono Wyników

Ammonium minerals from burning coal-dumps of the Upper Silesian Coal Basin (Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Ammonium minerals from burning coal-dumps of the Upper Silesian Coal Basin (Poland)"

Copied!
15
0
0

Pełen tekst

(1)

Am mo nium min er als from burn ing coal-dumps of the Up per Silesian Coal Ba sin (Po land)

Jan PARAFINIUK and Łukasz KRUSZEWSKI

Parafiniuk J. and Kruszewski Ł. (2009) — Am mo nium min er als from burn ing coal-dumps of the Up per Silesian Coal Ba sin (Po land).

Geol. Quart., 53 (3): 341–356. Warszawa.

As sem blages com posed of 11 am mo nium min er als, mainly sulphates and chlo rides, were re corded from four burn ing coal-dumps (BCD) in the Up per Silesian Coal Ba sin. Most of them are newly re corded from Po land. Min er als were iden ti fied us ing PXRD and SEM with EDS anal y ses. Salammoniac, NH4Cl, and tschermigite, (NH4)Al(SO4)2·12H2O are the most com mon spe cies on the BCD stud ied.

Kremersite, (NH4,K)2[FeCl5(H2O)], is rare and co ex ists with mem bers of the ammonioalunite–ammoniojarosite se ries. Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and more rarely clairite, (NH4)2Fe3(SO4)4(OH)3·3H2O, and mascagnite, (NH4)2SO4,ac com pany nu mer ous Mg, Al, Fe and Ca sul phate min er als. These usu ally oc cur as very fine ad mix tures form ing coat ings, small nod ules or po rous masses and were found on the BCD sur face close to gas vents. Also a mas sive sul phate crust was found in the deeper part of the BCD nearby the fire zone.

This crust is com posed mainly of an hy drous sulphates: godovikovite, (NH4)(Al,Fe)(SO4)2 , and very mi nor sabieite, (NH4)Fe(SO4)2,and efremovite, (NH4)2Mg2(SO4)3, which were trans formed into dif fer ent hy drated sulphates in the outer zone of the crust. The fi brous or den dritic habit of many am mo nium min er als, and the ve sic u lar tex ture of some sul phate ag gre gates, point to their crys tal li za tion from the gas phase. Some am mo nia min er als may also have de vel oped through hydration of pre vi ously formed phases or pre cip i tated from lo cally formed aque ous so lu tions due to cool ing or evap o ra tion. The ap pear ance of am mo nia min er als on BCD can be a use ful in di ca tor of the pres ence of un der ground fires.

Jan Parafiniuk and Łukasz Kruszewski, In sti tute of Geo chem is try, Min er al ogy and Pe trol ogy, Uni ver sity of War saw, Żwirki i Wigury 93, PL-02-089 Warszawa, Po land; e-mails: j.parafiniuk@uw.edu.pl; lkruszewski@uw.edu.pl (re ceived: De cem ber 12, 2008; ac cepted:

July 08, 2009).

Key words: Up per Silesian Coal Ba sin, burn ing coal-dumps, salammoniac, tschermigite, godovikovite, am mo nium min er als.

INTRODUCTION

Burn ing coal-dumps (BCD) have been re cently the sub - ject of in ten sive stud ies by dif fer ent re search ers, as they have be come a se ri ous prob lem in coal fields around the world.

Coal waste piles are a per sis tent el e ment of the land scape of al most all coal min ing ar eas. Many of these are af fected by fire and should be rec og nized as po ten tially haz ard ous for the nat u ral en vi ron ment (Panov et al., 1999; Finkelman, 2004).

BCD may emit se ri ous amounts of gases, in clud ing such dan - ger ous spe cies as CO, SO2, H2S, NH3, HCl, ar o matic hy dro - car bons and many oth ers. They are also harm ful pol lut ants for the at mo sphere and soils by dis pers ing dust, and for ground wa ter by the leach ing of many toxic com pounds and chem i cal el e ments.

Some burn ing pro cesses on spoil-heaps can be of anthropo - genic or i gin; how ever spon ta ne ous com bus tion of the coal

rem nants ini ti ated by self-ig ni tion is con sid ered to be the main cause. Ig ni tion of the coal be gins by ac cu mu la tion of not less than 60–70% of the ox i da tion-de rived heat, which is also de - pend ent on the coal ash con tent (Srebrodolskiy, 1989). It is not yet fully un der stood whether the heat re quired for ig ni tion is pro duced by ox i da tion of coal-dis sem i nated py rite, which is a com mon com po nent of bi tu mi nous coal, or by the or ganic ma - te rial it self. How ever, many au thors (i.e., Świętosławski, 1953;

Tvrdý and Sejkora, 1999) link the ig ni tion with the maceral com po si tion of the coal. Vitrite is the maceral of low est ig ni tion point and ini ti ates ig ni tion at around 300°C; mean while, the brit tle ness of fusite gives it a vast re ac tive sur face. Py rite is then re garded as an ad di tional cat a lyst of the pro cess, as its ig ni tion tem per a ture is around 330°C (Gryglewicz et al., 1996). The prog ress of burn ing is ac cel er ated by the ac cess of at mo spheric ox y gen, due to mov ing of the dump ma te rial (sub si dence, rub - ble flow) and in ten si fied by rain fall-wa ter, which plays an im - por tant role as an ox i da tion agent.

(2)

Burn ing of the dumps gives rise to the for ma tion of many dif fer ent min eral phases. We re fer to these as true min er als al - though their ap pear ance is as so ci ated with hu man ac tiv ity. The en vi ron ment, e.g., piles of mine waste ma te ri als, is built ar ti fi - cially but the rocks de pos ited and the min eral-form ing pro - cesses are es sen tially sim i lar to nat u ral ones, known from cer - tain geo log i cal en vi ron ments. Among min er als orig i nated on BCD, NH4-bear ing min er als are es sen tial, as am mo nium com - pounds are typ i cal of BCD and are thought to be in dic a tive of this en vi ron ment. They are as so ci ated also with un der ground coal-mine fires and nat u ral fires of ex posed coal seams.

This pa per pres ents the re sults of min er al og i cal in ves ti ga - tions (XRD, SEM) used to iden tify and char ac ter ize as sem - blages that in clude the am mo nium sul phate and chlo ride min er - als de rived from se lected BCD in the Up per Silesian Coal Ba sin.

The min er al ogy of these BCD has been poorly known so far and most of the min er als found in this study have not pre vi ously been known from these lo cal i ties, nor from Po land in gen eral.

MINERAL ASSEMBLAGES GENERATED ON BCD

BCD are an en vi ron ment for the for ma tion of min eral as - sem blages very dif fer ent from those typ i cal of mag matic, ther - mal-meta mor phic, vol ca nic ex ha la tion and supergene pro - cesses. The burn ing-in duced min eral-form ing pro cesses com - prise the ther mal trans for ma tion of waste-rocks or even their melt ing, coal gasi fi ca tion and car bon iza tion and al ter ation of the waste-rocks by coal-de rived flu ids, and the con den sa tion and crys tal li za tion of flu ids (Tvrdý and Sejkora, 1999; Sokol et al., 2005). The BDS en vi ron ment is very dy namic, de pend ing on the tem per a ture and chem i cal com po si tion of the waste ma - te ri als. Vertushkov (af ter Srebrodolskiy, 1989) dis tin guishes three main min eral-form ing stages; the burn out stage (BS), pseudofumarolic stage (PS) and supergene stage (SS).

The burn out stage (BS) is con nected with the high tem per a - ture de com po si tion of py rite-con tain ing coal-bear ing rocks in the in ner part of the fire zone. Py rite ig ni tion tem per a ture (ca. 330°C) is re garded as the lower tem per a ture limit of BS.

The up per limit reaches 1300°C, as re ported by Sokol et al.

(2002) on the ba sis of the melt ing of waste-rocks (si der it ic rocks, car bon ate clay rocks and mudstones) at BCD in the Chelyabinsk Coal Ba sin. The main prod ucts of this stage are so-called paralavas formed by crys tal li za tion of lo cal mo bile melts, metacarbonate slags af ter Fe-rich car bon ate rocks and clinker-like metaargilites af ter slates. In ter ac tion of the paralava-pa ren tal melts with dumped sed i men tary waste-rocks leads to the for ma tion of buchites. The min eral com po si tion of newly formed rocks can be very com plex, de pend ing on the type of waste-rock. Its most com mon com po nents in clude mullite and spinel (af ter clay min er als), portlandite, periclase, mag ne tite, he ma tite, Ca fer rites, magnesioferrite (af ter car bon - ates), the ellestadite-ap a tite se ries, melilite-gehlenite, olivines, Ca-rich py rox enes and other Ca-rich sil i cates (Filippidis et al., 1996; Reifenstein et al., 1999; Ward, 2002; Sokol et al., 2005).

Many dif fer ent sul phide min er als and na tive el e ments are also re ported to form at tem per a tures per ti nent to BS (Nasdala and

Pekov, 1993; Tvrdý and Sejkora, 1999; Kruszewski, 2006).

From the tem per a ture con di tions and char ac ter of the min er als formed, the BS pro cesses can be re ferred to as pyrometa - morphism and are sim i lar and com pa ra ble to mag matic and high tem per a ture meta mor phic ac tiv ity. The so- called com bus - tion meta mor phism, com pa ra ble to the sanidinite fa cies of bi tu - mi nous car bon ate-rocks from the Hatrurim Ba sin, Is rael, is an ex am ple of the nat u ral an a logue of high tem per a ture BS pro - cesses (Gur et al., 1995). Min er als formed dur ing BS are also known from carbonatite lavas (Wooley and Church, 2005), me te or ites (Farrell et al., 2002) and in dus trial slags.

The pseudofumarolic stage (PS) is as cribed to a tem per a - ture range of 450–50°C. Min eral-form ing pro cesses in PS in - clude both desublimation (con den sa tion) of coal- and waste- rock-de rived gas eous com pounds and in ter ac tion of these com - pounds with the waste-rocks them selves. Em a nat ing gases ex - ploit cracks and reach the dump sur face and at mo sphere through vents. This phe nom e non is very sim i lar to that known from sol fa ta ric or fumarolic ar eas in ac tive vol ca noes and can be also com pared with some hot spring ac tiv ity, such as H2SO4-rich steam vents at The Gey sers, Cal i for nia (type lo cal - ity of ammonioalunite, Altaner et al., 1988). Pseudofumarolic vents on the BCD sur face con sti tute a sys tem of spots or of fis - sures up to tens of me ters long. The chem i cal com po si tion of the gas eous phase in cludes va por of H2O, N2, CO2, CO, H2, CH4 (and other hy dro car bons), NH3, H2S, SO2,HCl, some times also traces of HF and HCN (Srebrodolskiy, 1989ł Tvrdý and Sejkora, 1999; Stracher et al., 2005). Some vents can be min er - al ized. De pend ing on the tem per a ture and dis tance from the fire, they can be oc cluded by soot (lower tem per a ture, car bon - iza tion gas em a na tion) or cov ered by the typ i cal PS min er als — na tive sul phur and salammoniac. Both min er als are well known also from vol ca nic ar eas e.g., Ve su vius and Paricutín vol ca - noes. El e men tal sul phur, de rived from py rite (or other sulphides), coal or ganic mat ter or more rarely from sul phate min er als, gen er ally crys tal lizes though the con den sa tion of S-bear ing gas eous com pounds in the range 90–130°C. Sul phur crys tal lizes as monoclinic rosickýite above 95.6°C and be low this tem per a ture be comes orthorhombic; how ever it is of ten found as a paramorphosis af ter the monoclinic phase. Sul phur can co-pre cip i tate with salammoniac, but higher tem per a tures, up to 310°C, will fa vor salammoniac. A yel low (col oured by sul phur) va ri ety of salammoniac crys tal lizes be tween 80 and 90°C, while a col or less type ap pears from 120°C. Salam - moniac forms by the re ac tion of coal-de rived NH3 and HCl. An al ter na tive source of ni tro gen may be air. A typ i cal min eral of the PS is also mascagnite, (NH4)2SO4, (Srebrodolskiy, 1989).

The supergene stage (SS) con cerns low-tem per a ture crys tal - li za tion from lo cally cir cu lat ing so lu tions and hydration of cer - tain pre vi ously formed min er als. This stage in cludes also the ox i - da tion un der am bi ent con di tions of py rite or of other sen si tive phases pres ent in the dump ma te rial. The prod ucts of these pro - cesses are sim i lar to those of acid mine drain age and to min er als oc cur ring in the ox i da tion zones of ore de pos its. Com bus tion-de - rived H2SO4 can be an ad di tional oxi dis ing agent to at mo spheric O2. The in put of com bus tion-de rived sulphates com pli cates un - der stand ing of the gen e sis of many sul fate min er als found on BCD. Acid, chem i cally ag gres sive so lu tions con tain ing H2SO4, CH3COOH, CO2 and other com pounds in ter act with the waste

(3)

rocks and pro duce a wide range of sec ond ary sul phate min er als, most of them be ing un sta ble crystallohydrates.

Ob ser va tions of the clas sic sites of coal seam com bus tion sites in Ravat and Kuh-i-Malik ar eas, cen tral Tajikistan (Srebrodolskiy, 1989; Nasdala and Pekov, 1993) point to a zonation in the for ma tion se quence of min er als, de pend ing on the tem per a ture and ac tiv ity of gases. In the cen tral zone, at tem per a tures above 600°C, the fire to tally con sumed the coal, and buchite and pos si ble sul fide min er als such as oldhamite are formed. In nearby cen tral parts of the fire area a sul phate crust com posed mostly of an hy drous Al sulphates (millosevichite, godovikowite etc.) is formed above 350°C among H2SO4- cloyed metaargillite. There are no vents here and the gases are kept in side this zone. If the gases mi grate to the sur face, sev eral as sem blages can form. From the gas com pounds de rived mainly from coal de com po si tion, sul phur, salam moniac and ad di tional mascagnite and letovicite pre cip i tate. The in ter ac - tion of sul phur gases with rocks may lead to the for ma tion of alu nite, jarosite, anhydrite, gyp sum, alunogen, halotrichite- pickeringite, tschermigite and other sulphates. Around low- tem per a ture gas vents, sul phur, salammoniac, tschermigite, he - ma tite, kremersite and some times gwihabaite con dense. In the out er most and low-tem per a ture (up to 60°C) zone liq uid bi tu - mens and, rarely, na tive se le nium and or ganic min er als such as ravatite (nat u ral phenanthrene) con cen trate.

Am mo nium min er als can form on BCD mostly dur ing the pseudofumarolic stage. Some were formed also as a re sult of supergene pro cesses. A list of am mo nium min er als re ported from BCD and re lated sites world wide is com piled from lit er a - ture data in Ta ble 1.

MATERIALS

The min eral sam ples for this study were col lected on se - lected BCD sites in the Up per Silesian Coal Ba sin (USCB) (Fig. 1). They in clude dumps in: Czerwionka-Dębieńsko and Łaziska near Katowice; Zabrze-Biskupice; Rybnik-Rymer and Rydułtowy of the Rybnik Coal Area. The huge, now in ac - tive, dump at Łaziska is known un der the name “Skalny”. The USCB, the most im por tant source of bi tu mi nous coal in Po - land, has a min ing area of ca. 1800 km2, where 65 un der - ground mines were ac tive in the last de cades of the last cen - tury. Struc tur ally the USCB is a Variscan fore land ba sin, de - vel oped on the Pre cam brian Up per Silesian Mas sif. The de - pres sion is filled by Car bon if er ous de pos its of cy cli cal molasse char ac ter with nu mer ous coal beds. They are com - posed of paralic sed i ments — clastic and fitogenic rocks: con - glom er ates, sand stones, mudstones, claystones — and over ly - ing con ti nen tal limnic de pos its of the Up per Silesian sand - stone se ries, mudstone se ries and Kraków sand stone se ries.

The mudstone se ries con tains car bon ate rocks rep re sented mainly by spherosiderites. Py rite and marcasite are the main sul phur spe cies in USCB coals (Czapliński and Smolka, 1998). The pro duc tive Car bon if er ous se ries are cov ered by Tri as sic, Mio cene and Qua ter nary rocks.

METHODS

Sam ples for this study were col lected over the last 5 years in dif fer ent sea sons and weather con di tions. Af ter col lec tion, the min eral sam ples were packed into sealed plas tic con tain ers to re tain their nat u ral mois ture. When pos si ble, the tem per a ture was mea sured around min eral segregations and gas vents, using an IR py rom e ter.

In the lab o ra tory the min er als were care fully sep a rated un der a stereomicroscope. For PXRD iden ti fi ca tion, sam ples were gently crushed in an ag ate mor tar and quickly mounted on a Bruker axs D5005 diffractometer at the De part ment of Soil En - vi ron ment Sci ences (Fac ulty of Bi ol ogy and Ag ri cul ture, War - saw Ag ri cul ture Uni ver sity). Mea sure ment pa ram e ters were as fol low: CuKa and CoKa ra di a tion, graph ite mono chro ma tor, con tin u ous scan mode with 0.02 step, 1 s count ing time, 40 kV volt age and 30 mA cur rent. The hkl, d (mea sured) and peak in - ten sity (I/Io ra tio) val ues of the stan dards were taken from a PDF (2005) Maint V. 11.0 da ta base and jux ta posed with ob tained data in Ta bles 2–4. Aliquots of some sam ples were also left for 2 months in open re cep ta cles to test their pos si ble in sta bil ity and changes un der am bi ent con di tions and then were an a lyzed again.

The crys tal mor phol ogy and ge netic re la tions among min - er als of the as sem blages un der study were ob served on a JSM-6380LA scan ning elec tron mi cro scope (JEOL, Ja pan) in the Scan ning Elec tron Mi cros copy and Microanalysis Lab o ra - tory (Fac ulty of Ge ol ogy, Uni ver sity of War saw). The chem i - cal com po si tion of ob jects on SEM im ages was con strained with an EDS microanalyzer. Most min er als oc cur as in ti mate mix tures, which makes quan ti ta tive chem i cal anal y ses im pos si - ble to carry out.

OCCURRENCE OF AMMONIUM MINERALS ON BCD

SALAMMONIAC NH4Cl

Na tive am mo nium chlo ride is the most com mon am mo - nium min eral re ported from BCD world wide. In Po land salam - moniac has been re ported so far from Nowa Ruda–Słupiec, Lower Silesia (Wielogórski et al., 1975). On the BCD of Up per Silesia we have found this min eral at Łaziska, Czerwionka- Dębieńsko, Rybnik-Rymer and Rydułtowy, both as mono - mineral ag gre gates and in com plex ag gre gates of sev eral sul - fate min er als. The oc cur rence of salammoniac was con firmed by PXRD anal y ses. The ob tained d-spac ing and rel a tive in ten - sity val ues are very close to the stan dard (Ta ble 2).

Salammoniac ag gre gates from the “Skalny” dump at Łaziska weighed up to a few ki lo grams. They ce mented frag - ments of red burnt-out argillites (Fig. 2A). The min eral oc curs as com pact and po rous masses. Den dritic and stalactitic forms are also of ten found (Fig. 2B) and may be com posed of clear microcrystals (Fig. 2C). Such forms were found at Łaziska, Rybnik-Rymer and Rydułtowy. Some of these have a some what fi brous habit. A bot ry oi dal habit is rel a tively rare and was ob - served at Rybnik-Rymer. Other un usual forms in clude crab-pin -

(4)

cer-like ones (Fig. 2D). Euhedral salammoniac crys tals are com - mon on each BCD. They are gen er ally small, rarely reach ing 3 mm, but crys tals up to 1 cm across were also found. In di vid u - als are of ten rounded and pos sess only ill-de fined faces. Well- de vel oped crys tals, in clud ing tet ra he dra and cubes, oc cur spo - rad i cally (Fig. 2E). Their crys tal faces of ten pos sess dif fer ent struc tures (Fig. 2F) that may re flect dy namic con di tions of their growth. A typ i cal fea ture of the BCD salammoniac crys tals is their elon ga tion along the c-axis (Srebrodolskiy, 1989), which was also com monly ob served at USCB sites. The elon ga tion

may be so well de vel oped that the crys tals ac quire a nee dle-like habit and seem to be more monoclinic than iso met ric. Ag gre - gates and crys tals of salammoniac are usu ally col or less, rarely hued yel low or even brown due to ad mix tures of na tive sul fur or or ganic mat ter, re spec tively.

The tem per a tures mea sured around salammoniac segre - gations var ied from air tem per a ture (i.e. by al ready in ac tive vents) to about 280°C. In gen eral, the BCD salammoniac has formed un der pseudofumarolic con di tions. Forms such as den - drites point to a min eral gen e sis by con den sa tion of gases.

Min eral Chem i cal for mula Lo cal i ties

Letovicite (NH4)3H(SO4)2

Letovice, Radvanice, Czech Rep. (1); Freital, Ger many (2);

Kuh-i-Malik, Tajikistan (3); Witbank and Sasolburg coal fields, South Af rica (4)

Mascagnite (NH4)2SO4

Lyukóbánya, Hun gary (5); Kladno, Radvanice, Czech Rep. (6);

Alsdorf (7), Freital (8) and Ronneburg, (9), Ger many; Forestville, Penn syl va nia (10); Kuh-i-Malik, Tajikistan (3); Donbas, Ukraine (11); Chelyabinsk Coal Ba sin, Rus sia (12); Witbank and Sasolburg

coal fields, South Af rica (4)

Efremovite (NH4)2Mg2(SO4)3 Chelyabinsk Coal Ba sin, Rus sia (3, 12); Ronneburg, Ger many (9)

Godovikovite (NH4)(Al,Fe)(SO4)2

Chelyabinsk Coal Ba sin, Rus sia (13); Radvanice, Czech Rep. (1);

Alsdorf (7), Ronneburg (9), Freital (8), Ger many;

Wuda coal field, China (14)

Sabieite (NH4)Fe(SO4)2 Ronneburg, Ger many (9)

Koktaite (NH4)2Ca(SO4)2·6H2O Ronneburg, Ger many (9)

Mohrite (NH4)2Fe(SO4)2·6H2O Alsdorf, Ger many (16); Radvanice, Czech Rep. (17) Boussingaultite (NH4)2Mg(SO4)2·6H2O Radvanice, Czech Rep. (17); Ronneburg, Ger many (9);

Chelyabinsk Coal Ba sin, Rus sia (3, 12)

Tschermigite (NH4)Al(SO4)2·12H2O

Lyukóbánya, Komló, Hun gary (5); Alsdorf (7), Freital (8) and Ronneburg (9), Ger many; Radvanice, Czech Rep. (17); Donbas,

Ukraine (11); Chelyabinsk Coal Ba sin, Rus sia (12);

Wuda coal field, China (14); Kuh-i-Malik, Tajikistan (3)

Clairite (NH4)2Fe3(SO4)4(OH)3·3H2O Komló, Hun gary (5)

Ammonioalunite (NH4)Al3(SO4)2(OH)6 Radvanice, Czech Rep. (17); Ronneburg, Ger many (9)

Ammoniojarosite (NH4)Fe3(SO4)2(OH)6 Muttlkogel Mt., Aus tria (19)

Gwihabaite NH4NO3 Kuh-i-Malik, Tajikistan (3)

Salammoniac NH4Cl

Nowa Ruda-Słupiec, Po land (20); Radvanice, Czech Rep. (6);

Alsdorf (7), Ronneburg (9) and Oelsnitz (27), Ger many;

Lyukóbánya, Egercsehi, Hun gary (5); La Ricamarie (25), France;

Donbas, Ukraine (11); Wuda coal field (14), Gulaben and Rujigou coal field (21), China; Chelyabinsk Coal Ba sin, Rus sia (3,12);

Kuh-i-Malik, Tajikistan (3); Witbank and Sasolburg coal fields, South Af rica (4)

Kremersite (NH4,K)2[FeCl5(H2O)] Alsdorf, Ger many (7); Chelyabinsk Coal Ba sin, Rus sia (3,12);

Ravat, Tajikistan (26)

Cryptohalite (NH4)2[SiF6] Radvanice, Czech Rep. (6); Shenandoah, Penn syl va nia (28) Bararite (NH4)2[SiF6] Radvanice, Czech Rep. (6); Shenandoah, Penn syl va nia (28)

Barberiite NH4[BF4] Radvanice, Czech Rep. (29)

(1) Žáček and Ondruš (1998); (2) Witzke (1995); (3) Srebrodolskiy (1989); (4) Pone et al. (2007); (5) Szakáll and Jánosi (1995); (6) Sejkora et al. (2001);

(7) Sindern et al. (2005); (8) Thalheim et al. (1991); (9) Witzke and Rüger (1998); (10) Finkelman and Mrose (1977); (11) Panov et al. (1999); (12) Sokol et al. (2005); (13) Jambor and Grew (1990); (14) Stracher et al. (2005); (16) Kolitsch and Brandstätter (2007); (17) Jírasek (2001); (19) Exel (1993); (20) Wielogórski et al. (1975); (21) Kuenzer et al. (2007); (25) Laurent (1995); (26) Nasdala and Pekov (1993); (27) Witzke (1996); (28) Finkelman (2004);

(29) Tvrdý and Sejkora (2000)

T a b l e 1 Am mo nium min er als known from BCD and re lated sites

(5)

Salammoniac is of ten closely as so ci ated with na tive sul fur, as both min er als are thought to be formed from the gas phase.

Some yel low ish den drites form fine inter growths of these min - er als. How ever, most of den drites or mas sive forms are free of sul fur, sug gest ing a pos si ble higher tem per a ture of their for ma - tion. On the other hand, clus ters of clear idiomorphic crys tals could have pre cip i tated from lo cally formed aque ous so lu tion, prob a bly at lower tem per a ture, as a prod uct of the recrystallization of for mer salammoniac ag gre gates.

KREMERSITE (NH4,K)2[FeCl5·H2O]

The nat u ral am mo nium (po tas sium) aquapenta chloro - ferrate(III) is a rare sub li mate min eral form ing near vol ca nic fumaroles. Kremersite was de scribed in 1851 from Ve su vius and named in 1853 for the Ger man chem ist Pe ter Kremers. The min eral was also re ported as a sub or di nate con stit u ent of BCD (see Ta ble 1). In the Chelyabinsk Coal Ba sin, South ern Urals, it was de scribed un der the name kopeyskite (not ac cepted by the

Fig. 1. Geo log i cal sketch-map of the Up per Silesian Coal Ba sin (af ter Gabzdyl, 1994)

Lo ca tion of BCD stud ied: A — Łaziska (“Skalny” dump), B — Czerwionka-Dębieńsko, C — Rybnik-Rymer, D — Rydułtowy

Czerwionka-Dębieńsko

sam ple PDF 01-1043

hkl d (meas.)

[] I/Io

d (meas.)

[] (I/Io)

3.844 16 3.840 15 100

2.724 100 2.720 100 110

2.225 7 2.220 5 111

1.929 8 1.920 12 200

1.726 5 1.720 8 210

1.576 15 1.570 25 211

1.368 3 1.370 5 220

T a b l e 2 X-ray pow der dif frac tion data for salammoniac

from the Up per Silesia BCD

(6)

IMA). We found this min eral on the Up per Silesian BCD in Czerwionka-Dębieńsko and iden ti fied it by the PXRD method (Fig. 3). This is the first re cord of kremersite in Po land. On the Silesian BCD, kremersite oc curs spo rad i cally as or ange-red coat ings (Fig. 4A) on NH4-rich mem bers of the alu nite-jarosite se ries de vel oped in the cover of the sul fate crust, which is com - posed mainly of godovikovite. It forms small ag gre gates of orthorhombic blades. Some kremersite ag gre gates also show a fi brous habit, vis i ble on SEM im ages (Fig. 4B). The fibres are of ten curved. The fi brous habit sug gests rapid de po si tion from

the gas phase. Kremersite is very del i ques cent and can per sist only un der fa vour able am bi ent con di tions.

AMMONIOALUNITE–AMMONIOJAROSITE (NH4)Al3(SO4)2(OH)6–(NH4)Fe3(SO4)2(OH)6

Ammoniojarosite, first de scribed in 1927 from shale con - tain ing lig nite and py rite near the Kaibab Fault, Utah, USA, is an un com mon con stit u ent of ox i da tion zones of py ritic rocks rich in or ganic ma te rial (Odum et al., 1982). Ammonioalunite,

Fig. 2. Salammoniac ag gre gates and crys tal hab its from the Up per Silesian BCD

A — metaargilite frag ments ce mented by crys tal line salammoniac, Łaziska; B — den dritic salammoniac ag gre gate, 3 cm wide, Rybnik-Rymer; C — elon - gated, of ten rounded salammoniac crys tals form ing a den dritic clus ter 1.4 cm long, Rydułtowy; D — crab-pin cer-like form of salammoniac, photo width 5.5 mm, Łaziska; E — well-de vel oped salammoniac crys tals with cen tral tet ra he dron ca. 1.5 mm wide on na tive sul fur, Rydułtowy; F — growth struc ture on 2.7 mm long salammoniac crys tal face, Łaziska

(7)

known since 1988 (type lo cal ity: the Gey sers, Cal i for nia, USA), has been found in hot-spring en vi ron ments (Altaner et al., 1988). Both min er als have also been re ported from some BCD (Ta ble 1).

We iden ti fied ammoniojarosite and ammonioalunite by PXRD (Fig. 3) and EDS meth ods from the Czerwionka- Dębieńsko BCD in the top most part of the sul fate crust. The com po si tion of the crust is quite com plex: godovikovite is dom i nant, with tschermigite, alunogen, gyp sum, boussin - gaultite, voltaite, anhydrite, clairite, metavoltine, millosevi - chite, salammoniac, quartz and illite in ad di tion. Ammonio - alunite and ammoniojarosite oc cur as a mix ture form ing

fine-grained po rous masses, small bot ry oi dal nod ules or coat - ings of bright yel low to ochreous col our (Fig. 5). Ammonio - alunite usu ally forms larger microcrystals than ammonio - jarosite. They com monly have a tab u lar habit and are ter mi - nated by rhombohedron faces. Pre lim i nary EDS data sug gest that these min er als form here a solid so lu tion. Compositional trends to wards Na- and K-mem bers of the alu nite-jarosite se - ries were also no ticed. Crys tals with alu nite com po si tion con - tain ad di tional chlo rine as an es sen tial com pound, prob a bly sub sti tut ing for OH. De tailed chem i cal data on the com po si - tion of the alu nite-jarosite group from the Up per Silesian BCD will be pre sented else where.

Fig. 3. Pow der dif frac tion pat tern for a kremersite-ammonioalunite as sem blage K — kremersite, A — ammonioalunite, J — ammoniojarosite, T — tschermigite,

M — millosevichite, H — he ma tite, Il — illite, Q — quartz

Fig. 4A — or ange-red kremersite ag gre gates on ammoniojarosite, field of view 6 mm;

B — SEM im age of fi brous kremersite

(8)

TSCHERMIGITE (NH4)Al(SO4)2·12H2O

Tschermigite, named in 1853 for the type lo cal ity (Tschermig, now Čermniky, Czech Re pub lic), oc curs in lig nite burn ing seams and in vol ca nic sol fa ta ras and fumaroles. This nat u ral am mo nium-alu mi num alum is also one of the most com mon NH4-bear ing sul fates on BCD (Ta ble 1).

Tschermigite has not been re corded from Po land so far. We found this min eral at the “Skalny” dump in Łaziska, where it oc - curs as nee dles (Fig. 6A) and typ i cally curved fi bers (Fig. 6B) or bot ry oi dal masses. Tiny im per fect crys tals, lo cally in comb-like ag gre gates, were also found. At this site tschermigite, ac com pa - nied by mi nor gyp sum, cov ers a he ma tite- and quartz-rich rock.

At the Czerwionka-Dębieńsko BCD, tschermigite oc curs in far larger amounts, both in monomineralic ag gre gates and as a con - stit u ent of a fine-grained mix ture of min er als form ing the sul fate crust (Ta ble 3). Pure tschermigite ac com pa nies ammoniojaro - site-ammonioalunite in the top most part of the sul fate crust. It oc - curs here as white, po rous den dritic ag gre gates with a silky lus - tre, up to a few cm long (Fig. 6C) or small but well formed, typ i - cal oc ta he dral crys tals (Fig. 6D), in fill ing vugs in the crust.

Tschermigite was also rec og nized as a con stit u ent of a mix ture of sul fate min er als with boussingaultite and clairite found far away from the sul fate crust on the same BCD. Al though tschermigite is eas ily sol u ble in wa ter, it may also be found in places where hot gas vents have not been ac tive.

BOUSSINGAULTITE (NH4)2Mg(SO4)2·6H2O

Boussingaultite, one of the nat u ral equiv a lents of Tutton’s salt, was first de scribed from the geo ther mal fields of Travale, Tuscany, It aly, and named for the French chem ist Jean- Baptiste Boussingault. Vol ca nic vents of the same area pro -

Fig. 5. Bot ry oi dal ag gre gate of ammonioalunite-ammoniojarosite Field of view 6 mm

Fig. 6. Tschermigite crys tal hab its from the Up per Silesian BCD

A — tiny nee dles and fi bers, up to 0.5 mm long on he ma tite, Łaziska; B — curved fi bers, SEM im age, Łaziska;

C — stalactitic-skel e tal form, 1.9 cm long, Czerwionka-Dębieńsko; D — oc ta he dral crys tals, SEM im age, Czerwionka-Dębieńsko

(9)

vide also the type lo cal ity for its Fe-an a logue, mohrite (Fleischer, 1965). In gen eral, boussingaultite is thought to be a rare sub li mate of fumarolic or i gin. Boussingaultite oc curs also on sev eral BCD (Ta ble 1).

In Po land boussingaultite was first found on the “Skalny”

dump at Łaziska, where it oc curs in small amounts as a fine-grained, po rous mix ture with ha lite and hexahydrite (Fig. 7A).

The mix ture was de pos ited around in ac tive vents. Sin gle, short pris matic, of ten rounded boussingaultite crys tals reach 50 mm in width (Fig. 7B). SEM-EDS anal y ses show that some of them con tain es sen tial K, sug gest ing a com po si tion within the boussingaultite-picromerite solid so lu tion se ries.

Boussingaultite was also de tected as one of the main con - stit u ents of an as sem blage with tschermigite, clairite, and ammonioalunite-ammoniojarosite (Fig. 8) at the Czerwionka- Dębieńsko BCD. Small ad mix tures of this min eral were also rec og nized among min er als form ing the up per most part of the sul fate crust at the Czerwionka-Dębieńsko BCD.

Boussingaultite, an eas ily sol u ble min eral, can per sist only in fa vor able weather con di tions on the BCD sur face.

CLAIRITE (NH4)2Fe3(SO4)4(OH)3·3H2O

Clairite was orig i nally de scribed by Mar tini in 1983 from Lone Creek Fall Cave near Sabie, East ern Transvaal, RSA, and

Czerwionka-Dębieńsko

sam ple PDF 07-0022

hkl d (meas.)

[] (I/Io) d (meas.) [] (I/Io)

7.034 22 7.070 55 111

6.102 7 6.130 12 200

5.452 18 5.480 55 210

4.98 11 4.998 35 211

4.317 69 4.327 100 220

4.068 33 4.079 80 221

3.68 15 3.691 35 311

n.o. 3.395 6 230

3.262 30 3.273 75 321

3.053 6 3.060 30 400

2.963 14 2.967 20 410

2.880 4 2.883 14 411

2.804 100 2.810 35 331

2.731 9 2.738 18 420

2.668 4 2.672 14 421

2.604 11 2.608 12 332

2.499 10 2.499 10 422

2.396 3 2.402 8 431

2.354 3 2.358 12 511

2.268 2 2.275 8 432

2.233 1 2.237 12 521

2.129 3 2.130 8 522

2.096 1 2.098 4 433

92.065 3 2.068 8 531

2.038 3 2.039 10 600

2.009 2 2.012 10 610

1.984 13 1.985 10 611

1.933 5 1.935 16 620

n.o. 1.910 2 621

1.886 2 1.888 4 541

1.865 2 1.866 8 533

1.845 1 1.846 6 622

1.823 2 1.825 6 630

1.804 1 1.805 2 631

n.o. 1.768 1 444

n.o. 1.749 2 632

1.729 1 1.731 10 543

1.713 3 1.714 4 711

1.695 2 1.698 2 640

T a b l e 3 X-ray pow der dif frac tion data for tschermigite

from the Up per Silesia BCD

Fig. 7A — boussingaultite-ha lite-hexahydrite mix ture, field of view 1.6 mm, Łaziska; B — SEM-BSE im age of boussingaultite rounded

crys tals (dark) among ha lite cubes (light)

(10)

named for his wife (Dunn et al., 1986). At the type lo cal ity, clairite, and as so ci ated lonecreekite and sabieite, are formed by the re ac tion of py rite ox i da tion prod ucts with NH3 from the de - cay of or ganic mat ter. To our best knowl edge, this min eral has been re ported from only one BCD lo cal ity (Ta ble 1), al though it is prob a bly more com mon in this en vi ron ment.

Here we re port the first Pol ish oc cur rence of clairite. It was found with boussingaultite among non-burnt black shale frag - ments richly im preg nated with salammoniac, ac com pa nied by mi nor tschermigite, rostite, mascagnite and ammonioalunite- ammoniojarosite, on the Czerwionka- Dębieńsko BCD (Fig. 8).

Clairite and boussingaultite are es sen tial con stit u ents of brown - ish-yel low, fine grained clots or pow dery masses (Fig. 9A).

They are very dif fi cult to dis tin guish mac ro scop i cally from yel -

low cryptocrystalline metavoltine in ti mately intergrown with hexahydrite, oc cur ring at the same site. Clairite forms min ute triclinic blades, up to about 10 µm wide, with pseudohexagonal out lines, some what re sem bling those of the alu nite-jarosite group. Clairite crys tals are of ten grouped into ro sette clus ters and grow on or close to euhedral crys tals of boussingaultite (Fig. 9B). Clairite was also found as a very mi nor con stit u ent of the cover sul fate crust de vel oped on the same BCD, where it is closely as so ci ated with tschermigite, voltaite and metavoltine.

EFREMOVITE (NH4)2Mg2(SO4)3

This an hy drous am mo nium mag ne sium sul fate, named for the Rus sian ge ol o gist I. A. Yefremov, was first de scribed by

Fig. 8. Pow der dif frac tion pat tern for clairite-boussingaultite as sem blage

B — boussingaultite, C — clairite, E — epsomite, G — gyp sum, J — ammoniojarosite, L — letovicite, M — metavoltine, T — tschermigite, Q — quartz, Qn — quenstedtite

Fig. 9A — clairite-bear ing as sem blage from Czerwionka-Dębieńsko; B — clairite ro sette by rounded boussingaultite, SEM im age

(11)

Shcherbakova and Bazhenova in 1989 from BCD of the Chelyabinsk Coal Ba sin, South ern Urals, Rus sia (Jambor and Grew, 1991). The type ma te rial forms white to gray ag gre gates of equant grains rang ing from 0.01–0.015 mm. The au thors sug gested a pseudofumarolic or i gin for the min eral. The sul fate crust of the type lo cal ity com prises (from top to bot tom): un - con sol i dated ma te rial, an as phalt-like or ganic sub stance en - crusted with na tive sul fur and kladnoite, crustal to stalactitic mascagnite and dense white masses of mainly efremovite, which in their up per part is hy drated to boussingaultite.

Efremovite is thought to be formed by the de com po si tion of dolomitic rocks by H2SO4 and coal-de rived NH3 in the tem per - a ture range of 180–400°C. Godovikovite-as so ci ated or ganic mat ter pre sum ably here in hib its the hydration of efremovite.

Un der nor mal con di tions, it takes only sev eral days for efremovite to be com pletely hy drated to boussingaultite.

For the first time in Po land, we de tected small amounts of efremovite by PXRD, in as so ci a tion with godovikovite in the sul fate crust of the Czerwionka-Dębieńsko BCD (Fig. 10).

Some boussingaultite on the Up per Silesian BCD may be a hydration prod uct of efremovite.

GODOVIKOVITE (NH4)(Al,Fe)(SO4)2

Godovikovite, named for the Rus sian min er al o gist A. A.

Godovikov, was in tro duced by Shcherbakova, Bazhenova and Chesnokov in 1988 (Jambor and Grew, 1990). At the type lo - cal ity, which are BCD near Kopeysk (Chelyabinsk Coal Ba sin, South ern Ural Mts., Rus sia), it oc curs as white, chalky, com - pact to po rous ag gre gates, com posed of 0.001 to 0.015 mm

long hair-like crys tals. Godovikovite from the Rus sian lo cal ity is de scribed as pri mary and a ma jor con stit u ent of sul fate crusts, that are formed by re ac tion of gases gen er ated by coal fires with the dump waste-rocks. Godovikovite oc curs in the in ner, hot ter zone of the sul fate crust, which is up to 5 cm thick and ex tends up to 1 m2. This min eral was later found at sev eral other BCD world wide (Ta ble 1).

We found godovikovite, pre vi ously un known in Po land, as very abun dant, white to gray masses, build ing up a thick sul fate crust formed at the Czerwionka-Dębieńsko BCD. Ta ble 4 pres - ents pow der X-ray dif frac tion data for this ma te rial. Due to move ment of the pile ma te rial the sul fate crust be comes ac ces - si ble on the sur face. The crust tem per a ture reaches a max i mum of 100°C, when mea sured a few cm be low the sur face. The godovikovite masses have a very typ i cal ve sic u lar tex ture (Fig. 11A), men tioned i.e. by Stracher et al. (2005).

Godovikovite can form sta lac tites of ten with nodosity (Fig. 11B), which at tain a few cm in length. SEM im ages show that godovikovite masses are com posed of cha ot i cally ar - ranged, tab u lar mi cro-blades with hex ag o nal out lines, usu ally about 5 µm across (Fig. 11C). Some crys tals of godovikovite have a skel e tal frame work, sug gest ing rapid crys tal li za tion.

EDS anal y ses of godovikovite blades show, as a rule, small ad - mix tures of Fe. Some godovikovite ag gre gates also con tain es - sen tial Si. This is con sis tent with PXRD data, which shows the pos si ble pres ence of an ad mix ture of ammonioleucite and tobelite (a NH4-an a logue of mus co vite). The re sults of PXRD in di cated that godovikovite is also ac com pa nied by sub or di nate alunogen, tschermigite, ferrinatrite and starkeyite (Fig. 10).

Tiny yel low ish crusts on godovikovite masses con tain some

Fig. 10. Pow der dif frac tion pat terns for godovikovite-bear ing as sem blages

Ag — alunogen, Al — ammonioleucite, E — efremovite, G — godovikovite, H — he ma tite, M — millosevichite, Mi — mikasaite, S — sabieite, Sl — salammoniac, To — tobelite (or NH4-bear ing mus co vite), V — voltaite

(12)

copiapite, voltaite, metavoltine and ammonioalunite- ammoniojarosite. On the godovikovite sur face black spheres up to ca. 2 mm wide, com posed of he ma tite, voltaite, mikasaite, millosevichite, kieserite, ammonioleucite and tobelite, were also found.

Godovikovite is a slightly hy gro scopic min eral. Stor age un der room con di tions for a few months does not cause its hydration or any other change.

SABIEITE (NH4)Fe(SO4)2

Sabieite, the Fe an a logue of godovikovite, was found to - gether with clairite and lonecreekite at Lone Creek Cave near Sabie, Transvaal (Dunn et al., 1986) and named for the lo cal ity.

This very rare min eral was also re ported from a BCD at the Lichtenberg Absetzer mine dump in Ger many (Witzke and Rüger, 1998). Our find of sabieite at Czerwionka-Dębieńsko is prob a bly the sec ond oc cur rence of this min eral on a BCD and the first in Po land. We de tected sabieite by the PXRD method as an ad mix ture in godovikovite (Fig. 10). Sabieite was an es - sen tial com pound of some parts of the godovikovite ag gre - gates, es pe cially those of gray col our.

The holotype sabieite is thought to be formed by de hy dra - tion of lonecreekite (Fe-an a logue of tschermigite), whilst the BCD sabieite is prob a bly of pseudofumarolic or i gin, as is the case of godovikovite.

Czerwionka-Dębieńsko

sam ple PDF 23-0001

hkl d (meas.)

[] (I/Io) d (meas.)

[] (I/Io)

8.143 100 8.280 60 001

4.073 4 4.140 1 002

3.660 67 3.678 100 101

2.908 21 2.915 30 102

2.747 9 2.759 9 003

2.370 11 2.368 15 110

2.292 3 2.291 2 103

2.276 4 2.277 3 111

2.070 4 2.071 2 004

2.057 5 2.056 3 112

2.051 3 2.051 2 200

1.989 3 1.991 3 201

1.847 5 1.849 7 104

1.840 6 1.839 8 202

1.801 2 1.798 1 113

1.656 2 1.656 1 005

1.646 2 1.647 3 203

1.559 3 1.559 2 114

1.552 2 1.550 1 210

1.536 3 1.536 2 105

1.526 4 1.525 7 211

1.459 3 1.457 4 204

1.452 2 1.453 5 212

1.380 1 1.381 1 006

1.366 4 1.367 6 300

1.356 4 1.357 5 115

1.350 2 1.349 2 301

T a b l e 4 X-ray pow der dif frac tion data for godovikovite from

Czerwionka-Dębieńsko BCD

Fig. 11A — ve sic u lar mass of stalactitic-like godovikovite, field of view 1.4 cm; B — nodosity in a godovikovite sta lac - tite, field of view 2.4 cm; C — pseudohexagonal blades of godovikovite, SEM im age

(13)

MASCAGNITE (NH4)2SO4

The nat u ral an hy drous am mo nium sul fate, named in 1779 for Paolo Mascagni, who first de scribed the min eral, is pro - duced by sub li ma tion among fumaroles and sol fa ta ras.

Mascagnite is com monly known also from BCD (see Ta ble 1).

We de tected this min eral, un til now un known from Po land, on a small BCD in Zabrze-Biskupice. Mascagnite was as so ci ated with na tive sul fur and mi nor millosevichite (Fig. 12). On SEM im ages (Fig. 13) this min eral forms ag gre gates of ran domly ar - ranged, min ute nee dle-like crys tals grow ing on sul fur efflorescences. The ge netic re la tion ship of these two min er als as sub li mates is typ i cal of BCD en vi ron ments. Small amounts

of mascagnite were also found with salammoniac at the Czerwionka-Dębieńsko BCD. At the same dump mascagnite oc curs as a sub or di nate com pound in the cover of the sul fate crust, where it is closely as so ci ated with godovikovite, tschermigite and salammoniac.

FORMATION OF AMMONIUM MINERALS ON BCD

The am mo nium min er als oc cur ring on BCD can be di vided into two groups, de pend ing on the source of the el e ments re - quired (Stracher et al., 2005). One group com prises salammoniac, na tive sul fur and mascagnite which could be formed by sim ple coal-de rived gas con den sa tion, as these min - er als con tain el e ments typ i cally con cen trated in the or ganic com pounds of coal. For ma tion of other NH4- min er als re quires a source of me tal lic com pounds ex tracted from the waste rocks of the BCD. Mag ne sium (and cal cium) are likely de rived from car bon ate min er als: do lo mite, an ker ite, iron from py rite and sid er ite, and alu mi num from clay min er als or feld spars. These min er als are un sta ble in the hot, cen tral part of the fire zone and un dergo ther mal de com po si tion or are at tacked by ag gres sive fire gases. Hot flu ids rich in sul fu ric acid, form ing the sul fate crust near the fire zone, are of spe cial im por tance here. Most sul fur and chlo rine com pounds of the sul fate as sem blages can also be de rived from min er als pres ent in the coal seams, py rite and ha lite, re spec tively. We sus pect the am mo nia orig i nated from the ther mal de com po si tion of coal macerals or al ter na - tively by its syn the sis from air ni tro gen in the hot test fire.

Fig. 12. Pow der dif frac tion patern for a mascagnite-bear ing as sem blage

I — illite, H — hexahydrite, M — mascagnite, Ms — millosevichite, Q — quartz, S — na tive sul fur

Fig. 13. Mascagnite nee dles on na tive sul fur, SEM im age, Zabrze-Biskupice

(14)

Es sen tial in for ma tion on min eral gen e sis can be dis cerned from the habit of the min eral ag gre gates and crys tals. The ob - served ve sic u lar tex ture of some sul fates, i.e. godovikovite, is ex plained as a mark of the es cape of a va por, re leased dur ing crys tal li za tion. For ma tion of the sul fate crust at the Czerwionka-Dębieńsko BCD took place un der la bile tem per a - ture con di tions re lated to the fire-cen tre dis tance.

A fi brous or den dritic habit of tschermigite and salammoniac re sulted from rapid gas con den sa tion, as such con di tions would fa vor the ap pear ance of ill-de fined forms rather than well-de vel oped crys tals. This habit is typ i cal of min eral as sem blages oc cur ring around gas vents on the sur - face. Larger, clearly euhedral crys tals rep re sent slow con den sa - tion and are usu ally found some what deeper.

Ex cept for the ammoniojarosite-ammonioalunite se ries, all the am mo nium min er als de tected are wa ter-sol u ble, thus their crys tal li za tion and pres er va tion de pend on en vi ron ment hu - mid ity. Even min er als thought to be formed by gas con den sa - tion, such as tschermigite and salammoniac, may pre cip i tate from lo cally formed aque ous so lu tions by cool ing or evap o ra - tion. Pre sum ably iso met ric crys tals of both min er als are prod - ucts of recrystallization. In the outer part of the sul fate crust, hydration of pri mar ily an hy drous sul fates con trib uted to the de - vel op ment of the cur rently ob served as sem blage. One such pos si ble change is given as the re ac tion:

(NH4)Al(SO4)2 + 12H2O ® (NH4)Al(SO4)2·12H2O godovikovite tschermigite

A sim i lar trans for ma tion was re ported from the Ravat coal fire site by Nasdala and Pekov (1993) for an an hy drous Al sul - fate (likely millosevichite), where alunogen is the prod uct of its hydration. The hydration of godovikovite or of other an hy - drous sul fates may be re vers ible, de pend ing on tem per a ture.

Hy drated sul fate min er als re ported from the supergene zone of BCD, as a rule, are formed due to their mu tual trans for ma tion (dis so lu tion and next crys tal li za tion), sim i larly to pro cesses known from K-Mg salt de pos its and the weath er ing zones of sul fides and acid mine drainage.

Be sides be ing of sci en tific in ter est, efflorescences of am - mo nium min er als on the sur face of coal waste piles may be rec - og nized as use ful in di ca tors of un der ground fires.

Ac knowl edge ments. This work was fi nan cially sup ported by the Min is try of Sci ence and Higher Ed u ca tion , Grant No. N N307 025 32/0942 (Ł. K.) and the BW fund of the Uni ver sity of War saw. The au thors would like to thank Prof. Z. Zagórski and M. Wróbel M. Sc. for their help and as sis tance in PXRD and SEM-EDS anal y ses.

REFERENCES

ALTANER S. P., FITZPATRICK J. J., KROHN M. D., BETHKE P. M., HAYBA D. O., GOSS J. A. and BROWN Z. A. (1988) — Am mo nium in alunites. Am. Miner., 73: 114–172.

CZAPLIŃSKI A. and SMOLKA W. (1998) — Sul fur dis tri bu tion within coal py rol y sis prod ucts. Fuel Proc. Techn., 55: 1–11.

DUNN P. J., CHAO G. Y., FITZPATRICK J. J., LANGLEY R. H., FLEISCHER M. and ZILCZER J. A. (1986) — New min eral names.

Am. Miner., 71: 227–232.

EXEL R. (1993) — Die Mineralien und Erzlagerstätten Österreichs.

Eigenverlag, Vi enna.

FARRELL S. P., FLEET M. E., STEKHIN I. E., KRAVTSOVA A., SOLDATOV A. V. and LIU X. (2002) — Evo lu tion of lo cal elec tronic struc ture in alabandite and niningerite solid so lu tions [(Mn,Fe)S, (Mg,Mn)S, (Mg,Fe)S] us ing sul fur K- and L-edge XANES spec tros - copy. Am. Miner., 87: 1321–1332.

FILIPPIDIS A., GEORGAKOPOULOS A. and KASSOLI-FOUR - NARAKI A. (1996) — Min er al og i cal com po nents of some ther mally de com posed lig nite and lig nite ash from the Ptolemais ba sin, Greece.

Int. J. Coal Geol., 30: 303–314.

FINKELMAN R. B. (2004) — Po ten tial health im pacts of burn ing coal beds and waste banks. Int. J. Coal Geol., 59: 19–24.

FINKELMAN R. B. and MROSE M. E. (1977) — Downeyite, the first ver - i fied nat u ral oc cur rence of SeO2. Am. Miner., 62: 316–320.

FLEISCHER M. (1965) — New min eral names. Am. Miner., 50: 805.

GABZDYL W. (1994) — Geologia złóż węgla. Polska Agencja Ekologiczna, Warszawa.

GRYGLEWICZ G., WILK P., YPERMAN J., FRANCO D. V., MAES I. I., MULLENS J. and VAN POUCKE L. C. (1996) — In ter ac tion of the or ganic ma trix with py rite dur ing py rol y sis of a high-sul fur bi tu mi - nous coal. Fuel, 75 (13): 1499–1504.

GUR D., STEINITZ G., KOLODNY Y., STARINSKY A., McWILLIAMS M. (1995) — 40Ar/39Ar dat ing of com bus tion meta mor phism (“Mot -

tled Zone”, Is rael). Chem. Geol. (Iso tope Geoscience Sec tion), 122:

71–184.

JAMBOR J. L. and GREW E. S. (1990) — New min eral names. Am.

Miner., 75: 240–246.

JAMBOR J. L. and GREW E. S. (1991) — New min eral names. Am.

Miner., 76: 299–305.

JÍRASEK J. (2001) — Ther mal changes of the rocks in the dump pile of the Kateřina Col liery in Radvanice (East ern Bo he mia). Ostrava: VSB — Tech ni cal Uni ver sity of Ostrava, In sti tute of Geo log i cal En gi neer ing, 541: 69.

KOLITSCH U. and BRANDSTÄTTER F. (2007) — A new salt-in clu sion sul fate phase from a burn ing coal dump. 16th Cro atian-Slovenian crys tal lo graphic meet ing, 12.

KRUSZEWSKI Ł. (2006) — Oldhamite-periclase-portlandite-flu o rite as - sem blage and co ex ist ing min er als of burnt dump in Siemianowice Śląskie–Dąbrówka Wielka area (Up per Silesia, Po land) — pre lim i - nary re port. Miner. Pol., Spec. Pap., 28: 118–120.

KUENZER C., ZHANG J., TETZLAFF A., VAN DIJK P., VOIGT S., MEHL H. and WAGNER W. (2007) — Un con trolled coal fires and their en vi ron men tal im pacts: In ves ti gat ing two arid min ing re gions in north-cen tral China. Appl. Geogr., 27: 42–62.

LAURENT H. (1995) — Minéralisations des houillÀres embrasées. Le RÀgne Minér., 2: 41–45.

NASDALA L. and PEKOV I. V. (1993) — Ravatite, C14H10, a new or ganic min eral spe cies from Ravat, Tadzhikistan. Eur. J. Miner., 22: 699–705.

ODUM J. K., HAUFF P. L. and FARROW R. A. (1982) — A new oc cur - rence of ammoniojarosite in Buf falo, Wy o ming. Can. Miner., 20:

91–95.

PANOV B. S., DUDIK A. M., SHEVCHENKO O. A. and MATLAK E. S.

(1999) — On pol lu tion of the bio sphere in in dus trial ar eas: the ex am - ple of the Donets coal Ba sin. Int. J. Coal Geol., 40: 199–210.

(15)

PONE J. D. N., HEIN K. A. A., STRACHER G. B., ANNEGARN H. J., FINKLEMAN R. B., BLAKE D. R., McCORMACK J. K. and SCHROEDER P. (2007) — The spon ta ne ous com bus tion of coal and its by-prod ucts in the Witbank and Sasolburg coal fields of South Af - rica. Int. J. Coal Geol., 72: 124–140.

REIFENSTEIN A. P., KAHRAMAN H., COIN C. D. A., CALOS N. J., MILLER G. and UWINS P. (1999) — Be hav iour of se lected min er als in an im proved ash fu sion test: quartz, po tas sium feld spar, so dium feld spar, kaolinite, illite, cal cite, do lo mite, sid er ite, py rite and ap a tite.

Fuel, 78: 1449–1461.

SEJKORA J., BERLEPSCH P., MAKOVICKY E. and BALIĆ-ZUNIĆ T.

(2001) — Nat u ral SnGeS3 from Radvanice near Trutnov (Czech Re - pub lic): its de scrip tion, crys tal struc ture, re fine ment and solid so lu tion with PbGeS3. Eur. J. Miner., 13: 791–800.

SINDERN S., WARNSLOH J., WITZKE T., HAVENITH V., NEEF R. and ETOUNDI Y. (2005) — Min er al ogy and geo chem is try of vents formed on the burn ing coal min ing waste dump Anna I, Alsdorf, Ger - many. Eur. J. Miner., 17 (1): 130.

SOKOL E. V., MAKSIMOWA N. V., NIGMATULINA E. N., SHARYGIN V. V. and KALUGIN V. M. (2005) — Com bus tion meta mor phism.

Publ. House of the SB RAS. Novosibirsk.

SOKOL E. V., NIGMATULINA E. N. and VOLKOVA N. I. (2002) — Flu - o rine min er al iza tion from burn ing coal spoil-heaps in the Rus sian Urals. Miner. Petrol., 13: 791–800.

SREBRODOLSKIY B. I. (1989) — Tainy Sezonnykh Mineralov. Nauka:

59–119. Moskva.

STRACHER G. B., PRAKASH A., SCHROEDER P., McCORMACK J., ZHANG X., VAN DIJK P. and BLAKE D. (2005) — New min eral oc - cur rences and min er al iza tion pro cesses: Wuda coal-fire gas vents of In ner Mon go lia. Am. Miner., 90: 1729–1739.

ŚWIĘTOSŁAWSKI W. (1953) — Fizykochemia węgli kamiennych i procesu koksowania: 38–43. Państw. Wyd. Techniczne, Warszawa.

SZAKÁLL S. and JÁNOSI M. (1995) — Min er als of Hun gary (Magyarország ásványai). Herman Ótto Mus. De part. Miner., Miskolc.

THALHEIM K., REICHEL W. and WITZKE T. (1991) — Die Minerale des Döhlener Beckens. Schriften des Staatlichen Mus. Miner. und Geol. Dresden, 3.

TVRDÝ J. and SEJKORA J. (1999) — Hořící uhelné haldy a redepozice toxických látek při samovolném termickém rozkladu uhelné hmoty.

EKO, 10 (4): 11–15.

TVRDÝ J. and SEJKORA J. (2000) — Novotvořené mineralní faze na hořícím odvalu dolu Kateřina v Radvanicích. Uhlí, rudy, geologický průzkum, 7 (3): 19–24.

WARD C. R. (2002) — Anal y sis and sig nif i cance of min eral mat ter in coal seams. Int. J. Coal Geol., 50: 135–138.

WIELOGÓRSKI Z., ZAWIDZKI P. and KOISAR B. (1975) — Procesy powstawania minerałów w strefach pożarów hałdy kopalni węgla

„Słupiec”. Prz. Górniczy, 9: 443–448.

WITZKE T. (1995) — Neufunde aus Sachsen (IV): Neue Nachweise der seltenen Minerale Chernikovit, Ktenasit, Letovicit, Ramsbeckit, Ravatit und Znucalit. Lapis, 9: 35–36.

WITZKE T. (1996) — Die Minerale der brennenden Halde der Steinkohlengrube “Deutsch land-schacht” in Oelsnitz bei Zwickau.

Aufschluss, 47: 41–48.

WITZKE T. and RÜGER F. (1998) — Die Minerale der Ronneburger und Culmitzscher Lagerstätten in Thüringen. Lapis, 23 (7/8): 26–64.

WOOLEY A. R. and CHURCH A. A. (2005) — Ex tru sive carbonatites: a brief re view. Lithos, 85: 1–14.

ŽÁČEK V. and ONDRUŠ P. (1998) — Min er al ogy of re cently formed sub - li mates from Kateřina col liery in Radvanice, East ern Bo he mia, Czech Re pub lic. Bull. Czech Geol. Surv., 73 (2): 289–302.

Cytaty

Powiązane dokumenty

Wkład Profesor Zofi i Zarzyckiej w rozwój demografi i dokonywał się również poprzez kształcenie młodej kadry naukowej, co jest działaniem na pograniczu badań naukowych

The impact of a Neogene basaltoid intru- sion on the distribution of rare earth elements and yttrium in Carboniferous rocks from the Sumina area, Poland (SW part of Upper Silesian

In the ontogenetically earliest growth stage of this specimen studied (Text-fig. 8D), the arrangement of the slightly thickened major septa is rotiphylloid, the cardinal

The presence of these compounds indicates a very intensive microbial transformation of organic matter during deposition and early diagenesis and/or high ratios of microbial matter

eMeNded diAGNOSiS: Antiphyllum with n:d value 16-18:4.5-5.3 mm; inner margins of major septa in car- dinal quadrants and most of counter quadrants unite to form arch open

Hence, con clu sions drawn on the ba sis of com par i son of coke or char struc ture, per formed as a re sult of heat in flu ence on coal in geo - log i cal con di tions and in the

in all respects inconsistent with the broad spectrum of different maturity data (coal rank, vitrinite reflectance, conodont. CAI) known from the Devonian and

The yieIds obtained (Tab. 1) correlate with differences in mineralogical composition, The coal sample (C) with the great- est organic content also shows the highest yield of